Как определить направление электрического поля. Электрическое поле. Вектор напряжённости электрического поля. Принцип суперпозиции для вектора Е. Вектор напряженности - основная характеристика

Силы, действующие на дистанции, иногда называются силами поля. Если зарядить объект, то он создаст электрическое поле – область с изменившимися характеристиками, его окружающую. Произвольный заряд, попавший в зону электрического поля, будет подвергаться действию его сил. На эти силы влияют степень заряженности объекта и дистанция до него.

Png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-210x140..png 726w" sizes="(max-width: 600px) 100vw, 600px">

Измерение напряженности ЭП

Силы и заряды

Допустим, имеется какой-то изначальный электрозаряд Q, создающий электрическое поле. Сила этого поля измеряется электрозарядом, пребывающим в непосредственной близости. Этот электрозаряд именуют тестовым, поскольку он служит в качестве испытательного при определении напряженности и слишком маленький для влияния на создаваемое ЭП.

Контрольный электрозаряд будет именоваться q и обладать каким-то количественным значением. Когда его помещают в электрическое поле, он подвергается действующим притягивающим или отталкивающим силам F.

В качестве формулы напряженности электрического поля, обозначенной латинской буквой E , служит математическая запись:

Сила измеряется в ньютонах (Н), заряд – в кулонах (Кл). Соответственно, для напряженности используется единица – Н/Кл.

Другой часто используемой на практике единицей для однородных ЭП служит В/м. Это следствие формулы:

То есть E зависит от напряжения ЭП (разности потенциалов между двумя его точками) и расстояния.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-9-768x474..jpg 120w, https://elquanta.ru/wp-content/uploads/2018/03/2-9.jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Напряженность ЭП

Зависит ли напряженность от количественного значения электрозаряда? Из формулы можно видеть, что увеличение q влечет уменьшение Е. Но согласно закону Кулона, больший заряд также означает большую электрическую силу. Например, двукратное увеличение электрозаряда вызовет двукратное увеличение F. Следовательно, изменения напряженности не произойдет.

Важно! На напряженность ЭП не влияет количественный показатель испытательного заряда.

Как направлен вектор электрического поля

Для векторной величины обязательно применяется две характеристики: количественное значение и направление. На изначальный заряд действует сила, направленная к нему либо в противоположную сторону. Выбор достоверного направления определяется зарядным знаком. Чтобы разрешить вопрос, в какую сторону направляются линии напряженности, было принято направление силы F, воздействующей на положительный электрозаряд.

Важно! Линии напряженности поля, созданного электрозарядом, направлены от заряда со знаком «плюс» к заряду со знаком «минус». Если вообразить произвольный плюсовой исходный заряд, то линии будут выходить из него во все стороны. Для минусового заряда наблюдается наоборот вхождение силовых линий со всех окружающих сторон.

Наглядное отображение векторных величин ЭП производится посредством силовых линий. Смоделированный образец ЭП может состоять из бесконечного числа линий, которые располагаются по определенным правилам, дающим как можно больше информации о характере ЭП.

Gif?.gif 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-768x576.gif 768w" sizes="(max-width: 600px) 100vw, 600px">

Линии и вектора напряженности ЭП

Правила вычерчивания силовых линий:

  1. Сильнейшим электрическим полем обладают электрозаряды большей величины. На схематическом рисунке это может быть показано увеличением частоты линий;
  2. В областях соединения с поверхностью объекта линии всегда ей перпендикулярны. На поверхности объектов правильной и неправильной формы никогда не существует электрической силы, параллельной ей. При существовании такой силы любой избыточный заряд на поверхности начал бы движение, и возник бы электрический ток внутри объекта, что никогда не бывает в статическом электричестве;
  3. При покидании поверхности объекта сила может менять направление из-за влияния ЭП других зарядов;
  4. Электрические линии не должны пересекаться. Если они пересекаются в какой-то точке пространства, тогда в этом пункте должно существовать два ЭП с собственным индивидуальным направлением. Это невыполнимое условие, так как каждое место ЭП имеет свою напряженность и направление, с ним связанное.

Силовые линии для конденсатора будут идти перпендикулярно пластинам, но у краев приобретать выпуклость. Это свидетельствует о нарушении однородности ЭП.

Учитывая условие о положительном электрозаряде, можно определиться с направлением вектора напряженности электрического поля. Этот вектор направлен в сторону силы, действующей на электрозаряд со знаком «плюс». В ситуациях, когда ЭП создается несколькими электрозарядами, вектор находится как результат геометрического суммирования всех сил, воздействиям которых подвержен испытательный заряд.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-9.jpg 750w" sizes="(max-width: 600px) 100vw, 600px">

Построение результирующего вектора напряженности

В то же время под линиями напряженности электрического поля понимается совокупность линий в зоне действия ЭП, касательными к которым будут в любом произвольном пункте векторы Е.

Если создается ЭП от двух и более зарядов, появляются линии, окружающие их конфигурацию. Такие построения являются громоздкими и выполняются с помощью компьютерной графики. При решении практических задач используется результирующий вектор напряженности электрического поля для заданных точек.

Закон Кулона

Закон Кулона определяет электрическую силу:

F = (K x q x Q)/r², где:

  • F – электрическая сила, направленная по линии между двумя электрозарядами;
  • К – постоянная пропорциональности;
  • q и Q – количественные величины зарядов (Кл);
  • r – дистанция между ними.

Постоянную пропорциональность находят из соотношения:

K = 1/(4π x ε).

Величина постоянной зависит от среды, в которой располагаются заряды (диэлектрическая проницаемость).

Тогда F =1/(4π x ε) х (q x Q)/r² .

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-4.jpg 640w" sizes="(max-width: 600px) 100vw, 600px">

Закон Кулона

Закон действует в природной среде. Для теоретического расчета изначально предполагается, что электрозаряды находятся в свободном пространстве (вакууме). Тогда значение ε = 8,85 х 10(в -12 степени), а K = 1/(4π x ε) = 9 х 10(в 9 степени).

Важно! Формулы, описывающие ситуации, где есть сферическая симметрия (большинство случаев), имеют в своем составе 4π. Если имеется цилиндрическая симметрия, появляется 2π.

Чтобы вычислить модуль напряженности, нужно подставить в формулу для Е математическое выражение закона Кулона:

E = F/q = 1/(4π x ε) х (q x Q)/(r² x q) = 1/(4π x ε) х Q/r²,

где Q – исходный заряд, создающий ЭП.

Чтобы найти напряженность ЭП в конкретной точке, надо разместить в этой точке пробный заряд, определить дистанцию до него и вычислить E по формуле.

Закон обратных квадратов

В формульном отображении закона Кулона дистанция между электрозарядами появляется в уравнении как 1/r². Значит, будет справедливым применение закона обратных квадратов. Другим известным таким законом является закон гравитации Ньютона.

Заряженные тела могут влиять друг на друга без соприкосновения через электрическое поле. Поле, которое создается статичными электрическими частицами, именуется электростатическим.

Инструкция

1. Если в электрическое поле, создаваемое зарядом Q, разместить еще один заряд Q0, то оно будет влиять на него с определенной силой. Это колляция именуется напряженностью электрического поля E. Она представляет собой отношение силы F, с которое поле действует на правильный электрический заряд Q0 в определенной точке пространства, к значению этого заряда: E = F/Q0.

2. В зависимости от определенной точки пространства, значение напряженности поля E может меняться, что выражается формулой Е = Е (x, y, z, t). Следственно напряженность электрического поля относится к векторным физическим величинам.

3. От того что напряженность поля зависит от силой, действующей на точечный заряд, то вектор напряженности электрического поля E идентичен с вектором силы F. Согласно закону Кулона, сила, с которой взаимодействуют две заряженные частицы в вакууме, направлена по прямой линии, которая соединяет эти заряды.

4. Майкл Фарадей предложил наглядно изображать напряженность поля электрического заряда с поддержкой линий напряженности. Эти линии совпадают с вектором напряженности во всех точках по касательной. На чертежах их принято обозначать стрелками.

5. В том случае, если электрическое поле однородно и вектор его напряженности непрерывен по своему модулю и направлению, то линии напряженности параллельны с ним. Если электрическое поле создается правильно заряженным телом, линии напряженности направлены от него, а в случае с негативно заряженной частицей – по направлению к нему.

Совет 2: Как обнаружить напряженность электрического поля

Для того дабы обнаружить напряженность электрического поля , внесите в него вестимый пробный заряд. Измерьте силу, которая действует на него со стороны поля и рассчитайте значение напряженности. Если электрическое поле создается точечным зарядом либо конденсатором, рассчитайте его по особым формулам.

Вам понадобится

  • электрометр, динамометр, вольтметр, линейку и транспортир.

Инструкция

1. Определение напряженности произвольного электрического поля Возьмите заряженное тело, размеры которого незначительны по сопоставлению размерами тела, генерирующего электрическое поле. Отлично подойдет заряженный металлический шар с малой массой. Измерьте величину его заряда электрометром и внесите в электрическое поле. Уравновесьте силу, действующую на заряд со стороны электрического поля динамометром и снимите с него показания в ньютонах. Позже этого значение силы, поделите на величину заряда в Кулонах (E=F/q). Итогом будет напряженность электрического поля в вольтах на метр.

2. поля точечного заряда Если электрическое поле генерируется зарядом, величина которого знаменита, для определения его напряженности в некоторой точке пространства удаленной от него, измерьте это расстояние между избранной точкой и зарядом в метрах. Позже этого величину заряда в Кулонах, поделите на измеренное расстояние, возведенное во вторую степень (q/r?). Полученный итог умножьте на показатель 9*10^9.

3. Определение напряженности электрического поля конденсатора Измерьте разность потенциалов (напряжение) между пластинами конденсатора. Для этого параллельно ним присоедините вольтметр, итог зафиксируйте в вольтах. После этого измерьте расстояние между этими пластинами в метрах. Поделите значение напряжения на расстояние между пластинами, итогом будет напряженность электрического поля . Если между пластинами размещен не воздух, определите диэлектрическую проницаемость данной среды и поделите итог не ее значение.

4. Определение электрического поля , сделанного несколькими поля ми Если поле в данной точке является итогом наложения нескольких электрических полей, обнаружьте векторную сумму значений этих полей, с учетом их направления (тезис суперпозиции полей). Если надобно обнаружить электрическое поле, образованное двумя поля ми, постройте их векторы в данной точке, измерьте угол между ними. После этого возведите всякое из их значений в квадрат, обнаружьте их сумму. Вычислите произведение значений напряженности полей, умножьте его на косинус угла, тот, что равен 180? минус угол между векторами напряженностей, а итог умножьте на 2. Позже этого от суммы квадратов напряженностей отнимите полученное число (E=E1?+E2?-2E1E2*Cos(180?-?)). При построении полей рассматривайте, что силовые линии выходят из правильных зарядов и входят в негативные.

Видео по теме

Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Дабы определить модуль вектора , следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.

Инструкция

1. Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора именуется модулем либо нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба свойства используются для графического изображения разных величин либо действий, скажем, физических сил, движения элементарных частиц и пр.

2. Местоположение вектора в двухмерном либо трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, впрочем модуль и направление останутся бывшими. Эта автономность разрешает применять средства векторной алгебры в разных вычислениях, скажем, определения углов между пространственными прямыми и плоскостями.

3. Весь вектор дозволено задать координатами его концов. Разглядим для начала двухмерное пространство: пускай предисловие вектора находится в точке А (1, -3), а конец – в точке В (4, -5). Дабы обнаружить их проекции, опустите перпендикуляры на ось абсцисс и ординат.

4. Определите проекции самого вектора , которые дозволено вычислить по формуле:АВх = (xb – xa) = 3;ABy = (yb – ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.

5. В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора . Гипотенузой треугольника является величина, которую необходимо вычислить, т.е. модуль вектора . Примените теорему Пифагора:|АВ|? = ABx? + ABy? ? |AB| = ?((xb – xa)? + (yb – ya)?) = ?13.

6. Видимо, что для трехмерного пространства формула усложняется путем добавления третьей координаты – аппликат zb и za для концов вектора :|AB| = ?((xb – xa)? + (yb – ya)? + (zb – za)?).

7. Пускай в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = ?(9 + 4 + 25) = ?38.

Видео по теме

Для того дабы определить модуль точечных зарядов идентичной величины, измерьте силу их взаимодействия и расстояние между ними и произведите расчет. Если же необходимо обнаружить модуль заряда отдельных точечных тел, вносите их в электрическое поле с вестимой напряженностью и измеряйте силу, с которой поле действует на эти заряды.

Вам понадобится

  • – крутильные весы;
  • – линейка;
  • – калькулятор;
  • – измеритель электростатического поля.

Инструкция

1. Если есть два идентичных по модулю заряда, измерьте силу их взаимодействия при помощи крутильных весов Кулона, которые единовременно являются эмоциональным динамометром. Позже того, как заряды придут в баланс, и проволока весов скомпенсирует силу электрического взаимодействия, на шкале весов зафиксируйте значение этой силы. Позже этого при помощи линейки, штангенциркуля, либо по особой шкале на весах обнаружьте расстояние между этими зарядами. Рассматривайте, что разноименные заряды притягиваются, а одноименные отталкиваются. Силу измеряйте в Ньютонах, а расстояние в метрах.

2. Рассчитайте значение модуля одного точечного заряда q. Для этого силу F, с которой взаимодействуют два заряда, поделите на показатель 9 10^9. Из полученного итога извлеките квадратный корень. Итог умножьте на расстояние между зарядами r, q=r ?(F/9 10^9). Заряд получите в Кулонах.

3. Если заряды неодинаковые, то один из них должен быть предварительно знаменит. Силу взаимодействия знаменитого и неведомого заряда и расстояние между ними определите при помощи крутильных весов Кулона. Рассчитайте модуль неведомого заряда. Для этого силу взаимодействия зарядов F, поделите на произведение показателя 9 10^9 на модуль знаменитого заряда q0. Из получившегося числа извлеките квадратный корень и умножьте итог на расстояние между зарядами r; q1=r ?(F/(9 10^9 q2)).

4. Определите модуль незнакомого точечного заряда, внеся его в электростатическое поле. Если его напряженность в данной точке заблаговременно незнакома, внесите в нее датчик измерителя электростатического поля. Напряженность измеряйте в вольтах на метр. Внесите в точку с вестимой напряженностью заряд и с поддержкой эмоционального динамометра измерьте силу в Ньютонах, действующую на него. Определите модуль заряда, поделив значение силы F на напряженность электрического поля E; q=F/E.

Видео по теме

Обратите внимание!
Вектор напряженности имеет лишь одно направление в всякой точке пространства, следственно линии напряженности никогда не пересекаются.

Как мы обнаруживаем любую силу или взаимодействие? По результату воздействия. Мы стукнули по мячу у мяча изменилась скорость. Земля притягивает нас мы не можем оттолкнуться ногами и улететь, а всегда приземляемся обратно. К сожалению:)

Так и с электрическим полем недостаточно просто знать, что оно есть, необходимо найти какую-то его характеристику, которая будет описывать результат его воздействия.

Мы знаем, что поле воздействует на заряд. Собственно, мы и можем обнаружить электрическое поле только по его действию на заряд. Соответственно, мы должны ввести величину, характеризующую силу этого воздействия.

Напряженность как характеристика электрического поля

При помещении в постоянное электрическое поле различных зарядов удалось обнаружить, что величина действия на заряд силы всегда прямо пропорциональна величине этого заряда.

По закону Кулона все верно. Ведь поле создается зарядом q_1, следовательно, при неизменной величине заряда q_1, созданное им поле будет действовать на помещенный в него заряд q_2 кулоновской силой, пропорциональной величине заряда q_2.

Поэтому отношение силы действия поля на помешенный в него заряд к этому заряду будет величиной, не зависящей от величины заряда, создающего это поле.

Такую величину можно рассматривать в качестве характеристики поля. Ее назвали напряженностью электрического поля:

где E напряженность электрического поля, F сила, действующая на точечный заряд, q помещенный в поле заряд.

Напряженность поля величина векторная, направлен вектор напряженности в любой точке поля всегда вдоль прямой, соединяющей эту точку и помещенный в поле заряд. Вектор напряженности всегда совпадает по направлению с вектором силы, действующей на заряд.

Принцип суперпозиции полей

Мы знаем, что если на тело действует несколько различных сил, направленных в разные стороны, то результирующая этих сил будет равна их геометрической сумме: F =F_1+F_2+...+F_n.

Направление воздействия этой силы находится по правилу сложения векторов. В случае, когда мы имеем заряд, находящийся в зоне действия нескольких электрических полей, то на него будут действовать несколько сил.

Величина и направление каждой отдельно взятой силы будет зависеть от напряженности каждого поля в отдельности. Результирующая же этих сил, как и в случае с телом, будет равна их геометрической сумме.

Логично предположить, что тогда и результирующая напряженность поля для нашего заряда будет складываться из напряженностей всех полей, присутствующих в этой точке. В этом суть принципа суперпозиции полей.

Этот принцип был подтвержден экспериментально: если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых E_1,E_2,…,E_n, то результирующая напряженность поля в этой точке равна сумме напряженностей этих полей.

>>Физика: Напряженность электрического поля. Принцип суперпозиции полей

Недостаточно утверждать, что электрическое поле существует. Надо ввести количественную характеристику поля. После этого электрические поля можно будет сравнивать друг с другом и продолжать изучать их свойства.
Электрическое поле обнаруживается по силам, действующим на заряд. Можно утверждать, что мы знаем о поле все, что нам нужно, если будем знать силу, действующую на любой заряд в любой точке поля.
Поэтому надо ввести такую характеристику поля, знание которой позволит определить эту силу.
Если поочередно помещать в одну и ту же точку поля небольшие заряженные тела и измерять силы, то обнаружится, что сила, действующая на заряд со стороны поля, прямо пропорциональна этому заряду. Действительно, пусть поле создается точечным зарядомq 1 . Согласно закону Кулона (14.2) на заряд q 2 действует сила, пропорциональная заряду q 2 . Поэтому отношение силы, действующей на помещаемый в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля. Эту характеристику называютнапряженностью электрического поля. Подобно силе, напряженность поля – векторная величина ; ее обозначают буквой . Если помещенный в поле заряд обозначить через q вместо q 2 , то напряженность будет равна:

Напряженность поля в данной точке равна отношению силы, с которой поле действует на точечный заряд, помещенный в эту точку, к этому заряду.
Отсюда сила, действующая на заряд q со стороны электрического поля, равна:

Направление вектора совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.
Напряженность поля точечного заряда. Найдем напряженность электрического поля, создаваемого точечным зарядом q 0 . По закону Кулона этот заряд будет действовать на положительный заряд q с силой, равной

Модуль напряженности поля точечного заряда q 0 на расстоянии r от него равен:

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд (рис.14.7 ) и совпадает с силой, действующей на точечный положительный заряд, помещенный в данную точку.

Принцип суперпозиции полей . Если на тело действует несколько сил, то согласно законам механики результирующая сила равна геометрической сумме этих сил:

На электрические заряды действуют силы со стороны электрического поля. Если при наложении полей от нескольких зарядов эти поля не оказывают никакого влияния друг на друга, то результирующая сила со стороны всех полей должна быть равна геометрической сумме сил со стороны каждого поля. Опыт показывает, что именно так и происходит на самом деле. Это означает, что напряженности полей складываются геометрически.
если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна сумме напряженностей этих полей:

причем напряженность поля, создаваемая отдельным зарядом, определяется так, как будто других зарядов, создающих поле, не существует.
Благодаря принципу суперпозиции для нахождения напряженности поля системы заряженных частиц в любой точке достаточно знать выражение (14.9) для напряженности поля точечного заряда. На рисунке 14.8 показано, как определяется напряженность поля в точке A , созданная двумя точечными зарядами q 1 и q 2 , q 1 >q 2

Введение электрического поля позволяет разделить задачу вычисления сил взаимодействия заряженных частиц на две части. Сначала вычисляют напряженность поля, созданного зарядами, а затем по известной напряженности определяют силы. Такое разделение задачи на части обычно облегчает расчеты сил.

???
1. Что называется напряженностью электрического поля?
2. Чему равна напряженность поля точечного заряда?
3. Как направлена напряженность поля зарядаq 0 , если q 0 >0 ? если q 0 <0 ?
4. Как формулируется принцип суперпозиции полей?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

12. Диэлектрики в эл.поле. Молекулы полярных и неполярных диэлектриков в эл.поле. Поляризация диэлектриков. Виды поляризации.

1. Полярные диэлектрики.

В отсутствии поля каждый из диполей обладает электрическим моментом, но вектора электрических моментов молекул расположены в пространстве хаотично и сумма проекций электрических моментов на любое направление равна нулю:

Если теперь диэлектрик поместить в электрическое поле (рис. 18), то на каждый диполь начнет действовать пара сил, которая создаст момент под действием которого диполь будет поворачиваться вокруг оси, перпендикулярной плечу, стремясь к конечному положению, когда вектор электрического момента будет параллелен вектору напряженности электрического поля. Последнему будет мешать тепловое движение молекул, внутреннее трение и т.д. и поэтому

электрические моменты диполей будут составлять некоторые углы с направлением вектора внешнего поля, но теперь уже у большего числа молекул будут составляющие проекции электрических моментов на направление, совпадающее, например, с напряженностью поля и сумма проекций всех электрических моментов уже будет отлична от нуля.

Величина, показывающая способность диэлектрика созда-вать большую или меньшую поляризацию, то есть харак-теризующая податливость диэлектрика к поляризации называется диэлектрической восприимчивостью или поляризуемостью диэлектрика ().

16. Поток вектора эл.индукции(однородного и неоднород-ного опля). Поток через замкнутую поверхность. Т.Гаусса для эл. Поля в среде.

Подобно потоку вектора напряженности можно ввести и понятие потока вектора индукции , оставив то же свойство, что и для напряженности-вектор индукции пропорционален числу линий, проходящих через единицу площади поверхности. Можно указать следующие свойства:

1.Поток через плоскую поверхность в однородном поле (рис. 22).В этом случае вектор индукции направлен по полю и поток линии индукции может быть выражен следующим образом:

2. Поток вектора индукции через поверхность в неоднородном поле подсчитывают путем разбиения поверхности на элементы столь малые, чтобы их можно было считать плоскими, а поле вблизи каждого элемента однородным. Полный поток вектора индукции будет равен:

3. Поток вектора индукции через замкнутую поверхность.

Рассмотрим поток вектора индукции пересекающего замкнутую поверхность (рис.23). Условимся направление внешних нормалей считать положительными. Тогда в тех точках поверхности, где вектор индукции направлен по касательной к линии индукции наружу, угол

и поток линий индукции будет положительным, а там, где вектор D индукции будет положительным, а там, где вектор D направлен внутрь поверхности, поток линий индукции будет отрицательным, т.к и .Таким образом общий поток линий индукции пронизывающих замкнутую поверхность насквозь равен нулю.

На основании теоремы Гаусса получаем, что внутри замкнутой поверхности, проведенной в проводнике, некомпенсированные электрические заряды отсутствуют. Это свойство сохраняется и в том случае, когда проводнику сообщен избыточный заряд

На противоположной стороне возникнет равный по величине, но положительный заряд. В результате внутри проводника возникнет индуцированное электрическое поле Е инд , направленное навстречу внешнему полю, которое будет расти до тех пор, пока оно не сравняется с внешним полем и таким образом результирующее поле внутри проводника становится равно нулю. Этот процесс происходит в течение очень короткого времени.

Индуцированные заряды располагаются на поверхности проводника в очень тонком слое.

Потенциал во всех точках проводника остается одинаков, т.е. внешняя поверхность проводника является эквипотенциальной.

Замкнутый полый проводник экранирует только поле внешних зарядов. Если электрические заряды находятся внутри полости, то индукционные заряды возникнут не только на внешней поверхности проводника, но и на внутренней и замкнутая проводящая полость уже не экранирует поле электрических зарядов помещенных внутрь ее.

. Напряженность поля вблизи проводника прямо пропорциональна поверхностной плотности заряда на нем.