Когнитивная графика. Соболева аг когнитивное компьютерное моделирование реферат

Cтраница 1


Когнитивная компьютерная графика активизирует образное, интуитивное мышление человека и тем самым способствует зарождению новых идей и гипотез, стимулирует появление нового знания. Она в ряде случаев расширяет и уточняет поставленные задачи, способствует идентификации решаемых задач и проектируемых систем. Рассматриваются требования к создаваемым системам и подсистемам когнитивной компьютерной графики, вопросы их создания, использования в интеллектуальных системах и взаимодействия с естественным интеллектом человека. Развитие систем с машинной графикой и все более широкое их применение в научных исследованиях в дальнейшем трансформировались в направление когнитивной компьютерной графики. Системы с когнитивной компьютерной графикой позволяют исследователям увидеть глубинные закономерности и в значительной степени усиливают конструкторскую мысль инженеров-разработчиков. Актуальной проблемой развития графического интерфейса, качественно улучшающего общение человека с компьютером, является интеллектуализация такого интерфейса на основе новых когнитивных методов. Рассматриваются различные возможные проблемные области применения систем и интерфейсов с когнитивной компьютерной графикой, а также ряд конкретных систем и подсистем, наделенных функциями когнитивной компьютерной графики. Затрагиваются вопросы практической реализации интеллектуального инструментария для проектирования систем, использующих когнитивную компьютерную графику. Даются примеры такого инструментария.  

Когнитивная компьютерная графика, продуцируя графические образы структур и свойств абстрактных объектов, активизирует образное, интуитивное (правополушарное) мышление человека и тем самым в результате работы мозга активизирует и левополушарное, абстрактное мышление и таким образом способствует зарождению новых идей и гипотез, стимулирует появление нового знания. Она в ряде случаев расширяет и уточняет поставленные задачи, способствует идентификации решаемых задач и проектируемых систем. Практически никакое символьное, вербальное, левополушарное знание о каком-то объекте (явлении, ситуации) не в состоянии обеспечить такое предельно четкое и ясное восприятие и представление об этом объекте (явлении, ситуации), которое может дать визуальное восприятие и правополушарное мышление.  

Когнитивная компьютерная графика в ряде случаев способствует уточнению, идентификации решаемых задач и проектируемых сложных систем.  

Все шире интерфейсы с когнитивной компьютерной графикой используются в процессах обучения и в процессах контроля знаний. При этом эффективность применения такой технологии воздействия на человеческий разум базируется на разнообразии подходов к изложению информации и использовании различных форм представления информации и предопределяется включением в процессы обучения и контроля различных органов восприятия информации человеком. В комплексе подготовки космонавтов, описанном в [ 9 ], используются графические средства, позволяющие строить 3D модели и трехмерные миры. Эти средства позволяют реализовать эффективное обучение и контроль знаний обучаемых, являясь по своей сути средствами когнитивной компьютерной графики.  

Зенкин, 1991 ] Зенкин А.А. Когнитивная компьютерная графика.  

Для проектирования систем, использующих когнитивную компьютерную графику, необходимо наличие интеллектуального инструментария, который реализует наиболее важные базовые функции. Желателен инструментарий, позволяющий строить системы, обладающие инвариантностью к различным областям их применения и достаточной мобильностью в плане их использования в различных перспективных операционных и вычислительных средах. Такая инструментальная библиотека должна создавать и отображать трехмерные графические объекты при ориентации на современные программные среды, привязывать к графическим объектам произвольную информацию, предоставлять возможность использования графических материалов, накопившихся при работе с другими графическими системами, а также обеспечивать ряд необходимых сервисных возможностей. Такая библиотека весьма перспективна для использования в различных новых технологиях интеллектуального интерфейса с когнитивной компьютерной графикой.  

Развитие систем с машинной графикой, и все более широкое их применение в научных исследованиях и обучении в дальнейшем трансформировались в направлении когнитивной компьютерной графики, определенная иллюстрация которого дана в данной работе. Системы с когнитивной компьютерной графикой позволяют исследователям увидеть глубинные закономерности и в значительной степени усиливают конструкторскую мысль инженеров-разработчиков. Актуальной проблемой развития графического интерфейса, качественно улучшающего общение человека с компьютером, является интеллектуализация такого интерфейса на основе новых когнитивных методов.  

Графический интерфейс не только осуществляет визуализацию образов конкретной предметной области, но и наполняет графические образы определенным содержанием нового качества, особенно интерфейс, использующий когнитивную компьютерную графику. Поэтому насущной проблемой графического интерфейса является его интеллектуализация на основе новых когнитивных методов - в целях повышения эффективности принятия решений человеком. Когнитивная компьютерная графика, интерфейсы, реализованные на базе когнитивной графики, необходимы в различных системах, основанных на знаниях. В них возникает потребность при решении задач, связанных с графами, с трехмерным отображением местности и сложных технических изделий и конструкций, тела человека, с построением всевозможных поверхностей. Интерфейсы с когнитивной компьютерной графикой могут применяться во всевозможных проблемных областях: медицине, статистике, строительстве, архитектуре, математике, физике, микроэлектронике и др. Эти интерфейсы могут эффективно использоваться в различных познавательных целях.  

Таким образом, современные системы с когнитивной компьютерной графикой, как правило, во-первых, способствуют порождению принципиально нового знания в исследуемой предметной области, которое без когнитивной компьютерной графики может быть просто недоступно для естественного интеллекта человека.  

Итак, современные системы с когнитивной компьютерной графикой интел-лектуализируют информационные технологии, они, как правило, способствуют порождению принципиально нового знания в исследуемой предметной области, причем порою просто недоступного для естественного интеллекта человека без когнитивной компьютерной графики. В перспективе системы с когнитивной компьютерной графикой могут служить уникальным инструментом исследования закономерностей и процессов образного, интуитивного мышления человека для выявления законов функционирования правого полушария человеческого мозга и его взаимодействия с левым полушарием, обеспечивающим рационально-логическое мышление.  

Если в интеллектуальной системе с БЗ, ориентированной, например, на некоторую область научных исследований и разработок, используется подсистема машинной графики, в которой ключевым моментом является общение пользователя с визуальными образами объектов исследуемой предметной области и отношений между ними, то такая графическая подсистема по сути представляет из себя подсистему когнитивной компьютерной графики.  

Можно сказать, что становление и развитие систем с машинной графикой и все более широкое их применение в научных исследованиях в дальнейшем трансформировались в направление когнитивной компьютерной графики. Системы с когнитивной компьютерной графикой, например, математикам позволяют увидеть и осознать глубинные теоретико-числовые закономерности. Для инженеров-исследователей и разработчиков сложных технических проектов эти системы превращают в зримую реальность задуманные и проектируемые изделия и объекты, позволяя тщательно исследовать еще на геометрической модели целый ряд технических и физических тонкостей проектируемых деталей и узлов объекта новой техники, и тем самым в значительной степени усиливая конструкторскую мысль проектировщика. Эти системы позволяют расширить и уточнить поставленные задачи, способствуют идентификации создаваемых объектов, изделий и систем.  

Многочисленные исследования психологов, посвященные анализу процесса решения задач людьми, показали, что наиболее трудоемкими в этом процессе являются первые два этапа. Максимальное усилие человек тратит на процесс перехода от неясного ощущения некоторой ситуации к четко сформулированной задаче. Как правило, именно этот этап воспринимается большинством исследователей, как творческий. На чем формируется замысел задачи и ищется ее формулировка. Далее во многих случаях дело касается лишь применения профессиональной.

Этапы формулировки задачи в условиях использования алгебраического подхода остаются вне поля зрения науки. Проблема эта явно не является алгоритмической. Каждая задача имеет индивидуальный характер, и существование каких-либо общих процедур, кроме чисто методологических (типа алгоритмов поиска изобретения, здесь вряд ли возможно). Однако, как неоднократно отмечали крупные математики, которые всерьез задумывались над процедурами математического творчества, на этапе поиска формулировки задачи весьма часто важную роль играли геометрические представления и модели. И интересно, что зачастую они не были прямо связаны с характером решаемой задачи, а просто ассоциативно вызывали эту постановку. Такой же феномен отмечают и психологи. Попробуем перечислить особенности, которые характерны для нового направления в информатике, получившем название когнитивная графика. Более подробное обсуждение этого направления содержится в первой в мировой литературе монографии, специально посвященной когнитивной графике.

Компьютерная графика - это область информатики, которая охватывает все стороны формирования изображений с помощью компьютера.

Появившись в 1950-х годах, она поначалу давала возможность выводить лишь несколько десятков отрезков на экране.

Базой компьютерной графики стали фундаментальные науки: математика, химия, физика и т.д.

Компьютерная графика используется практически во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации. Общепринятой практикой считается также использование компьютерного моделирования при обучении пилотов и представителей других профессий (тренажеры). Знание основ компьютерной графики сейчас необходимо и инженеру, и ученому.

Конечным результатом применения средств компьютерной графики является изображение, которое может использоваться для различных целей.

Когнитивная компьютерная графика - компьютерная графика для научных абстракций, способствующая рождению нового научного знания. Технической основой для нее являются мощные ЭВМ и высокопроизводительные средства визуализации

Примером применения когнитивной компьютерной графики в прикладной информатике может быть когнитивная визуализация блок-схем алгоритма, трехмерное представление объектов исследование, визуальное представление моделей данных и т.д.

Аналогичная методика была использована для периодичных функций. Как известно графики периодичных функций имеют повторяющие участки, следовательно, если переложить график периодичной функции на ноты, то музыка будет иметь повторяющиеся фрагменты.

Решение задачи контроля исполнения национальных проектов требует учета множества факторов. Масштабность и динамичность ситуации при реализации национальных проектов вызывает необходимость оперативной обработки значительного объема исходных данных, выработки и принятия адекватных и своевременных решений.

При этом возникает проблема восприятия и интерпретации разнородной информации лицом, принимающим решения, что обусловливает актуальность решения задачи поиска форм ее представления, исключающих или снижающих неоднозначность понимания текущей ситуации.

Мышление человека построено так что, размышляет человек не словами и цифрами, а образами. Точно также обстоит дело и с восприятием информации об окружающем мире: образы, формируемые различными органами чувств, воспринимаются целиком.

Исследования показывают что, наибольшую важность имеет именно визуальная составляющая воспринимаемого образа. Отсюда следует необходимость первоочередного решения задачи визуализации числовых и нечисловых (вербальных, графических) исходных данных и результатов их аналитической обработки.

В рамках науки информатики когнитивная компьютерная графика развивается в следующих направлениях:

– исследование общих построения когнитивных графических образов способов, методов когнитивной компьютерной графики;

– исследование индивидуальных особенностей восприятия, в частности его апперцепции;

– разработка модели восприятия информации ЛПР;

– формирование алфавита понятийно-образного языка представления данных, включающего стереотипные символы, отображающие предметы и явления окружающего мира с той или иной степенью подобия, ассоциативно понятные графические примитивы, из которых синтезируются ГО любой сложности, и вспомогательные символы, необходимые для связи графических примитивов и привлечения внимания к наиболее актуальным ГО;

– исследование свойств ГО, воздействующих на ЛПР при их восприятии на уровне ощущений, – энергетических, геометрических, динамических;

– формирование «грамматики» понятийно-образного языка, то есть базовых правил формирования ГО и когнитивных сцен;

– разработка прототипа подсистемы визуализации результатов информационно-аналитического сопровождения контроля исполнения приоритетных национальных проектов на основе понятийно-образного языка представления данных;

– экспериментальная проверка эффективности разработанного прототипа по показателям оперативности, полноты, точности восприятия информации ЛПР.

Основные направления прикладной когнитивной науки. Искусственный интеллект: возможности и ограничения. Экспертные системы и системы поддержки принятия решения. Моделирование принятия решений в экономике и проблема человеческой рациональности. Проблема обработки естественного языка и системы машинного перевода. Основные направления робототехники: проблемы моделирования построения движения, ориентировки в пространстве и обучения мобильных роботов. Взаимодействие человека с компьютером: основные подходы и методы исследования. Когнитивная эргономика. Дизайн и компьютерная графика. Виртуальные реальности.

Широкое распространение гипертекстовых технологий и тесно связанной с этими технологиями мультмедиа-парадигмы также стимулирует развитие когнитивной графики. Как известно, мультимедиа-парадигма уравнивает в правах тексты и изображения. В нелинейном представлении (в виде сети), характерном для гипертекстовых технологий, мультимедиа-парадигма позволяет осуществлять навигацию по сети, как на уровне текста, так и на уровне изображений, осуществляя в любой момент переход от тектса к изображениям, и наоборот.

Таким образом, системы вида "Текст-Рисунок" и "Рисунок-Текст" оказываются тесно связанными с мультимедиа-парадигмой и когнитивной графикой, и сами являются одним из результатов взаимодействия средств когнитивной графики и гипертекстовой технологии.

В системах автоматизации научных исследований когнитивная графика может использоваться в качестве средства визуализации идей, которые еще не получили какого-либо точного выражения. Еще одним примером использования этих средств может служить специальная когнитивная графика для выбора базисных операций в нечетких логиках, в которой глобальное цветовое распределение синих и красных областей характеризует "жесткость" определения операций типа конъюнкции и дизъюнкции.

В этой области когнитивная графика используется на этапе формализации проблем и в процедуре выдвижения правдоподобных гипотез.

В области систем искусственного интеллекта когнитивная компьютерная графика позволит достичь больших результатов чем другие системы благодаря алгебраическому и геометрическому подходу к моделированию ситуаций и различных вариантов их решения.

Так, в научных исследованиях, в том числе и в фундаментальных, характерный для начального этапа акцент на иллюстративной функции ИКГ все более смещается в сторону использования тех возможностей ИКГ, которые позволяют активизировать свойственную человеку способность мыслить сложными пространственными образами. В связи с этим начинают четко различать две функции ИКГ: иллюстративную и когнитивную.

Иллюстративная функция ИКГ позволяет воплотить в более или менее адекватном визуальном оформлении лишь то, что уже известно, т.е. уже существует либо в окружающем нас мире, либо как идея в голове исследователя. Когнитивная же функция ИКГ состоит в том, чтобы с помощью некоего ИКГ-изображения получить новое, т.е. еще не существующее даже в голове специалиста знание или, по крайней мере, способствовать интеллектуальному процессу получения этого знания.

Эта основная идея различий иллюстративной и когнитивной функций ИКГ хорошо вписывается в классификацию знаний и компьютерных систем учебного назначения. Иллюстративные функции ИКГ реализуются в учебных системах декларативного типа при передаче учащимся артикулируемой части знания, представленной в виде заранее подготовленной информации с графическими, анимационными, аудио- и видеоиллюстрациями. Когнитивная же функция ИКГ проявляется в системах процедурного типа, когда учащиеся "добывают" знания с помощью исследований на математических моделях изучаемых объектов и процессов, причем, поскольку этот процесс формирования знаний опирается на, правополушарный механизм мышления, сами эти знания в существенной мере носят личностный характер. Каждый человек формирует приемы подсознательной умственной деятельности по-своему. Современная психологическая наука не располагает строго обоснованными способами формирования творческого потенциала человека, пусть даже профессионального. Одним из известных эвристических подходов к развитию интуитивного профессионально-ориентированного мышления является решение задач исследовательского характера. Применение учебных компьютерных систем процедурного типа позволяет в существенной мере интенсифицировать этот процесс, устранив из него рутинные операции, сделать возможным проведение различных экспериментов на математических моделях.

Роль ИКГ в этих учебных исследованиях трудно переоценить. Именно ИКГ-изображения хода и результатов экспериментов на математических моделях позволяют каждому учащемуся сформировать свой образ изучаемого объекта или явления во всей его целостности и многообразии связей. Несомненно, также, что ИКГ-изображения выполняют при этом прежде всего когнитивную, а не иллюстративную функцию, поскольку в процессе учебной работы с компьютерными системами процедурного типа у учащихся формируются сугубо личностные, т.е. не существующие в таком виде ни у кого, компоненты знаний.

Конечно, различия между иллюстративной и когнитивной функциями компьютерной графики достаточно условны. Нередко обычная графическая иллюстрация может натолкнуть каких-то учащихся на новую мысль, позволит увидеть некоторые элементы знания, которые не "вкладывались" преподавателем-разработчиком учебной компьютерной системы декларативного. Таким образом, иллюстративная по замыслу функция ИКГ-изображения превращается в функцию когнитивную. С другой стороны, когнитивная функция ИКГ-изображения при первых экспериментах с учебными системами процедурного типа в дальнейших экспериментах превращается в функцию иллюстративную для уже "открытого" и, следовательно, уже не нового свойства изучаемого объекта.

Тем не менее, принципиальные отличия в логическом и интуитивном механизмах мышления человека, вытекающие из этих различий формы представления знаний и способы их освоения, делают полезным в методологическом плане различение иллюстративной и когнитивной функций компьютерной графики и позволяют более четко формулировать дидактические задачи ИКГ-изображений при разработке компьютерных систем учебного назначения.

Список использованных источников

1. Зенкин A.A. Когнитивная компьютерная графика. – М.: Наука, 1991.– 192 с.

УДК 002.53; 004.89; 621.3.068 Дата подачи статьи: 14.03.2014

КОГНИТИВНЫЕ ТЕХНОЛОГИИ ВИЗУАЛИЗАЦИИ МНОГОМЕРНЫХ ДАННЫХ ДЛЯ ИНТЕЛЛЕКТУАЛЬНОЙ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ

В.В. Цаплин, к.в.н., доцент, главный научный сотрудник (НИИ «Центрпрограммсистем», просп. 50лет Октября, 3а, г. Тверь, 170024, Россия, [email protected]); В.Л. Горохов, д.т.н., профессор (Санкт-Петербургский государственный архитектурно-строительный университет, ул. 2-я Красноармейская, 4, г. Санкт-Петербург, 190005, Россия, [email protected]); В.В. Витковский, к.ф.-м.н., профессор (Специальная астрофизическая обсерватория РАН, пос. Нижний Архыз, 1, Карачаево-Черкесия, 369167, Россия, [email protected])

В статье изложены принципы когнитивной машинной графики и приведены примеры ее практического применения для разработки систем поддержки принятия решений (СППР). Феномен когнитивной машинной графики состоит в генерации на экране дисплея изображений, создающих в сознании человека-оператора зрелищные образы. Эти образы имеют эстетическую привлекательность и стимулируют интуицию человека. Изображение на дисплее создает в его сознании движущийся трехмерный образ, который формируется всей совокупностью многомерных данных и визуально отображает свойства изучаемой предметной области. При восприятии этих образов человек-

оператор способен выявлять отдельные геометрические свойства наблюдаемого образа и связывать их с предметным содержанием обрабатываемых многомерных данных. Весьма важной является возможность сочетать предлагаемую когнитивную технологию с современными возможностями интеллектуальных программных интерфейсов и программ многомерного статистического анализа данных. Предлагаются принципиально новые алгоритмические подходы к когнитивной визуализации, основанные на гиперболической геометрии и алгебраических многообразиях. В определенном смысле можно говорить о появлении нового вида СППР - когнитивных систем поддержки принятия решений.

Ключевые слова: когнитивный образ в многомерном пространстве, когнитивная визуализация многомерных статистических данных, алгоритмы когнитивной визуализации обстановки, системы поддержки принятия решений, чрезвычайные ситуации.

Received 14.03.2014

MULTIDIMENSIONAL DATA VISUALIZING COGNITIVE TECHNOLOGIES FOR DECISION-MAKING INTELLIGENT SUPPORT Tsaplin V. V., Ph.D. (Military Sciences), Associate Professor, Chief Researcher (Research Institute «Centerprogramsistem», 50 let Oktyabrya Ave. 3a, Tver, 170024, Russian Federation, [email protected]);

Gorokhov V.L., Dr.Sc. (Engineering), Professor (St. Petersburg State University of Architecture and Civil Engineering, 2nd Krasnoarmeyskaya St. 4, St. Petersburg, 190005, Russian Federation, [email protected]);

Vitkovskiy V. V., Ph.D. (Physics and Mathematics) (Special Astrophysics Observatory of the Russian Academy of Sciences, Nizhny Arkhyz 1, Karachaevo-Cherkesiya, 369167, Russian Federation, [email protected])

Abstract. The article describes principles and examples of cognitive machine graphics for developing Decision Support Systems (DSS). The cognitive machine graphics phenomenon is displaying graphic representations which create spectacular images in the human operator brain. These images stimulate its descriptive impressions, closely related to the intuitive mechanisms of thinking. The cognitive effect is in the fact that man perceives the moving projection as three-dimensional picture characterized by multidimensional data properties in the multidimensional space. After the multidimensional data visual aspects study there appears the possibility for a user to paint interesting separate objects or groups of objects by standard machine drawing. Next user can return to the image rotation procedure to check the intuitive user"s ideas about the clusters and the relationship in multidimensional data. It is possible to develop the cognitive machine drawing methods in combination with other information technologies. They are the packets of digital images processing and multidimensional statistical analysis. The proposed method was based on the idea of possibility to assemble a cognitive image as object in hyperbolic space. In special sense it is possible to say that new kind of DSS - Cognitive Decision Support Systems (CDSS) appear.

Keywords: cognitive image in multidimensional space, cognitive visualization of the multidimensional statistical data, algorithms of environment cognitive visualization, decision support systems, emergency situations.

В настоящее время приобретает актуальность проблема оперативного анализа большого объема динамически изменяющихся параметров всего комплекса исследуемых объектов. Такая проблема возникает, например, в военной сфере при тактическом анализе боевых действий, техногенных катастроф, стратегическом планировании и моделировании использования комплексов вооружений, при создании нового поколения диспетчерских систем, отражающих обстановку в контролируемом воздушном или ином оперативном пространстве. Эти проблемы интенсивно решаются в рамках как стратегического и тактического боевого искусства (с использованием всего арсенала современной математики: теории исследования операций, теории оптимального управления и оптимизации), так и создания автоматизированных комплексов современных вооружений .

При решении этих и других подобных проблем приходится сталкиваться с рядом существенных трудностей, связанных с огромной ролью интуиции оператора, которая опирается на присущие человеку возможности непосредственного восприятия боевой обстановки или чрезвычайной ситуации (ЧС). Современные условия боевых действий и техногенных катастроф оставляют оператора наедине с терминалами, где одновременно

фиксируются тысячи параметров, которые он не в состоянии оперативно воспринять и творчески переработать в своем сознании. Основная трудность в том, что человек - всего лишь элемент сложной автоматизированной системы контроля и управления, которая не адаптирована под его творческие возможности. Разработанные ранее в рамках эргономики методы встраивания оператора в такую систему отчасти позволили адаптировать его к так называемым эрготехническим системам, но огромный потенциал творческой и профессиональной интуиции не использовался в полной мере.

Однако благодаря прогрессу в области когнитивных наук, когнитивной психологии, гносеологии и информационных технологий появились принципиально новые возможности для радикального решения означенных проблем. Этот прогресс особо проявился в создании новых технологий и методик когнитивной машинной графики .

Принципы работы. Предлагаемый авторами подход позволяет осуществлять проекцию многомерных данных, представленных в виде грассма-новых многообразий, на произвольно заданную оператором-исследователем плоскость в многомерном конфигурационном (фазовом) простран-

Рис. 1. Стратификация пострадавших Рис. 2. Стратификация источников при обеспеченности регионов ЧС по срокам и регионам

техническими средствами спасения

Fig. 2. Danger sources Fig. 1. Regions stratification stratification on date

on technical ensuring means and region

Рис. 3. Стратификация состояния и наличия технических средств спасения по регионам

Fig. 3. Regions stratification on salvation facilities and technical condition

стве. При этом подбор наилучшего положения плоскости проекции осуществляет сам пользователь, опираясь на свою интуицию и когнитивный образ перед глазами. Имея возможность активно влиять на ориентацию плоскости проекции в многомерном пространстве, исследователь свободен от предварительных соображений о статистической (геометрической) структуре данных, которые представляют объекты. Человек непосредственно видит на экране проекции кластеров или многомерных поверхностей, в которые формируются его данные. Этот зрелищный образ стимулирует его интуитивное понимание исследуемых объектов .

Ниже приведен краткий пример использования разработанных авторами средств когнитивной визуализации обстановки, способных решать задачу активной и управляемой стимуляции интуиции и эмпирического опыта оператора для принятия адекватных решений в современной сложной и быстроменяющейся обстановке. Кроме этого, предлагаются и развиваются принципиально новые алгоритмические подходы, основанные на гиперболической геометрии и алгебраических многообразиях.

Пример когнитивной визуализации - когнитивный анализ техносферных опасностей, выпол-

ненный в рамках сотрудничества с МЧС России. Исследование проводилось с участием и экспертизой сотрудников ВНИИ ГОЧС (ФЦ) («Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России» (Федеральный центр науки и высоких технологий)). В качестве исходных данных для анализа использована информация о ЧС, зафиксированных в 1-м квартале 2012 года (703 ЧС). Возникшие на сотнях объектов ЧС анализировались по следующим выделенным параметрам: месяц, состояние, масштаб, регион, количество пострадавших, количество погибших, личный состав, техника, источник ЧС.

Возможные варианты когнитивных образов в статическом положении для анализа этих ЧС (проекция многомерного облака на плоскость, заданную парой осей параметров) приведены на рисунках 1-3.

Можно сделать вывод, что использование визуализации многомерных статистических данных с помощью генерации когнитивного образа в качестве дополнительного инструмента при анализе и прогнозе ЧС позволило обратить внимание на их особые классы, которые без использования интуитивного восприятия когнитивных образов обнаружить не удавалось.

Рис. 4. Когнитивные образы в гиперболическом визуализаторе Fig. 4. Cognitive images in hyperbolic visualizator

Новые алгоритмы когнитивной визуализации. Предлагается дальнейшее развитие алгоритмов когнитивной визуализации на основе интерпретации к-мерного проективного пространства Рк в ^-мерное гиперболическое пространство в ^ с последующим преобразованием последнего в когнитивный трехмерный образ. Такое формирование гиперболической геометрии многомерных данных происходит с использованием плюккеро-вых координат . Подобные алгоритмы способны когнитивно визуализировать даже терабайтные совокупности объектов. Когнитивный образ подобного типа показан на рисунке 4.

Гиперболический алгоритм визуализации поддерживает эффективный режим взаимодействия с иерархиями гораздо большего размера, чем обычные средства визуализации иерархий. Если обычный двухмерный визуализатор в окне 600x600 пикселей может отобразить 100 узлов, то гиперболический браузер может отобразить 1 000 узлов, из них около 50 находятся в фокусе и легко читаются.

Это особенно важно при анализе статистических связей, факторном анализе, обнаружении целей и при их распознавании. Процедура динамической визуализации не опирается на неполные и, возможно, ложные априорные сведения о природе объектов, а значит, не привнося в проекции искажающее влияние той или иной модели, дает возможность использовать визуализированные образы в условиях глубокой априорной неопределенности предметной области боевых действий и вооружений . Авторами выполнена разработка мультиплатформенных Java-версий программных систем SpaceWalker и , способных реализовать технологии когнитивной визуализации оперативной обстановки для диспетчерских служб широкого профиля.

Появляется еще одна возможность когнитивного контроля малейших изменений в состоянии объектов. Как показали исследования, даже малые изменения параметров объектов существенно изменяют их когнитивные образы, что позволяет оператору мгновенно заметить изменение характеристик объектов. Следует подчеркнуть, что использование гиперболической геометрии при создании когнитивного образа позволяет визуально представлять содержание терабайтных многомерных массивов. Кроме того, использование перечисленных применений когнитивной графики будет еще более эффективным при ее внедрении в сетевые технологии. Впечатляющий эффект может быть получен при внедрении метода оперативного анализа в онлайновых системах космического мониторинга .

оперативный анализ большого объема многомерных данных - от планирования операций до мониторинга и моделирования технических систем.

Литература

1. Гаррет Р., Лондон Дж. Основы операций на море; [пер. с англ.]. М.: Воен. изд-во МО, 1974. 268 с.

2. Когнитивный подход; [отв. ред. В.А. Лекторский]. М.: «КАНОН+» РООИ «Реабилитация», 2008. 464 с.

3. Прокопчина С.В., Шестопалов М.Ю., Уткин Л.В., Куприянов М.С., Лазарев В.Л., Имаев Д.Х., Горохов В.Л., Жук Ю.А., Спесивцев А.В. Управление в условиях неопределенности: монография. СПб: Из-во СПбГЭТУ «ЛЭТИ», 2014. 303 с.

4. Зенкин А.А. Когнитивная компьютерная графика. М.: Наука, 1991.

5. Cook D., Swaine D.E. Interactive and Dynamic Graphics For Data Anlysis. Spriger, 2009. 345 p.

6. Горохов В.Л., Муравьев И.П. Когнитивная машинная графика. Методы динамических проекций и робастная сегментация многомерных данных: монография; [под ред. А.И. Ми-хайлушкина]. СПб: СПбГИЭУ, 2007. 170 с.

7. Lo A. Big data, Systemic Risk, and Privacy-Preserving Risk Measurement / Big Data &Privacy - Work Shop Summary Report June 19, 2013 Massachusetts Institute of Technology, 2013. 45 p.

8. Розенфельд Б.А. Многомерные пространства. М.: Наука, 1966. 647 с.

9. Клейн Ф. Высшая геометрия. М.: УРСС, 2004. 400 с.

1. Garret R.A., London J.Ph. Fundamentals of naval operations analysis. United States Naval Institute Publ., 1970, 254 p. (Russ. ed.: Osnovy analiza operatsiy na more. Moscow, Voennoe izdatelstvo, 1974, 268 p.).

2. Lektorskiy V.A. (Ed.) Kognitivnyiy podkhod . Moscow, KANON+ ROOI Reabilitatsiya Publ., 2008, 464 p.

3. Prokopchina S.V., Shestopalov M.Yu., Utkin L.V., Kupriyanov M.S., Lazarev V.L., Imaev D.H., Gorokhov V.L., Zhuk Yu.A., Spesivtsev A.V. Upravlenie v usloviyakh neopredelyonnosti . Monograph, St. Petersburg, St. Petersburg Electrotechnical Univ. "LETI" Publ., 2014, 303 p.

4. Zenkin A.A. Kognitivnaya kompyuternaya grafika . Moscow, Nauka, 1991, 192 p.

5. Cook D., Swaine D.E. Interactive and dynamic graphics for data anlysis. Spriger Publ., 2009, 345 p.

6. Gorokhov V.L., Muravyev I.P. Kognitivnaya mashinnaya grafika. Metody dinamicheskikh proektsiy i robastnaya segmenta-tsiya mnogomernyikh dannykh . Monograph, St. Petersburg, St. Petersburg State University of Economics (UNECON) Publ., 2007, 170 p.

7. Lo A. Big data, systemic risk, and privacy-preserving risk measurement. Big Data & Privacy - Workshop Summary Report. 2013, Massachusetts Institute of Technology Publ., 2013, 45 p.

8. Rozenfeld B.A. Mnogomernyie prostranstva . Moscow, Nauka, 1966, 647 p.

9. Kleyn F. Vyisshaya geometriya . Moscow, URSS Publ., 2004, 2nd ed., 400 p.

10. Vitkovskiy V., Komarinskiy S. 6-D visualization of multidimensional data by means of cognitive technology. Astronomical Data Analysis Software and Systems (ADASS) XIX. Mizumoto Y., Morita K.-I., Ohishi M. (Eds.). USA, San Francisco, 2010, pp. 449-553.


СОДЕРЖАНИЕ

Введение………………………………………………………… ……………...2

    Когнитивная компьютерная графика………………………………….3
    Концепция когнитивной компьютерной графики…………………….5
    Иллюстративная и когнитивная функции КГ………………………....6
    Задачи и требования когнитивной КГ………………………………....8
    Иллюстративная и когнитивная функции мультимедиа…………….10
Вывод………………………………………………………………… …………13
Список использованной литературы………………………………………...14

ВВЕДЕНИЕ

Развитие электронных средств мультимедиа открывает для сферы обучения принципиально новые дидактические возможности. Так, системы интерактивной графики и анимации позволяют в процессе анализа изображений управлять их содержанием, формой, размерами, цветом и другими параметрами для достижения наибольшей наглядности. Эти и ряд других возможностей слабо еще осознаны разработчиками электронных технологий обучения, что не позволяет в полной мере использовать учебный потенциал мультимедиа. Дело в том, что применение мультимедиа в электронном обучении не только увеличивает скорость передачи информации учащимся и повышает уровень ее понимания, но и способствует развитию таких важных для специалиста любой отрасли качеств, как интуиция, профессиональное "чутье", образное мышление.
Воздействие интерактивной компьютерной графики на интуитивное, образное мышление привело к возникновению нового направления в проблематике искусственного интеллекта – когнитивной (т.е. способствующей познанию) компьютерной графике.
Цель работы заключается в рассмотрении вопросов системной организации программных средств для реализации когнитивных альбомов в сетевой среде, а также концепций когнитивной компьютерной графики.

1. Когнитивная компьютерная графика

Человеческое познание пользуется как бы двумя механизмами мышления. Один из них – возможность работать с абстрактными цепочками символов, с которыми связаны некоторые семантические и прагматические представления. Это – умение работать с текстами в самом широком смысле этого слова. Такое мышление можно было бы назвать символическим или алгебраическим. Другой – способность работать с чувственными образами и представлениями об этих образах. Такие образы обладают куда большей конкретностью и интегрированностью, чем символические представления. Но они и значительно более «расплывчаты», «менее логичны», чем то, что скрывается за элементами, с которыми оперирует алгебраическое мышление. Но без них мы не могли бы отражать в нашем сознании окружающий мир в той полноте, которая для нас характерна. Способность работать с чувственными образами (и, прежде всего, со зрительными образами) определяет то, что можно было бы назвать геометрическим мышлением. 1
Многие специалисты в области психологии мышления убеждены, что именно наличие двух способов представления информации (в виде последовательности символов и в виде картин-образов), умение работать с ними и соотносить оба способа представления друг с другом обеспечивают сам феномен человеческого мышления.
Возникает необходимость появления специальных средств работы со зрительными представлениями и способы перехода от них к текстовым представлениям и обратного перехода. Так была поставлена основная задача, из которой сейчас возникает новая проблемная область – когнитивная графика.

Когнитивная графика отличается от машинной графики тем, что ее основной задачей является создание таких моделей представления знаний (когнитивных моделей), в которых была бы возможность однообразными средствами представлять как объекты, характерные для алгебраического мышления, так и образы-картины, с которыми оперирует геометрическое мышление. Эти комбинированные когнитивные структуры – основные объекты когнитивной графики.
Все большую роль начинает играть использование возможностей ИКГ и в фундаментальных научных исследованиях. При этом характерный для начального этапа акцент на иллюстративной функции ИКГ, т.е. построении, например, типовых диа- и гистограмм, всевозможных двумерных графов, планов и схем, графиков различных функциональных зависимостей и т.п., все более смещается в сторону активного использования тех возможностей ИКГ, которые позволяют «максимально использовать в научных исследованиях свойственную человеку способность мыслить сложными пространственными образами».
Когнитивная функция изображений использовалась в науке и до появления компьютеров. Образные представления, связанные с понятиями граф, дерево, сеть и т.п. помогли доказать немало новых теорем, круги Эйлера позволили визуализировать абстрактное отношение силлогистики Аристотеля, диаграммы Венна сделали наглядными процедуры анализа функций алгебры логики. 2
Систематическое использование когнитивной графики в компьютерах в составе человеко-машинных систем сулит многое. Даже весьма робкие попытки в этом направлении, известные как мультимедиа-технологии, привлекающие сейчас пристальное внимание специалистов (особенно тех, кто занят созданием интеллектуальных обучающих систем), показывает перспективность подобных исследований.

2. Концепция когнитивной компьютерной графики

"Лучше один раз увидеть, чем сто раз услышать..." - гласит народная мудрость. С этой точки зрения вся история науки является убедительной иллюстрацией извечного стремления человека расширить эволюционные пределы своего видения окружающего мира. Человек изобрел телескоп, чтобы приблизить и лучше разглядеть скрытые от прямого наблюдения загадки звездных миров, создал микроскоп, чтобы увидеть, рассмотреть мельчайшие объекты микромира... Рентгенография и спектроскопия позволили человеку увидеть внутреннее строение вещества, томография открыла взгляду человека внутренний мир живых организмов, тепловидение позволило ему непосредственно увидеть тепло, радиовизор - радиоволны... И т.д., и т.п... - Увидеть, рассмотреть, разглядеть..., - но не только потому, что через глаз в человеческий мозг поступает свыше 90 процентов информации об окружающем мире: зрение - это не просто канал, или приемник, или преобразователь визуальной информации, но, по-видимому, и один из важнейших элементов самой технологии образного, интуитивного, творческого, т.е. именно порождающего новое знание, мышления.
Хорошо известно, что удачный рисунок может не только убедительно проиллюстрировать суть, смысл сложного теоретического вопроса: такой рисунок позволяет иногда - и не так уж редко - увидеть новые, неожиданные грани, казалось бы, хорошо известной проблемы, именно УВИДЕТЬ новое соображение, мысль, идею. Другими словами, графика выполняет не только привычную, традиционную ИЛЛЮСТРАТИВНУЮ функцию, но и другую, не менее важную, КОГНИТИВНУЮ, или способствующую познанию, функцию. И современная информационная технология открывает принципиально новые возможности использования именно такой Когнитивной Компьютерной Графики (ККГ) в области, прежде всего, абстрактно-теоретических исследований Фундаментальной Науки (ФН).
ККГ и представляет собой некий универсальный аналог телескопа, микроскопа, рентгеновского спектрометра, томографа, тепловизора и т.п. с тем, однако, существенным отличием, что она является первым в истории науки физическим прибором, который позволяет увидеть объекты нефизического, невидимого мира научных абстракций. Если учесть, что к числу таких абстракций относятся также и многие закономерности, определяющие поведение объектов и систем реального мира, то проблема ККГ-визуализации абстрактных сущностей выходит за рамки чисто академического интереса.

3. Иллюстративная и когнитивная функции КГ

В настоящее время компьютерная графика - это одно из наиболее бурно развивающихся направлений новых информационных технологий. Так, в научных исследованиях, в том числе и в фундаментальных, характерный для начального этапа акцент на иллюстративной функции КГ все более смещается в сторону использования тех возможностей КГ, которые позволяют активизировать свойственную человеку способность мыслить сложными пространственными образами. В связи с этим начинают четко различать две функции КГ: иллюстративную и когнитивную. 3
Иллюстративная функция КГ позволяет воплотить в более или менее адекватном визуальном оформлении лишь то, что уже известно, т.е. уже существует либо в окружающем нас мире, либо как идея в голове исследователя. Когнитивная же функция КГ состоит в том, чтобы с помощью некоего графического изображения получить новое, т.е. еще не существующее даже в голове специалиста знание или, по крайней мере, способствовать интеллектуальному процессу получения этого знания.
Иллюстративные функции КГ реализуются в учебных системах декларативного типа при передаче учащимся артикулируемой части знания, представленной в виде заранее подготовленной информации с графическими, анимационными - и видеоиллюстрациями.
Когнитивная же функция КГ проявляется в системах процедурного типа, когда учащиеся "добывают" знания с помощью исследований на математических моделях изучаемых объектов, причем, поскольку этот процесс формирования знаний опирается на интуитивный правополушарный механизм мышления, сами эти знания в существенной мере носят личностный характер. Каждый человек формирует приемы подсознательной умственной деятельности по-своему. Современная психологическая наука не располагает строго обоснованными способами формирования творческого потенциала человека, пусть даже профессионального. Одним из известных эвристических подходов к развитию интуитивного профессионально- ориентированного мышления является решение задач исследовательского характера. Применение учебных компьютерных систем процедурного типа позволяет в существенной мере интенсифицировать этот процесс, устранив из него рутинные операции, сделать возможным проведение различных экспериментов на математических моделях.
Роль КГ в учебных исследованиях трудно переоценить. Именно графические изображения хода и результатов экспериментов на математических моделях позволяют каждому учащемуся сформировать свой образ изучаемого объекта или явления во всей его целостности и многообразии связей. Несомненно, также, что компьютерные изображения выполняют при этом, прежде всего когнитивную, а не иллюстративную функцию, поскольку в процессе учебной работы с компьютерными системами процедурного типа у учащихся формируются сугубо личностные, т.е. не существующие в таком виде ни у кого, компоненты знаний.
Конечно, различия между иллюстративной и когнитивной функциями компьютерной графики достаточно условны. Нередко обычная графическая иллюстрация может натолкнуть каких-то учащихся на новую мысль, позволит увидеть некоторые элементы знания, которые не "вкладывались" преподавателем-разработчиком учебной компьютерной системы декларативного типа. Таким образом, иллюстративная по замыслу функция компьютерного изображения превращается в функцию когнитивную. С другой стороны, когнитивная функция компьютерного изображения при первых экспериментах с учебными системами процедурного типа в дальнейших экспериментах может превращаться в функцию иллюстративную для уже "открытого" и, следовательно, уже не нового свойства изучаемого объекта.
Тем не менее, принципиальные отличия в логическом и интуитивном механизмах мышления человека, вытекающие из этих различий формы представления знаний и способы их освоения, делают полезным в методологическом плане различение иллюстративной и когнитивной функций компьютерной графики и позволяют более четко формулировать дидактические задачи графических изображений при разработке компьютерных систем учебного назначения.

4. Задачи и требования когнитивной КГ

Известный специалист в области искусственного интеллекта Д. А. Поспелов сформулировал три основных задачи когнитивной компьютерной графики. Первой задачей является создание таких моделей представления знаний, в которых была бы возможность однообразными средствами представлять как объекты, характерные для логического мышления, так и образы-картины, с которыми оперирует образное мышление. Вторая задача - визуализация тех человеческих знаний, для которых пока невозможно подобрать текстовые описания. Третья - поиск путей перехода от наблюдаемых образов-картин к формулировке некоторой гипотезы о тех механизмах и процессах, которые скрыты за динамикой наблюдаемых картин. 4
Эти три задачи когнитивной КГ с позиций информационных технологий обучения следует дополнить четвертой задачей, заключающейся в создании условий для развития у обучаемых профессионально- ориентированных интуиции и творческих способностей.
При разработке компьютерных систем инженерного анализа, проектирования и обучения обычно исходят из первых двух задач когнитивной графики, когда знания о техническом объекте, полученные в ходе исследований на многомерных математических моделях и представленные в обычной символьно-цифровой форме, становятся недоступными для анализа человеком из-за большого объема информации.
Четкое осознание третьей и четвертой задач когнитивной графики позволяет формулировать дополнительные требования как к собственно графическим изображениям, так и к соответствующему программно-методическому обеспечению. Среди них можно выделить: адекватность изучаемым объектам или процессам, используемым инженерным методам и методикам обучения; естественность и доступность для восприятия слабо подготовленными или даже неподготовленными пользователями; удобство для анализа качественных закономерностей распределения параметров; эстетическую привлекательность, быстроту формирования изображения.

Учащиеся должны иметь также возможность выбирать тип изображения. Дело в том, что одну и ту же информацию можно отобразить в графической форме различным образом. Например, в механике деформированного твердого тела для представления скалярных и векторных полей физических параметров используют порядка десяти различных типов изображений. Результаты специальных исследований этих типов графического отображения информации свидетельствуют, что каждый человек в силу своего индивидуального, личностного восприятия по-своему оценивает эффективность того или иного типа изображения, причем оценки разных людей могут существенно отличаться. Поэтому компьютерные системы учебного назначения должны иметь набор различных способов графического отображения информации, чтобы каждый учащийся мог выбрать наиболее подходящий для него тип изображения, либо использовать различные графические картины для анализа результатов машинных расчетов. Необходимо предоставить учащимся и возможность управлять изображениям - варьировать его размерами, цветовой гаммой, положением точки зрения наблюдателя, количеством и положением источников освещения, степенью контрастности изображаемых величин и т.п. Все эти возможности графического интерфейса не только позволяют учащимся выбирать подходящие формы графических изображений, но и вносят игровые и исследовательские компоненты в учебную работу, естественным образом побуждают учащихся к глубокому и всестороннему анализу свойств изучаемых объектов и процессов.

5. Иллюстративная и когнитивная функции мультимедиа

Интерпретируя рассмотренные выше различия между лево- и правополушарным механизмами мышления применительно к познавательной деятельности учащихся, можно сделать вывод о том, что логическое мышление выделяет лишь некоторые, наиболее существенные элементы знания и формирует из них однозначное представление об изучаемых объектах и процессах, в то время как подсознание обеспечивает целостное восприятие мира во всем его многообразии.
Исходя из этого различия, можно выделить две функции мультимедиа - иллюстративную и когнитивную.
Иллюстративная функция обеспечивает поддержку логического мышления. В этом случае объект мультимедиа подкрепляет, иллюстрирует какую-то четко выраженную мысль, свойство изучаемого объекта или процесса, т.е. то, что уже сформулировано, например, преподавателем-разработчиком.
Когнитивная же функция состоит в том, чтобы с помощью некоего объекта мультимедиа получить новое, т.е. еще не существующее даже в голове специалиста знание или, по крайней мере, способствовать интеллектуальному процессу получения этого знания.
Иллюстративная функция мультимедиа реализуется в учебных системах декларативного типа при передаче учащимся артикулируемой части знания, представленной в виде заранее подготовленной информации с графическими, анимационными, аудио- и видеоиллюстрациями. Когнитивная же функция мультимедиа и т.д.................

4. КОГНИТИВНАЯ КОМПЬЮТЕРНАЯ ГРАФИКА В ИНЖЕНЕРНОЙ ПОДГОТОВКЕ

Появление и развитие средств интерактивной компьютерной графики (ИКГ) открывает для сферы обучения принципиально новые графические возможности, благодаря которым учащиеся могут в процессе анализа изображений динамически управлять их содержанием, формой, размерами и цветом, добиваясь наибольшей наглядности. Эти и ряд других возможностей ИКГ слабо еще осознаны педагогами, в том числе и разработчиками информационных технологий обучения, что не позволяет в полной мере использовать учебный потенциал ИКГ. Дело в том, что применение графики в учебных компьютерных системах не только увеличивает скорость передачи информации учащимся и повышает уровень ее понимания, но и способствует развитию таких важных для специалиста любой отрасли качеств, как интуиция, профессиональное "чутье", образное мышление.
Воздействие ИКГ на интуитивное, образное мышление привело к возникновению нового направления в проблематике искусственного интеллекта, названного в работе когнитивной (т.е. способствующей познанию) компьютерной графикой. В данном разделе рассматриваются роль и место когнитивной компьютерной графики в инженерной подготовке, обсуждается ряд известных и предлагаются новые более когнитивные способы графического отображения полей физических параметров, описываются алгоритмы построения соответствующих изображений и приводятся результаты сопоставления рассмотренных способов визуализации с позиций их когнитивной эффективности.

4.1. Дуализм человеческого мышления
Человеческое сознание использует два механизма мышления . Один из них позволяет работать с абстрактными цепочками символов, с текстами и т.п. Этот механизм мышления обычно называют символическим, алгебраическим или логическим. Второй механизм мышления обеспечивает работу с чувственными образами и представлениями об этих образах. Его называют образным, геометрическим, интуитивным и т.п. Физиологически логическое мышление связано с левым полушарием человеческого мозга, а образное мышление - с правым полушарием.
Основные различия в работе полушарий головного мозга человека обнаружил американский ученый Р. Сперри, который однажды в лечебных целях рискнул рассечь межполушарные связи у больных эпилепсией . Человек, у которого было "отключено" правое полушарие, а "работало" левое, сохранял способность к речевому общению, правильно реагировал на слова, цифры и другие условные знаки, но часто оказывался беспомощным, когда требовалось что-то сделать с предметами материального мира или их изображениями. Когда же работало одно "правое" полушарие, пациент легко справлялся с такими задачами, хорошо разбирался с произведениями живописи, в мелодиях и интонациях речи, ориентировался в пространстве, но терял способность понимать сложные речевые конструкции и совершенно не мог сколько-нибудь связно говорить.
Каждое из полушарий человеческого мозга является самостоятельной системой восприятия внешнего мира, переработки информации о нем и планирования поведения в этом мире. Левое полушарие представляет собой как бы большую и мощную ЭВМ, имеющую дело со знаками и процедурами их обработки. Естественно-языковая речь, мышление словами, рационально-логические процедуры переработки информации и т.п. - все это реализуется именно в левом полушарии. В правом же полушарии реализуется мышление на уровне чувственных образов: эстетическое восприятие мира, музыка, живопись, ассоциативное узнавание, рождение принципиально новых идей и открытий и т.п. Весь тот сложный механизм образного мышления, который нередко определяют одним термином "интуиция", и является правополушарной областью деятельности мозга.
Нередко правополушарное мышление связывают с деятельностью в искусстве. Иногда это мышление даже называют художественным. Однако и более формализованные виды деятельности в существенной мере используют интуитивный механизм мышления. Любопытны высказывания крупных ученых о роли интуиции в научной деятельности. "Подлинной ценностью, - говорил А. Эйнштейн , - является, в сущности, только интуиция. Для меня не подлежит сомнению, что наше мышление протекает, в основном, минуя символы (слова) и к тому же бессознательно". И в другом месте: "Ни один ученый не мыслит формулами" .
Даже такая абстрактная формализованная область науки, как математика, в существенной мере использует правополушарное мышление. "Вы должны догадаться о математической теореме прежде, чем вы ее докажите; вы должны догадаться об идее доказательства прежде, чем вы его проведете в деталях" . А. Пуанкаре высказывается еще более определенно: " ... для того, чтобы создать арифметику, как и для того, чтобы создать геометрию или какую бы то ни было науку, нужно нечто другое чем чистая логика. Для обозначения этого другого у нас нет иного слова, кроме слова "интуиция" .
Различие между двумя механизмами мышления можно проиллюстрировать принципами составления связного текста из отдельных элементов информации: левополушарное мышление из этих элементов создает однозначный контекст, т.е. из всех бесчисленных связей между предметами и явлениями оно активно выбирает только некоторые, наиболее существенные для данной конкретной задачи . Правополушарное же мышление создает многозначный контекст, благодаря одновременному схватыванию практически всех признаков и связей одного или многих явлений. Иными словами логико-знаковое мышление вносит в картину мира некоторую искусственность, тогда как образное мышление обеспечивает естественную непосредственность восприятия мира таким, каков он есть.
Человеческое мышление и человеческое поведение обусловлено совместной работой обоих полушарий человеческого мозга. В одних ситуациях преобладает логический компонент мышления, в других - интуитивный. По мнению психологов все люди делятся на три группы: с преобладающим "левополушарным" мышлением, с "правополушарным", со смешанным мышлением. Это разделение генетически предопределено, и существуют специальные тесты для определения склонности к тому или иному типу мышления .
Описанные выше фундаментальные различия между лево- и правополушарной стратегией переработки информации имеют прямое отношение к формированию различных способностей. Так, для научного творчества, т.е. для преодоления традиционных представлений, необходимо восприятие мира во всей его целостности, что предполагает развитие способностей к организации многозначного контекста (образного мышления). И действительно, существуют многочисленные наблюдения, что для людей, сохраняющих способности к образному мышлению, творческая деятельность менее утомительна, чем рутинная, монотонная работа. Люди же, не выработавшие способности к образному мышлению, нередко предпочитают выполнять механическую работу, причем она им не кажется скучной, поскольку они как бы "закрепощены" собственным формально-логическим мышлением. Отсюда ясно, как важно с ранних пор правильно строить воспитание и обучение, чтобы оба нужных человеку типа мышления развивались гармонично, чтобы образное мышление не оказалось скованным рассудочностью, чтобы не иссякал творческий потенциал человека.
В разработке интеллектуальных систем, как отмечает Д.А. Поспелов, имеет место "левополушарный крен" . Еще в большей, по-видимому, степени такой "левополушарный крен" характерен и для современного образования, в том числе для используемых в нем компьютерных методов и средств. Явление это не такое уж безобидное. Негативное влияние компьютеризации инженерной подготовки, о котором говорилось выше (см. п. 3.1), во многом объясняется слабым воздействием используемых компьютерных систем на интуитивный, образный механизм мышления.
В связи с этим четкое выделение неявных, подсознательных компонент знания позволяет также четко ставить задачу их освоения, формулировать соответствующие требования к методам и средствам обучения, в том числе и к методам компьютерной графики.

4.2. Иллюстративная и когнитивная функции компьютерной графики

В настоящее время интерактивная компьютерная графика - это одно из наиболее бурно развивающихся направлений новых информационных технологий. Так, в научных исследованиях, в том числе и в фундаментальных, характерный для начального этапа акцент на иллюстративной функции ИКГ все более смещается в сторону использования тех возможностей ИКГ, которые позволяют активизировать "... свойственную человеку способность мыслить сложными пространственными образами" . В связи с этим начинают четко различать две функции ИКГ: иллюстративную и когнитивную .

Иллюстративная функция ИКГ позволяет воплотить в более или менее адекватном визуальном оформлении лишь то, что уже известно, т.е. уже существует либо в окружающем нас мире, либо как идея в голове исследователя. Когнитивная же функция ИКГ состоит в том, чтобы с помощью некоего ИКГ-изображения получить новое, т.е. еще не существующее даже в голове специалиста знание или, по крайней мере, способствовать интеллектуальному процессу получения этого знания.

Основная идея различий иллюстративной и когнитивной функций ИКГ, выделенная в работе при описании использования ИКГ в научных исследованиях, хорошо вписывается в классификацию знаний и компьютерных систем учебного назначения (см. п. 1.1). Иллюстративные функции ИКГ реализуются в учебных системах декларативного типа при передаче учащимся артикулируемой части знания, представленной в виде заранее подготовленной информации с графическими, анимационными, аудио- и видеоиллюстрациями (рис. 4.1). Когнитивная же функция ИКГ проявляется в системах процедурного типа, когда учащиеся "добывают" знания с помощью исследований на математических моделях изучаемых объектов и процессов, причем, поскольку этот процесс формирования знаний опирается на интуитивный правополушарный механизм мышления, сами эти знания в существенной мере носят личностный характер. Каждый человек формирует приемы подсознательной умственной деятельности по-своему. Современная психологическая наука не располагает строго обоснованными способами формирования творческого потенциала человека, пусть даже профессионального. Одним из известных эвристических подходов к развитию интуитивного профессионально-ориентированного мышления является решение задач исследовательского характера. Применение учебных компьютерных систем процедурного типа позволяет в существенной мере интенсифицировать этот процесс, устранив из него рутинные операции, сделать возможным проведение различных экспериментов на математических моделях.

Рис. 4.1. Концептуальное различие между когнитивной и иллюстративной функциями компьютерной графики

Роль ИКГ в этих учебных исследованиях трудно переоценить. Именно ИКГ-изображения хода и результатов экспериментов на математических моделях позволяют каждому учащемуся сформировать свой образ изучаемого объекта или явления во всей его целостности и многообразии связей. Несомненно также, что ИКГ-изображения выполняют при этом прежде всего когнитивную, а не иллюстративную функцию, поскольку в процессе учебной работы с компьютерными системами процедурного типа у учащихся формируются сугубо личностные, т.е. не существующие в таком виде ни у кого, компоненты знаний.

Конечно, различия между иллюстративной и когнитивной функциями компьютерной графики достаточно условны. Нередко обычная графическая иллюстрация может натолкнуть каких-то учащихся на новую мысль, позволит увидеть некоторые элементы знания, которые не "вкладывались" преподавателем-разработчиком учебной компьютерной системы декларативного типа. Таким образом, иллюстративная по замыслу функция ИКГ-изображения превращается в функцию когнитивную. С другой стороны, когнитивная функция ИКГ-изображения при первых экспериментах с учебными системами процедурного типа в дальнейших экспериментах превращается в функцию иллюстративную для уже "открытого" и, следовательно, уже не нового свойства изучаемого объекта.

Тем не менее, принципиальные отличия в логическом и интуитивном механизмах мышления человека, вытекающие из этих различий формы представления знаний и способы их освоения, делают полезным в методологическом плане различение иллюстративной и когнитивной функции компьютерной графики и позволяют более четко формулировать дидактические задачи ИКГ-изображений при разработке компьютерных систем учебного назначения.

4.3. Задачи когнитивной компьютерной графики

В предисловии к работе известный специалист в области искусственного интеллекта Д. А. Поспелов сформулировал три основных задачи когнитивной компьютерной графики. Первой задачей является создание таких моделей представления знаний, в которых была бы возможность однообразными средствами представлять как объекты, характерные для логического мышления, так и образы-картины, с которыми оперирует образное мышление. Вторая задача - визуализация тех человеческих знаний, для которых пока невозможно подобрать текстовые описания. Третья - поиск путей перехода от наблюдаемых образов-картин к формулировке некоторой гипотезы о тех механизмах и процессах, которые скрыты за динамикой наблюдаемых картин.

Разработчики систем инженерного анализа, автоматизированного проектирования и учебных компьютерных систем процедурного типа имеют дело со второй из описанных здесь задач когнитивной графики, когда знания о техническом объекте, полученные в ходе исследований на многомерных математических моделях и представленные в обычной символьно-цифровой форме, становятся недоступными для анализа человеком из-за большого объема информации. Рассмотрим далее ряд способов отображения полей физических характеристик технических объектов и алгоритмы построения соответствующих изображений, обладающих высоким когнитивным потенциалом.

4.4. Исходные предпосылки алгоритмов визуализации

Будем считать, что набор стандартных графических функций, которые используют программисты при разработке учебных прикладных программ, позволяет высвечивать на экране дисплея точку, указав ее координаты и цвет, проводить отрезок прямой линии, указав его цвет и координаты концов, осуществлять геометрические преобразования координат и преобразования проецирования.

Будем также считать, что изображаемое поле физических характеристик представлено в виде дискретных значений в узлах плоской сети элементов (ПСЭ) треугольной или четырехугольной формы. Эта сеть может отображать или все поле, либо его фрагмент, например, сечение трехмерного поля плоскостью. Заметим, что такая форма представления параметров естественна для ряда численных сеточных методов, например, широко используемый в САПР метод конечных элементов предполагает сеточную аппроксимацию.

Итак, на входе прикладных графических программ, реализующих рассматриваемые ниже алгоритмы, должно быть топологическое и геометрическое описание ПСЭ со значениями отображаемых характеристик в узлах сети. Топологию сети удобно хранить в виде матрицы, в каждой строке которой указан номер элемента ПСЭ и номера окружающих его узлов. Геометрическое описание ПСЭ - это матрица, в строках которой указаны координаты узлов сети.

В зависимости от способа визуализации будем использовать два вида аппроксимации отображаемых параметров в пределах элемента ПСЭ: постоянную и билинейную. Для постоянной аппроксимации в пределах четырехугольного элемента ПСЭ величина изображаемого параметра , где - величины параметров в узлах сети, окружающих элемент ПСЭ.

Для билинейной аппроксимации введем безразмерные координаты и и вспомогательный квадрат (рис. 4.2). Соответствующее преобразование координат и изображаемого параметра осуществляется по формуле, аналогичной так называемым функциям формы в методе конечных элементов :

(4.1)

Рис. 4.2. Трансформация произвольного четырехугольника во вспомогательный квадрат.

Для регуляризации алгоритмов элемент треугольной формы будем считать частным случаем четырехугольника, у которого совмещены два соседних угла.

Рассмотрим последовательно 7 способов отображения физических характеристик: 4 способа - для визуализации скалярных полей и 3 способа - для отображения векторных характеристик, таких как напряженность или магнитная индукция электромагнитного поля, линии тока в аэрогидродинамике, распределение усилий или армирующего набора в силовых конструкциях. Будем иллюстрировать рассматриваемые способы фрагментами графического диалога, ведущегося в тренажерах и учебных ППП системы КАДИС.

4.5. Сплошные цветографические изображения

Суть этого способа визуализации заключается в том, что внутренняя область ПСЭ закрашивается в различные цвета, соответствующие определенным интервалам величины изображаемого параметра. Обычно используется цветовая гамма, в которой по мере убывания величины параметра цвета меняются от теплых (красного и желтого) к холодным (синему и фиолетовому). Изображение строится по элементам ПСЭ. Алгоритмы закраски элемента базируются либо на идее построчного сканирования по вспомогательному квадрату с шагом, соответствующим размерам элемента растровой сетки дисплея, и окраской этих элементов, называемых пикселями или пэлами , в соответствии с выражением (4.1), либо на идее растрового сканирования вдоль оси и построения цветных отрезков вдоль оси . Во втором алгоритме цвет отрезка определяется интервалом , а координаты концов отрезка находятся из (4.1) для фиксированных значений и границ заданных интервалов . Переход цветовой палитры через границы элементов ПСЭ происходит плавно, поскольку аппроксимирующая функция (4.1) линейна вдоль сторон четырехугольников ПСЭ, что обеспечивает непрерывность поверхности отображаемого параметра.

Для монохромных дисплеев по таким алгоритмам могут строиться тоновые изображения (рис. 4.3).

Рис 4.3. Тоновое изображение оптимального распределения материала в пластине под нагрузкой .

4.6. Линии равного уровня

Построение линий равного уровня (ЛРУ) осуществляется по элементам ПСЭ. Два следующих алгоритма основаны так же, как и алгоритмы закраски, на сканировании по сетке вспомогательного квадрата, шаг которой соответствует растру дисплея. В одном из этих алгоритмов на линиях сетки сканирования, параллельных оси , отыскиваются точки с заданными значениями уровней изображаемого параметра. Точки с равными значениями параметра на соседних линиях сканирования соединяются отрезками прямых линий, если между этими точками нет "впадины" или "возвышения" билинейной поверхности (4.1). Построенные отрезки, удлиняясь в процессе сканирования, образуют семейство ЛРУ на каждом элементе ПСЭ. В другом алгоритме задаются не значения уровней, а интервалы величин, образующие ряд "полос" заданного уровня. Построение ЛРУ осуществляется закраской полос. Толщина ЛРУ на экране дисплея зависит от заданной ширины интервала и от характера изменения отображаемой поверхности. В обоих алгоритмах стыковка ЛРУ на границах элементов ПСЭ происходит естественным образом, поскольку аппроксимирующая функция (4.1) линейна вдоль сторон четырехугольников ПСЭ (см. рис. 3.22).

4.7. Точечные изображения

Поле каждого элемента ПСЭ на экране дисплея заполняется светящимися точками. Плотность расположения точек соответствует величине отображаемого параметра. Заполнение участков ПСЭ с постоянной плотностью (это может быть поле всего четырехугольника или его части) осуществляется с помощью датчика случайных чисел (ДСЧ). Такое заполнение сглаживает разрывы отображаемой поверхности даже при постоянной аппроксимации параметра в пределах одного элемента ПСЭ (рис. 4.4). Перед построением точечного изображения отыскивается максимальное значение , которому ставится в соответствие плотность заполнения точек, равная 80-90% от плотности сплошной закраски. По этому пределу нормируется в дальнейшем плотность заполнения точек на каждом четырехугольнике ПСЭ. При построении изображения на элементе ПСЭ вспомогательный квадрат предварительно разбивается осями и на четверти, поскольку стандартные ДСЧ оперируют числами в интервале . В пределах каждой четверти плотность точек считается постоянной. Координаты точек и определяются с помощью ДСЧ, преобразуются по формуле (4.1) в координаты и и далее переводятся в экранную систему координат. Цвет точек определяется по заданным цветовым интервалам с использованием выражения (4.1).

Рис. 4.4. Точечное изображение оптимального распределения материала в пластине под нагрузкой .

4.8. Полигональные сети

Изображение выводится на дисплей в виде центральной проекции поверхности отображаемого параметра. Поверхность аппроксимируется сетью треугольников и четырехугольников с прямыми сторонами. Такую сеть принято называть полигональной . Простейшая полигональная сеть может быть получена отображением ПСЭ на параметрическую поверхность (рис. 4.5). Наглядность изображения в существенной мере зависит от выбора положения точки зрения наблюдателя при центральном проецировании и от наличия или отсутствия невидимых участков поверхности. Построение полигональных сетей по заданным ПСЭ не представляет трудностей и не требует больших вычислительных затрат. Соответствующий алгоритм сводится к обычным геометрическим преобразованиям координат и преобразованиям проецирования узловых точек базовой ПСЭ и параметрической поверхности, которые затем соединяются отрезками прямых линий. Однако анализ видимости линий существенно увеличивает вычислительные затраты, иногда на два - три порядка .

4.9. Изображения в виде ориентированных отрезков переменной длины

Этот способ применяется для отображения векторных характеристик, например, силовых потоков . Для него используется постоянный закон аппроксимации параметров в пределах элемента ПСЭ. Ориентированные отрезки изображаются в центрах элементов, их длины в выбранном масштабе соответствуют величинам параметров (рис. 4.6). Перед построением изображения вычисляется из соображений наглядности максимальная длина отрезка, относительно которой нормируются в дальнейшем отрезки на всех элементах. Изображение строится по элементам ПСЭ. В центре четырехугольника помещается местная прямоугольная система координат, одна из осей которой ориентируется в направлении изображаемого параметра. Далее в координатах местной системы определяются концевые точки отрезка так, чтобы его середина совпала с центром элемента, производится преобразование полученных координат в общую систему и проводится прямая линия, соединяющая концевые точки отрезка.

Рис 4.6. Распределение усилий в пластине, представленное в виде ориентированных отрезков пременной длины .

4.10. Изображения в виде коротких ориентированных отрезков постоянной длины

Этот способ визуализации также предназначен для отображения векторных характеристик. После каждого элемента ПСЭ заполняется с помощью ДСЧ короткими ориентированными отрезками постоянной длины. Плотность расположения отрезков соответствует величине изображаемого параметра (рис. 4.7). Перед построением изображения вычисляется из соображений наглядности максимальная плотность отрезков, относительно которой нормируется плотность отрезков на всех элементах ПСЭ. В центре четырехугольного элемента ПСЭ помещается прямоугольная местная система координат, одна из осей которой ориентирована в направлении изображаемого параметра. Координаты средних точек отрезков определяются с помощью ДСЧ так, как это делается при построении точечных изображений. В дальнейшем построение каждого отрезка производится также, как в предыдущем алгоритме.

Рис 4.7. Распределение усилий в пластине, представленное в виде коротких ориентированных отрезков постоянной длины .

4.11. Изображения в виде ориентированных решеток

Для этого способа визуализации так же, как и для двух предыдущих способов, используется постоянная аппроксимация по элементам ПСЭ. Поле элемента заполняется решеткой в виде одного или двух семейств однонаправленных линий, плотность и ориентация которых соответствуют величинам и ориентациям изображаемых характеристик (рис. 4.8). Для идентификации семейства используется цвет. Построение изображения производится на основе тех же алгоритмических идей, что и в предыдущих двух способах: определяется предельная плотность решетки; на каждом элементе строится прямоугольная местная система координат; внутри элементов проводятся отрезки прямых линий, концы которых располагаются на сторонах элементов.

Рис. 4.8. Распределение усилий в пластине, представленное в виде ориентированных решеток .

4.12. Управление изображениями

В процессе анализа результатов расчетов пользователь прикладной программы должен иметь возможность выбрать способ изображения и настроить его для достижения наибольшей наглядности. При настройке изображения можно выбирать: цветовую гамму (количество, вид и последовательность используемых цветов); количество уровней для построения ЛРУ; положение точки зрения наблюдателя и вид центрального проецирования для полигональных сетей; длину коротких ориентированных отрезков; коэффициент контрастирования.

Контрастирование изображений можно применять для более четкого выделения закономерностей в распределении изображаемых параметров, при этом разница между большими и малыми величинами искусственно завышается. Контрастирование осуществляется с помощью следующей зависимости: , где, где - количество частных критериев; - оценка по частному критерию, ; - весовой коэффициент, учитывающий значимость соответствующего критерия, .
В качестве частных критериев использовались 8 показателей, характеризующих следующие аспекты рассматриваемых способов: адекватность целям и содержанию проектирования силовых конструкций; адекватность методикам обучения, реализованным в учебных прикладных программах; естественность и доступность для восприятия человеком; удобство для анализа качественных закономерностей распределения параметров; эстетическая привлекательность; простота управления построением изображения; быстрота формирования изображения; алгоритмическая простота.
Исследование проводилось с помощью экспертных оценок метода Дельфи . В качестве экспертов привлекались преподаватели вузов и инженеры, разработчики и пользователи учебной и промышленной САПР силовых конструкций . Результаты исследований показывают, что при интерактивном проектировании силовых конструкций для отображения скалярных характеристик целесообразно использовать точечные изображения, а для отображения векторных полей - ориентированные решетки (рис. 4.9). Более детально результаты и методика исследования описаны в работе .

Рис 4.9. Результаты исследований эффективности различных способов визуализации:
а - скалярные изображения; б - векторные изображения.