Магнитное поле венеры и марса. Сравнение магнитных полей планет. В слоях земной коры

3 октября 2016 в 12:40

Магнитные щиты планет. О разнообразии источников магнитосфер в солнечной системе

6 из 8 планет солнечной системы обладают собственными источниками магнитных полей, способные отклонять потоки заряженных частиц солнечного ветра. Объем пространства вокруг планеты, в пределах которого отклоняется от траектории солнечный ветер, именуется магнитосферой планеты. Несмотря на общность физических принципов генерирования магнитного поля, источники магнетизма, в свою очередь, сильно варьируются у разных групп планет нашей звездной системы.

Изучение разнообразия магнитных полей интересно тем, что наличие магнитосферы, предположительно, является важным условием для возникновения жизни на планете или ее естественном спутнике.

Железом и камнем

У планет земной группы сильные магнитные поля являются скорее исключением, чем правилом. Наиболее мощной магнитосферой в данной группе обладает наша планета. Твердое ядро Земли предположительно состоит из железоникелевого сплава, разогретого радиоактивным распадом тяжелых элементов. Эта энергия передается путем конвекции в жидком внешнем ядре в силикатную мантию (). Тепловые конвективные процессы в металлическом внешнем ядре до недавнего времени считались главным источником геомагнитного динамо. Однако исследования последних лет опровергают данную гипотезу .


Взаимодействие магнитосферы планеты (в данном случае Земли) с солнечным ветром. Потоки солнечного ветра деформируют магнитосферы планет, которые имеют вид сильно вытянутого магнитного «хвоста» направленного в противоположном от Солнца направлении. Магнитный «хвост» Юпитера тянется на более чем 600 млн км.

Предположительно источником магнетизма за время существования нашей планеты могло быть сложное сочетание различных механизмов генерирования магнитного поля: первичная инициализация поля от древнего столкновения с планетоидом; не тепловая конвекция различных фаз железа и никеля во внешнем ядре; выделения оксида магния из охлаждающегося внешнего ядра; приливное влияние Луны и Солнца и т.д.

Недра «сестры» Земли - Венеры практически не генерируют магнитного поля. Ученые до сих пор ведут споры о причинах отсутствия динамо эффекта. Одни обвиняют в этом медленное суточное вращение планеты, другие же возражают , что и этого должно было хватить для генерирования магнитного поля. Скорее всего, дело во внутренней структуре планеты, отличной от земной ().


Стоит оговориться, что Венера обладает так называемой индуцированной магнитосферой, создаваемой взаимодействием солнечного ветра и ионосферы планеты

Наиболее близок (если не сказать, идентичен) к Земле по длительности звездных суток Марс. Планета вращается вокруг своей оси за 24 часа, так же как и два вышеописанных «коллеги» гиганта состоит из силикатов и на четверть из железоникелевого ядра. Однако Марс на порядок легче Земли, и, по мнению ученых, его ядро остыло относительно быстро, поэтому планета не имеет динамо генератора.


Внутреннее строение железосиликатных планет земной группы

Парадоксально, но второй планетой в земной группе, которая может «похвастаться» собственной магнитосферой является Меркурий – наименьшая и самая легкая из всех четырех планет. Его близость к Солнцу предопределила специфические условия, при которых сформировалась планета. Так в отличие от остальных планет группы, у Меркурия чрезвычайно высокая относительная доля железа к массе всей планеты – в среднем 70%. Его орбита имеет наиболее сильный эксцентриситет (отношение ближайшей от Солнца точки орбиты, к наиболее удаленной) среди всех планет солнечной системы. Данный факт, а так же близость Меркурия к Солнцу усиливают приливное влияние на железное ядро планеты.


Схема магнитосферы Меркурия с наложенным графиком магнитной индукции

Научные данные, полученные космическими аппаратами, позволяют предположить, что магнитное поле генерируется движением металла в расплавленном приливными силами Солнца ядре Меркурия. Магнитный момент этого поля в 100 раз слабее Земного, а размеры сравнимы с размерами Земли, не в последнюю очередь из за сильного влияния солнечного ветра.


Магнитные поля Земли и планет гигантов. Красная линия - ось суточного вращения планет (2 - наклон полюсов магнитного поля к данной оси). Синяя линия - экватор планет (1 - наклон экватора к плоскости эклиптики). Магнитные поля представлены желтым цветом (3 - индукция магнитного поля, 4 - радиус магнитосфер в радиусах соответствующих планет)

Металлические гиганты

Планеты гиганты Юпитер и Сатурн обладают крупными ядрами из горных пород, массой в 3-10 земных, окруженные мощными газовыми оболочками, на которые, и приходиться подавляющая часть массы планет. Однако эти планеты обладают чрезвычайно крупными и мощными магнитосферами, и их существование нельзя объяснить лишь динамо-эффектом в каменных ядрах. Да и сомнительно, что при таком колоссальном давлении там вообще возможны явления, подобные тем, что происходят в ядре Земли.

Ключ к разгадке находится в самой водородно-гелиевой оболочке планет. Математические модели показывают, что в недрах этих планет водород из газообразного состояния постепенно переходит в состояние сверхтекучей и сверхпроводящей жидкости – металлический водород. Металлическим его называют из-за того, что при таких значениях давления водород проявляет свойство металлов.


Внутреннее строение Юпитера и Сатурна

Юпитер и Сатурн, как и свойственно планетам гигантам, сохранили в недрах большую тепловую энергию, накопившуюся в период формирования планет. Конвекция металлического водорода переносит эту энергию в газовую оболочку планет, определяя климатическую обстановку в атмосферах гигантов (Юпитер излучает в космос вдвое больше энергии, чем получает от Солнца). Конвекция в металлическом водороде в сочетании с быстрым суточным вращением Юпитера и Сатурна, предположительно и образуют мощные магнитосферы планет.


У магнитных полюсов Юпитера, как и на аналогичных полюсах остальных гигантов и Земли, солнечный ветер вызывает «полярные» сияния. В случае Юпитера, существенное влияние на его магнитное поле производят такие крупные спутники как Ганимед и Ио (виден след от потоков заряженных частиц, «текущих» с соответствующих спутников к магнитным полюсам планеты). Изучение магнитного поля Юпитера является основной задачей работающей на его орбите автоматической станции «Юнона». Понимание происхождения и структуры магнитосфер планет гигантов может обогатить наши знания о магнитном поле Земли

Ледяные генераторы

Ледяные гиганты Уран и Нептун так похожи друг на друга по размерам и массе, что их можно назвать второй парой близнецов в нашей системе, после Земли и Венеры. Их мощные магнитные поля занимают промежуточное положение между магнитными полями газовых гигантов и Земли. Однако и тут природа «решила» соригинальничать. Давление в железокаменных ядрах этих планет все еще слишком велико для динамо эффекта вроде земного, однако недостаточно для образования слоя металлического водорода. Ядро планеты окружено мощным слоем льда из смеси аммиака, метана и воды. Этот «лед» на самом деле представляет собой чрезвычайно нагретую жидкость, которая не вскипает исключительно из-за колоссального давления атмосфер планет.


Внутреннее строение Урана и Нептуна

Самая яркая планета

Венера имеет магнитное поле, которое, как известно, невероятно слабо. Ученые до сих пор не уверены почему это так. Планета известна в астрономии как двойник Земли.

Она имеет такой же размер и примерно аналогичное расстояние от Солнца. Она также является единственной из других планет внутренней Солнечной системы, которая имеет значительную атмосферу. Однако отсутствие сильной магнитосферы указывает на существенные различия между Землей и Венерой.

Общее строение планеты

Венера как и все остальные внутренние планеты Солнечной системы — скалистая.

Ученые не очень много знают о формировании этих планет, но основываясь на данных, полученных с космических зондов, они сделали некоторые догадки. Мы знаем, что внутри Солнечной системы были столкновения планетазималей богатых железом и силикатами. Эти столкновения создали молодые планеты, с жидкими ядрами и хрупкой молодой корой состоящей из силикатов. Однако большая загадка заключается в развитии железного ядра.

Мы знаем, что одной из причин образования сильного магнитного поля Земли является то, что железное ядро работает как динамо машина.

Почему у Венеры нет магнитного поля?

Это магнитное поле защищает нашу планету от сильного солнечного излучения. Однако это не происходит на Венере и есть несколько гипотез объясняющих это. Во-первых, ядро ее полностью затвердело. Ядро Земли по-прежнему частично расплавлено и это позволяет ему производить магнитное поле. Другая теория гласит, что это связано с тем, что планета не имеет тектоники плит, как Земля.

Когда космические аппараты ее исследовали, они обнаружили, что магнитное поле Венеры существует и в несколько раз слабее чем у Земли, однако, солнечное излучение оно отклоняет.

Ученые теперь полагают, что поле, на самом деле, является результатом работы ионосферы Венеры, взаимодействующей с солнечным ветром. Это означает, что планета имеет индуцированное магнитное поле. Однако подтвердить это дело будущих миссий.

· · · ·

Сегодня нам придется совершить короткую экспедицию во внутрь нашего светила и в глубь нашей планеты. Мы должны понять почему у планет существует магнитное поле и как оно функционирует. Вопросов к магнитному полю Солнечной системы огромное множество и многие из них до сих пор не имеют своих четких ответов.

Например, известно, что Солнце и планеты Солнечной системы обладают своим магнитным полем. Но сегодня принято считать, что у Венеры и Меркурия магнитные поля очень слабые, а Марс, в отличии от остальных планет и Солнца, магнитного поля практически не имеет. Почему?

Магнитные полюса Земли не имеют своего фиксированного положения и время от времени не только блуждают в районах Северного и Южного полюсов, но и, по мнению многих ученых, кардинально меняют свое местоположение на противоположное. Почему?

Считается, что примерно раз в 11 лет у нашего Солнца происходит перемена магнитных полюсов. Северный полюс постепенно переходит на место южного полюса, а южный — на место северного. При этом, для человечества это необычное явление проходит совершенно незаметно, хотя даже небольшая вспышка на Солнце, создающая магнитную бурю, серьезно влияет на самочувствие всех метеозависимых людей планеты. Почему?

К сожалению, эти и многие другие вопросы, касающиеся магнитных полей планет и их взаимодействий в Солнечной системе, пока так и остались вопросами, временно, а иногда и неряшливо, прикрытыми не совсем обоснованными гипотезами и не вполне понятными рассуждениями. Вместе с тем, ответы на эти вопросы просто жизненно необходимы нашей цивилизации, дальнейшая судьба которой далеко не безоблачная. К примеру, существуют предположения, что смещение магнитных полюсов Земли всего на 2000 километров от географических полюсов Земли может привести к новому Всемирному потопу или к масштабным вымираниям многих видов животных и растений по причине изменения местоположения ледовых масс Северного и Южного полюсов и, как следствие, к изменению климата на планете. Поэтому поиск ответов на эти вопросы задача несомненно важная и требует нашего немедленного вмешательства в процесс её решения.

Итак, вопрос первый. Что же произошло с Марсом, Меркурием и Венерой, которые оказались обделенными космическим магнитным пирогом? Почему они не такие, как все остальные планеты Солнечной системы?

Размышления

Мы уже определили, что магнитное поле любого физического тела — это область пространства, в котором осуществляется вращательное движение свободных электронов и их эфирных потоков внутри и вне физического тела. Размер этой области зависит от многих факторов и, прежде всего, от размеров физического тела, вещества, из которого оно состоит, мощности внешних воздействий и т.д.

Наша планета имеет достаточное мощное магнитное поле, которое существенно превышает мощность магнитного поля любой из планет земной группы: Меркурия, Венеры и Марса. В настоящее время существует множество гипотез о причинах такого положения, однако ученые так и не пришли к единому мнению, так как ни одна из гипотез не выдерживает критики. Вместе с тем, и у Земли природа возникновения магнитного поля также пока не имеет своего точного и ясного понимания.

Ученые считают, что магнитное поле Земли является надежной защитой всего живого на планете от смертоносного воздействия космических частиц. Оно имеет вытянутую форму на сотни земных радиусов в ночную сторону Земли и примерно 10 земных радиусов в виде каверны с подсолнечной стороны планеты (рис. 40).

Рис. 40. Магнитное поле Земли

Возникновение магнитного поля Земли исследователи связывают с существованием внутри нашей планеты жидкого металлического ядра, которое, вращаясь под воздействием конвективных движений и турбулентности, инициирует электрические токи. Протекание этих токов в жидком ядре, по мнению ученых, способствуют самовозбуждению и поддержанию стационарного магнитного поля у Земли. Это мнение основывается на динамо-эффекте, приводящем к появлению магнитного поля планеты.

Модель магнитного динамо, на первый взгляд, позволяет удовлетворительно объяснить возникновение и некоторые особенности магнитного поля Земли и планет земной группы, но при условии, что внутри нашей планеты, действительно, есть жидкое металлическое ядро, которое исправно и неустанно вращается не один миллиард лет, стабильно генерируя электрические и магнитные потоки. А внутри Меркурия, Венеры или Марса такое ядро имеется и, к сожалению, почему-то совсем не хочет вращаться или вращается с очень малой скоростью и практически не генерирует магнитные потоки. Кроме того, нужно заметить, что точными знаниями ни о глубинном строении Земли, ни, тем более, Меркурия, Венеры или Марса мы пока не располагаем.

Вместе с тем, эта теория так и не была корректно подтверждена экспериментами, которые в большом количестве проводились, начиная с 70-80-х годов ХХ века. Доказать возможность самогенерации магнитного поля планеты оказалось не так просто. Кроме того, теория магнитного динамо не могла объяснить поведение магнитных полей других планет Солнечной системы. Например, Юпитера. Но на фоне других достаточно слабых гипотез, которые связывали наличие магнитного поля Земли в ионосфере за счет движения солнечного ветра или с воздействием течений соленой воды в океанах, гипотеза магнитного планетарного динамо пока твердо укрепилась в современном научном обществе. Как говориться, на безрыбье и рак — рыба.

Постараемся несколько отвлечься от уже принятых теорий и гипотез и поразмышлять над природой возникновения магнитного поля у планет и звезд во Вселенной. На наш взгляд, нельзя забывать, что планеты и звезды — это тоже физические тела. Правда, очень и очень большие. Они находятся в нашей Вселенной, а, значит, должны подчиняться законам и правилам, которые действуют в этой Вселенной.

Если это так, то возникает вполне резонный вопрос: «Обязательно ли иметь вращающееся жидкое металлическое ядро внутри планет и звезд для генерации магнитного поля?». Ведь обыкновенный постоянный магнит не имеет никакого подвижного ядра, но создает вокруг себя мощное магнитное поле. Да, и проводник при прохождении по нему электрического тока генерирует собственное магнитное поле, не требуя никаких вращающихся ядер. Ни жидких, ни твердых. Поэтому, может быть, попробовать поискать другие причины возникновения магнитного поля Земли?

Предположения

Действительно, и Земля, и Солнце, и все другие планеты Солнечной системы — это, по сути, огромные физические тела, вращающиеся и вокруг своей оси, и вокруг Солнца в нашей непрерывно вращающейся Галактике. Скорость вращения у них разная, но каждая планета или звезда во Вселенной имеет свое гравитационное поле, которое вращается в соответствии со скоростью вращения планеты или звезды.

Мы уже видели, что вращение частицы приводит к формированию в ней торного туннеля, сквозь который вращаются эфирные потоки, создавая вокруг частицы вращающееся магнитное поле. В магнитах и ферромагнетиках магнитное поле создается свободными электронами и эфирными потоками, вращающимися сквозь последовательно расположенные торные туннели ядер атомов. При этом, никаких видимых туннелей или черных дыр в магнитах и ферромагнетиках не образуется.

Планеты и звезды также имеют свои магнитные поля, но в них так же как и в магнитах нет видимых туннелей или черных дыр. Потоки свободных электронов и эфирные потоки стремительно движутся от одного полюса планеты или звезды к другому сквозь тело космического объекта. Спиралеобразные цепочки из антинейтрино, образующие свободные электроны, легко проникают сквозь горные породы, магму или любые другие образования, которые могут встретиться им на пути. Это обусловлено тем, что атомы веществ, составляющих планету или звезду, ориентированы таким образом, что не препятствуют, а способствуют продвижению свободных электронов.

Войдя в один полюс (мы полагаем, что на Земле — это Северный полюс), потоки эфира и свободных электронов вырываются из другого полюса (Южного полюса) и, вращаясь вокруг планеты или звезды, вновь возвращаются к полюсу (Северному полюсу Земли). Атомы веществ, находящихся в глубинах нашей планеты, очевидно, строго ориентированы в направлении потоков свободных электронов и эфира и расположены так, что электроны движутся сквозь торные туннели ядер атомов в направлении от Северного полюса — к Южному полюсу (рис. 41).

Рис. 41. Расположение ядер атомов химических элементов в теле планеты Земля

Поэтому Земля имеет мощное магнитное поле, которое, действительно, выполняет защитные функции для животного и растительного мира планеты. Плотный поток эфира и свободных электронов создают надежную защиту от потока космических частиц, задерживая и преобразовывая их в другие частицы. Кстати, именно здесь, в местах столкновения космических лучей с цепочками антинейтрино свободных электронов, нужно искать ответ на вопрос о солнечных нейтрино, которые волшебным образом пропадают по дороге от Солнца до Земли.

Марс, имея свое гравитационное поле и обладая скоростью вращения подобной земной, практически не имеет своего магнитного поля. Почему?

Гравитационное поле у Марса имеется. Оно активно вращается в соответствии с вращением планеты. Считается, что ядро Марса, как и у Земли, жидкое и состоит из железа. Поверхностные грунты также содержат гидраты оксидов железа. На Марсе так же как и в глубинах нашей планеты имеется кора и мантия. Марс вращается примерно с такой же скоростью, как и Земля. В общем, все есть для того, чтобы магнитная обстановка на Марсе была близка к земной. Но на Марсе, несмотря на обилие железа, с магнитным полем явная проблема.

В чем же дело? Почему на Марсе при всех благоприятных условиях для

возникновения магнитного поля этого поля практически не существует? Кто

или что повинно в этой парадоксальной ситуации?

Сегодня существуют гипотезы, которые пытаются умозрительно объяснить отсутствие магнитного поля у Марса тем, что у него вдруг остановилось вращение жидкого железного ядра и эффект планетарного динамо перестал проявляться. Но почему вдруг прекратилось вращение ядра планеты? Ответа на этот вопрос нет. Ну, прекратилось и прекратилось… Бывает…

Имеется предположение, что планетарное динамо исправно вращалось и генерировало магнитное поле Марса 4 млрд. лет назад, благодаря крупному астероиду, который сам вращался вокруг планеты на расстоянии 50-75 тысяч километров и упорно заставлял вращаться жидкое ядро Марса. Затем, очевидно, устав, астероид снизился и разрушился. Лишившись поддержки, ядро Марса заскучало и остановилось. С тех пор, у Марса нет ни астероида, ни магнитного поля. Сторонников этой теории немного, как, впрочем, не много и других, заслуживающих внимания версий отсутствия магнитного поля на Марсе. Вопрос о Марсе и его пропавшем магнитном поле так и повис в воздухе, даже и без помощи магнитных сил. Правда, сегодня специалисты НАСА утверждают, что атмосферу Марса «сдул» солнечный ветер, потому что у Марса нет магнитного поля. Но вот почему у Марса нет магнитного поля они, к сожалению, не уточняют.

Так, что же произошло на красной планете? Куда пропало магнитное поле? Попробуем выдвинуть свою версию.

Полагаю , что на Марсе существовало магнитное поле подобное магнитному полю Земли. Об этом свидетельствует наличие намагниченных областей в планетной коре. Марс по своему строению подобен Земле и имеет огромные природные запасы железа. Поэтому магнитное поле на Марсе, скорее всего, было. И вполне вероятно, даже более мощное, чем на Земле. Магнитное поле защищало планету и защищало жизнь на этой планете. Были ли там разумные существа — я не знаю. Но отрицать этого, естественно, не могу. Но магнитное поле было. Уверен. Куда же оно подевалось?

Известно, что на Марсе существуют следы от мощнейшего столкновения планеты с крупным космическим телом. Эти следы уже давно интересуют ученых. Общеизвестно, что при столкновении крупных физических тел обычно происходит два обязательных события. Мощное сотрясение этих тел и выделение огромного количества тепла . При подобных сотрясениях, естественно, нарушается вся внутренняя и внешняя структура этих тел. Это логично и закономерно.

Вместе с тем, мы помним свойства магнитов. При их нагревании , к примеру, до 800 градусов по Цельсию намагниченное железо теряет свои магнитные свойства. Железо так же легко расстается со своими магнитными способностями при его резком встряхивании . Таким образом, для потери магнитных свойств металл должен получить серьезное встряхивание и быть нагрет до определенной температуры.

Поэтому, полагаю , что при столкновении Марса с крупным астероидом произошло и то, и другое, т.е. планету серьезно растрясло и не менее серьезно нагрело. Ориентированные атомы потеряли свою упорядоченность, их торные туннели приняли разнонаправленное положение и нарушили траектории движения свободных электронов и эфирных потоков. Это и привело к нарушению магнитного поля Марса. Защитный эффект магнитного поля планеты был утрачен и на Марс обрушились потоки космических частиц, уничтожая все живое, если оно к тому времени там уже обосновалось. Солнце испарило всю воду. Атмосфера была уничтожена. Планета погибла.

Вот такая грустная история с нашим космическим соседом, не сумевшим предотвратить приближение астероида и не уничтожившего его еще на дальних подступах к планете. А для нас это хороший урок, показывающий, что главная задача нашей цивилизации состоит не в том, чтобы глупо бороться за условное лидерство среди государств Земли и отстаивать навязанную однополярность мира, а объединять усилия всей цивилизации для осуществления защиты от любых природных катаклизмов в виде дождя из астероидов, глобального потепления или не менее глобального похолодания, местных и региональных потопов и ливней, всемирного голода, безудержных эпидемий и проч., и проч., и проч.

Ну, что ж, вполне возможно так и было. И Марс, действительно, потерял свое

магнитное поле в результате столкновения с крупным астероидом. А как же

Венера? А Меркурий? Они тоже не блещут своими магнитными возможностями.

Их тоже атаковали злобные астероиды?

Астероиды, возможно, и были. Ученые полагают, что Меркурий пережил мощное столкновение с огромным астероидом, о чем свидетельствует огромный кратер

размером 1525х1315 км на равнине Жары. Естественно, это повлияло на проявление магнитного поля планеты, снизив его мощь.

Но, все же, у Венеры и у Меркурия совсем другая история. Когда мы рассматривали вопросы вращения Венеры и Меркурия, а также их гравитационных полей, то отмечали, что эти планеты имеют слабое магнитное поле. Магнитное поле Венеры примерно в 15 — 20 раз меньше магнитного поля Земли, а магнитное поле Меркурия — меньше земного магнитного поля примерно в 100 раз. В чем причина этих различий?

Ученые-астрономы считают, что возникновение магнитного поля и у Меркурия, и у Венеры, так же как и у Земли, связано с вращением жидкого металлического ядра. Но в таком случае, логично предположить, что вращение ядра планеты напрямую должно зависеть от вращения самой планеты. Чем выше скорость вращения планеты, тем выше и скорость вращения ее ядра, а, следовательно, тем мощнее ее магнитное поле.

Однако, один оборот Венеры вокруг своей оси составляет 243 земных суток, а Меркурия — 88 суток, т.е. Меркурий вращается примерно в 3 раза быстрее, чем Венера. Казалось бы, Меркурий вправе претендовать и на магнитное поле более мощное, чем у Венеры. Но результаты исследований показывают, что магнитное поле Меркурия не мощнее, а более чем в 5 раз слабее магнитного поля Венеры. Еще хуже положение Марса, который вращается со скоростью примерно равной скорости вращения Земли, а магнитного поля практически не имеет.

Поэтому гипотезы о жидком ядре и волшебном планетарном динамо становятся еще более призрачными и не состоятельными. С Марсом, полагаю, мы ранее разобрались. Но как объяснить ослабленное магнитное поле у Венеры и у Меркурия?

Мы уже размышляли о формировании нашей Солнечной системы и предположили, что она сформировалась в результате столкновения звезд, принадлежащих разным галактикам, которые вращались в противоположные стороны. Это предопределило вращение одних планет, условно, по часовой стрелке, а других — против часовой стрелки.

При формировании Солнечной системы все планеты попали под гравитационное влияние Солнца, которое воздействовало на планеты, заставляя их вращаться против часовой стрелки в соответствии с вращением мощного гравитационного поля нашей звезды. Постепенно гравитационные поля планет, вращающиеся по часовой стрелке стали «приспосабливаться» к общему эфирному потоку, составляющему гравитационное поле Солнца. Их гравитационные поля стали вращаться также против часовой стрелки, но планеты и их магнитные поля по инерции продолжали вращаться по часовой стрелке.

Назревала противоречивая ситуация, в которой победу, естественно, по праву сильного стало одерживать Солнце, влияя не только на гравитационные поля шагающих «не в ногу» планет, но и на их магнитные поля, и на сами планеты. В результате, их магнитные поля, представляющие собой потоки эфира и свободных электронов, также замедлили свое вращение.

У Меркурия магнитное поле замедлило свое вращение и повлияло на замедление вращения самой планеты. Затем, Меркурий остановил свое вращение и через определенное время начал вращаться в противоположную сторону, т.е. против часовой стрелки. Постепенно он увеличивал свою скорость и к настоящему времени достиг своих сегодняшних значений. Меркурий «встал в строй» и уже уверенно шагает «в ногу» со всей Солнечной системой. Правда, все еще немного отстает.

Венера, в силу своей более солидной массы, пока находится на этапе замедления вращения и через определенное время остановится, чтобы, постепенно, набирая обороты, начать вращение против часовой стрелки. Магнитное поле Венеры, возможно, уже вращается в противоположную сторону, но его вращение по отношению к телу планеты пока очень мало. Оно обеспечивает движение эфирных потоков и свободных электронов, но это движение менее интенсивно, чем их движение на нашей планете. Это объясняет наличие магнитного поля на Венере, которое хоть и имеется, но еще существенно слабее магнитного поля Земли.

Таким образом, магнитное поле существует у каждой планеты и звезды , но имеет различные значения. Возникновение и существование магнитного поля у планет и звезд вызвано движением эфирных потоков и потоков свободных электронов . Определяющим условием формирования магнитного поля планеты или звезды являются особенности расположения и ориентирования атомов металлов, из которых они состоят. Магнитное поле располагается в непосредственной близости от планет и звезд и вращается совместно с самой планетой или звездой и с их гравитационным полем.

Думаю, что ситуация с магнитными полями планет Солнечной системы немного прояснилась и мы можем двинуться дальше по пути познания магнитных полей звезд и планет во Вселенной.

Второй и третий из неясных вопросов , касающихся магнитного поля нашей планеты и нашей звезды, связан с предположениями по кардинальному изменению местоположения их магнитных полюсов.

По расчетам различных научных школ наша планета меняет местоположение своих магнитных полюсов на противоположное (по разным оценкам) один раз и в 12 — 13 тысяч лет, и в 500 тысяч лет, и более, а Солнце, которое многократно больше Земли, успевает делать это каждые 11 лет. Просто поразительная оперативность! Отрадно заметить, что мы, действительные и полномочные члены Солнечной системы, этого даже не замечаем. Мы сейчас не рассматриваем явление прецессии, которое влияет на местоположение магнитных полюсов Земли, но не так кардинально.

Смена магнитных полюсов Земли, как считают, оказывает глобальное влияние на все происходящее на Земле, включая вымерзание мамонтов и Всемирный Потоп. А вот смена полюсов Солнца, оказывается, проходят мимо нашего внимания и вовсе не портят нашего хорошего настроения (если оно, конечно, имеется)! Вместе с тем, появление даже небольшой вспышки на Солнце приводит к магнитной буре на Земле, которая легко заставляет немалую часть населения планеты хвататься за голову и не подниматься с постели достаточно продолжительное время. Чудеса!

Кстати, по расчетам все тех же исследователей последняя переполюсовка магнитного поля нашей планеты произошла 780 тысяч лет назад. Клянутся, что цифры точные! А вот, верить им или нет — это уже ваше решение. Что касается меня, то мое настороженное отношение к этим оценкам пока вполне устойчиво.

Размышления

Наши размышления о магнитном взаимодействии планет и звезд дело, безусловно, нужное и полезное. К примеру, нам известно, что Солнце обладает сильным магнитным полем. Оказывает ли оно влияние на другие планеты? Безусловно, оказывает. Однако, его гравитационное поле значительно обширнее магнитного поля нашей планеты и в Солнечной системе именно оно играет главную роль в ее формировании и поддержании в стабильном состоянии. Магнитное поле Солнца наибольшее влияние оказывает на планеты земной группы. Но до Земли его влияние заметное человеку доходит лишь периодически в процессе выброса мощных солнечных протуберанцев и возникновения магнитных бурь. На ледяные и газовые гиганты нашей Солнечной системы воздействия магнитного поля нашей звезды значительно слабее, чем на планеты земной группы.

Но если Солнце так активно влияет на всю Солнечную систему, то почему оно само не является устойчивым элементом системы и, по мнению некоторых ученых, каждые 11 лет легко меняет местоположение своих магнитных полюсов на противоположное?

Здесь явное несоответствие, которое требует своего объяснения. А объяснение достаточно простое, хотя и неожиданное. Не думаю, что Солнце способно так стремительно менять свои магнитные полюса, а планеты Солнечной системы на это серьезно не реагируют. При этом, жители планеты Земля этого даже не замечают. Мы часто наблюдаем, как солнечная магнитная буря выводит из спокойного состояния миллионы людей, повышая им кровяное давление, влияя на самочувствие и настроение. Но это достаточно кратковременное явление и оно ни в какое сравнение не может идти с такими глобальными процессами, как смена солнечных полюсов. Значит, выводы ученых не могут быть безоговорочно приняты. Но явление, как утверждают ученые, существует. Что же, попробуем поискать другие причины этого удивительного явления.

Солнечную систему принято изображать как некий плоский диск с Солнцем в центре в окружении планет, путешествующих вокруг него по своим строго определенным орбитам (рис. 42).

Рис. 42. Традиционно принятое изображение Солнечной системы

Однако это некое статичное положение Солнца и планет в пространстве Вселенной, которое не отвечает действительному положению Солнечной системы в космосе. Солнечная система с огромной скоростью примерно 240 километров в секунду движется в космическом пространстве и планеты совершают движение не только вокруг Солнца, но и вперед, вместе со всей Солнечной системой. Поэтому в пространстве Вселенной планеты, на самом деле, совершают движение по спирали. Но и сама Солнечная система в целом движется не прямолинейно, а по спирали, вращаясь в одном из рукавов нашей Галактики. Сами рукава Галактики также вращаются по спирали, подчиняясь мощнейшему гравитационному воздействию галактического ядра. Галактики тоже совершают спиралевидные вращения в своих галактических скоплениях. И все это вращается вокруг ядра Вселенной, продвигаясь по спирали от тыльной части вселенского туннеля к воронке его черной дыры.

Спиралевидные движения начинают задаваться эфирными струями, истекающими из ядра Вселенной. Эфирные струи могут объединяться, но могут и существовать самостоятельной жизнью. При этом, звезды и звездные системы в них также вращаются и движутся в пространстве по спирали.

Исходя из этого, полагаю, что Солнечная система в рамках своей эфирной струи также вращается, совершая спиралевидные движения в пространстве. Однако, если предположить, что Солнце движется не по центру струи, а с некоторым смещением к ее границам, то многие вопросы становятся вполне объяснимыми. Совершая спиралевидные вращательные движения, Солнце, главным образом, ориентирует ось своего вращения и магнитные полюса по направлению галактического ядра и, частично, ядра Вселенной. Поэтому солнечная ось вращения и магнитные полюса всегда будут ориентированы по направлению к ядру Галактики с учетом влияния сил гравитации ядра Вселенной. При условии, что Солнце делает полный оборот вокруг эфирной струи за 22 года, можно наблюдать «мнимую» смену магнитных полюсов.

В этом случае, наблюдатель, находясь на планете Земля и ориентируясь, к примеру, на Полярную звезду, будет фиксировать изменение направления магнитного полюса, который на самом деле будет неподвижен по отношению к Солнцу (рис. 43).

Рис. 43. Видимое изменение местоположения магнитных полюсов на Солнце

Учитывая, что на поверхности Солнца нет четких неподвижных ориентиров, а солнечные пятна постоянно меняют свое местоположение, определить относительную неподвижность магнитных солнечных полюсов было достаточно непросто. Поэтому исследователи вполне искренне посчитали, что каждые 11 лет магнитные полюса Солнца меняются местами.

Таким образом, магнитные полюса Солнца, безусловно, могут мигрировать в определенных пределах, но допущение их кардинальной смены в течение каждых 11 лет требует очень и очень веских аргументов. Таких аргументов у современных исследователей пока не имеется. Кстати, противоположное изменение местоположения магнитных полюсов Земли мне видится также недостаточно обоснованным. Поэтому я больше склоняюсь к определенной миграции полюсов в рамках некой определенной области нашей планеты, и пока это все, что могу себе позволить.

Реферативно-исследовательская работа

Магнитное поле планет солнечной системы

Выполнил:

Балюк Илья

Руководитель:

Левыкина Р.Х

Преподаватель физики

Магнитогорск 201 7 г

А ннотация.

Одной из специфических особенностей нашей планеты является её магнитное поле. Все живые существа Земли миллионы лет эволюционизировали именно в условиях магнитного поля и без него существовать не могут.

Данная работа дала возможность расширить круг моих знаний о природе магнитного поля, его свойствах, о планетах Солнечной системы, обладающих магнитными полями, о гипотезах и астрофизических теориях происхождения магнитных полей планет Солнечной системы.

Содержание

Введение…………………………………………………………………………..4

Раздел 1.Природа и особенности магнитного поля…………………………..6

1.1,Определение магнитного поля и его характеристики. …………………...

1.2.Графическое изображение магнитного поля……………………………

1.3.Физические свойства магнитных полей………………………………….

Раздел 2. Магнитное поле Земли и связанные с ним природные явления…. 9

Раздел 3. Гипотезы и астрофизические теории происхождения магнитного поля планет…………………………………………………………………………… 13

Раздел 4. Обзор планет Солнечной системы, обладающих магнитным

полем……………………………………………………………………………...16

Раздел 5. Роль магнитного поля в существовании и развитии

жизни на Земле………………………………………………………………….. 20

Заключение………………………………………………………………………. 22

Используемая литература………………………………………………………. 24

Приложение… ……………………………………………………………………. 25

Введение

Магнитное поле Земли является одним из необходимых условий существования жизни на нашей планете. Но геофизики (палеомагнитологи) установили, что на протяжении геологической истории нашей планеты магнитное поле неоднократно снижало свою напряжённость и даже изменяло знак (то есть северный и южный полюса менялись местами). Таких эпох изменения знака магнитного поля, или инверсий, ныне установлено несколько десятков, они отразились в магнитных свойствах магнитных пород. Нынешняя эпоха магнитного поля условно названа эпохой прямой полярности. Она длится уже примерно 700 тыс. лет. Тем не менее напряжённость поля медленно, но неуклонно снижается. Если этот процесс будет развиваться и в дальнейшем, то приблизительно через 2 тыс. лет напряжённость магнитного поля Земли упадёт к нулю, а потом, через определённое время «без магнитной эпохи», начнёт нарастать, но будет иметь противоположный знак. «Без магнитная эпоха» может восприниматься живыми организмами как катастрофа. Магнитное поле Земли является щитом, защищает жизнь на Земле от потока солнечных и космических частиц (электронов, протонов, ядер некоторых элементов). Двигаясь с огромными скоростями, такие частицы являются сильным ионизирующим фактором, который, как известно, влияет на живую ткань, и, в частности, на генетический аппарат организмов. Установлено, что земное магнитное поле отклоняет траектории космических ионизирующих частиц и «закручивает» их вокруг планеты.

Ученые выделили основные астрономические характеристики планет. К таким относят: Меркурий, Венера, Земля, Луна, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.

На наш взгляд одной из ведущих характеристик планет выступает магнитное поле

Актуальность нашего исследования заключается в уточнение особенностей магнитного поля ряда планет солнечной системы.

The New York Times .

расширению озоновых дыр, а северное сияние станет появляться над экватором.

Проблема исследования заключается в разрешении противоречия между необходимостью учета магнитного поля как одной из характеристик планет, и отсутствием учета данных, указывающих на соотношение магнитного поля Земли и других планет солнечной системы.

Цель систематизировать данные о магнитном поле планет солнечной системы.

Задачи.

1. Изучить современное состояние проблемы магнитного поля в научной литературе.

2. Уточнить ведущие физические характеристики магнитного поля планет.

3. Проанализировать гипотезы происхождения магнитного поля планет Солнечной системы, установить какие из них являются принятыми научным сообществом.

4 . Дополнить общепринятую таблицу “Основных астрономических характеристик планет” данными о магнитных полях планет.

Объект : основные астрономические характеристики планет.

Предмет : выявление особенностей Магнитного поля как одной из основных астрономических характеристик планет.

Методы исследования: анализ, синтез, обобщение, систематизация значений.

Раздел 1. Магнитное поле

1.1. Экспериментально установлено что проводники, по которым текут токи в одинаковом направлении притягиваются, а в противоположных - отталкиваются. Для описания взаимодействия проводов, по которым текут токи, было использовано магнитное поле - особой формы материя, порождаемая электрическими токами или переменным электрическим током и проявляющаяся по действию на электрические токи находящиеся в этом поле. Открыл магнитное поле в 1820 г. датский физик Х.К. Эрстед. Магнитное поле описывает магнитные взаимодействия, возникающие: а) между двумя токами; б) между током и движущимися зарядами; в) между двумя движущимися зарядами.

Магнитное поле имеет направленный характер и должно характеризоваться векторной величиной.. Основную силовую характеристику магнитного поля назвали м агнитной индукцией. Эту величину принято обозначать буквой В.

Рис. 1

При включении концов провода к источнику постоянного тока стрелка “отвернулась” от провода. Несколько магнитных стрелок, расставленных вокруг провода, развернулись определенным образом.

В пространстве вокруг провода с током существует силовое поле . В пространстве вокруг проводника с током существует магнитное поле. (Рис.1)

Для характеристики магнитного поля тока ввели кроме индукции вспомогательную величину Н , названную напряженностью магнитного поля. Напряженность магнитного поля в отличие от магнитной индукции не зависит от магнитных свойств среды.

Рис. 2

Магнитные стрелки помещенные на одинаковом расстоянии от прямого проводника с током, расположились в виде окружности.

1.2 Линии индукции магнитного поля.

Магнитные поля, так же как и электрические, можно изображать графически при помощи линий магнитной индукции. Линиями индукции (или линиями вектора В) называют линии, касательные к которым направлены так же, как и вектор В в данной точке поля. Очевидно, что через каждую точку магнитного поля можно провести линию индукции. Так как индукция поля в любой точке имеет определённое направление, то и направление линии индукции в каждой точке данного поля может быть только единственным, а значит, линии индукции магнитного поля прочерчивают с такой густотой, чтобы число линий, пересекающих единицу поверхности, перпендикулярной к ним, было равно (или пропорционально) индукции магнитного поля в данном месте. Поэтому, изображая линии индукции, можно наглядно представить, как меняется в пространстве индукция по модулю и направлению.

1.3. Вихревой характер магнитного поля.

Линии магнитной индукции непрерывны: они не имеют ни начала, ни конца. Это имеет место для любого магнитного поля, вызванного какими угодно контурами с током. Векторные поля, обладающие непрерывными линиями, получили название вихревых полей. Мы видим, что магнитное поле есть вихревое поле.

Рис. 3

Мелкие железные опилки расположились в виде окружностей, “опоясывающих” проводник. Если изменить полярность подключения источника тока то опилки развернутся на 180 градусов.

Рис. 4


Магнитное поле кругового тока представляет из себя замкнутые непрерывные линии следующего вида: (Рис 5, 7)

Рис. 5

Для магнитного поля, как и для электрического поля, справедлив принцип суперпозиции : поле В, порождаемое несколькими движущимися зарядами (токами), равно векторной сумме полей Вт, порождаемых каждым зарядом (током) в отдельности: т.е., чтобы найти силу, действующую на точку в пространстве, нужно сложить силы, действующие на неё, как показано на рисунке 4.

М агнитное поле кругового тока представляет собой некую восьмёрку с разделением колец в центре кольца, по которому течёт ток. Его схема показана на рисунке ниже: (Рис 6)



Рис. 6 Рис. 7

Таким образом: магнитное поле представляет собой особую форму материи, посредством которого осуществляется взаимодействие между движущимися электрическими заряженными частицами.

О сновные свойства магнитного поля:

1.

2.

М агнитное поле характеризуют:

а) б)

Графически магнитное поле изображают при помощи линий магнитной индукции

Раздел 2.Магнитное поле Земли и связанные с ним природные явления

Земля в целом представляет собой огромный шаровой магнит. Человечество начало использовать магнитное поле Земли давно. Уже в начале XII - XIII вв. получает широкое распространение в мореходстве компас. Однако в те времена считалось, что стрелку компаса ориентирует Полярная звезда и её магнетизм. Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г в первые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. В 1635 г Геллибранд обнаружил, что поле земного магнита медленно меняется, а Эдмонд Галлей провел первую в мире магнитную съемку океанов и создал первые мировые карты- (1702 г). В1835 г Гаусс провел сферический гармонический анализ магнитного поля Земли. Он создал первую в мире магнитную обсерваторию в Гёттингене.

2.1 Общая характеристика магнитного поля Земли

В любой точке пространства, окружающего Землю, и на её поверхности обнаруживается действие магнитных сил. Иными словами, в пространстве, окружающем Землю, создаётся магнитное поле. Магнитные и географические полюса Земли не совпадают друг с другом. Северный магнитный полюс N лежит в южном полушарии, вблизи берегов Антарктиды, а южный магнитный полюс S находится в Северном полушарии, вблизи северного берега острова Виктория (Канада). Оба полюса непрерывно перемещаются (дрейфуют) на земной поверхности со скоростью около 5 0 за год из-за переменности порождающих магнитное поле процессов. Кроме того, ось магнитного поля не проходит через центр Земли, а отстаёт от него на 430 км. Магнитное поле Земли не симметрично. Благодаря тому, что ось магнитного поля проходит всего под углом в 11,5 0 к оси вращения планеты, мы можем пользоваться компасом.

Рис 8

В идеальном и гипотетическом предположении, в котором Земля была бы одинока в космическом пространстве, силовые линии магнитного поля планеты располагались таким же образом, как и силовые линии обычного магнита из школьного учебника физики, т.е. в виде симметричных дуг, протянувшихся от южного полюса к северному.(рис 8) Плотность линий (напряжённость магнитного поля) падала бы с удалением от планеты. На деле, магнитное поле Земли находится во взаимодействии с магнитными полями Солнца, планет и потоков заряженных частиц, испускаемых в изобилии Солнцем. (рис 9)

Рис 9

Если влиянием самого Солнца и тем более планет из-за удалённости можно пренебречь, то с потоками частиц, иначе - солнечным ветром, так не поступишь. Солнечный ветер представляет собой потоки мчащихся со скоростью около 500 км/с частиц, испускаемых солнечной атмосферой. В моменты солнечных вспышек, а также в периоды образования на Солнце группы больших пятен, резко возрастает число свободных электронов, которые бомбардируют атмосферу Земли. Это приводит к возмущению токов текущих в ионосфере Земли и, благодаря этому, происходит изменение магнитного поля Земли. Возникают магнитные бури. Такие потоки порождают сильное магнитное поле, которое и взаимодействует с полем Земли, сильно деформируя его. Благодаря своему магнитному полю. Земля удерживает в так называемых радиационных поясах захваченные частицы солнечного ветра, не позволяя им проходить в атмосферу Земли и тем более к поверхности. Частицы солнечного ветра были бы очень вредны для всего живого. При взаимодействии упоминавшихся полей образуется граница, по одну сторону которой находится возмущённое (подвергшееся изменениям из-за внешних влияний) магнитное поле частиц солнечного ветра, по другую - возмущённое поле Земли. Эту границу стоит рассматривать как предел околоземного пространства, границу магнитосферы и атмосферы. Вне этой границы преобладает влияние внешних магнитных полей. В направлении к Солнцу магнитосфера Земли сплюснута под натиском солнечного ветра и простирается всего до 10 радиусов планеты. В противоположном направлении имеет место вытянутость до 1000 радиусов Земли.

С оставляющие геомагнитного поля Земли.

Собственное магнитное поле Земли (геомагнитное поле) можно разделить на следующие три основные части.

    О сновное магнитное поле Земли, испытывающее медленные изменения во времени (вековые вариации) с периодами от 10 до 10 000 лет, сосредоточенными в интервалах 10-20, 60-100, 600-1200 и 8000 лет. Последний связан с изменением дипольного магнитного момента в 1,5-2 раза.

    М ировые аномалии - отклонения от эквивалентного диполя до 20% напряженности отдельных областей с характерными размерами до 10 000 км. Эти аномальные поля испытывают вековые вариации, приводящие к изменениям со временем в течение многих лет и столетий. Примеры аномалий: Бразильская, Канадская, Сибирская, Курская. В ходе вековых вариаций мировые аномалии смещаются, распадаются и возникают вновь. На низких широтах имеется западный дрейф по долготе со скоростью 0,2° в год.

    М агнитные поля локальных областей внешних оболочек с протяженностью от нескольких до сотен км. Они обусловлены намагниченностью горных пород в верхнем слое Земли, слагающих земную кору и расположенных близко к поверхности. Одна из наиболее мощных - Курская магнитная аноматия.

    П еременное магнитное поле Земли (так же называемое внешним) определяется источниками в виде токовых систем, находящимися за пределами земной поверхности и в ее атмосфере. Основными источниками таких полей и их изменений являются корпускулярные потоки намагниченной плазмы, приходящие от Солнца вместе с солнечным ветром, и формирующие структуру и форму земной магнитосферы.

Следовательно: Земля в целом представляет собой огромный шаровой магнит.

В любой точке пространства, окружающего Землю и на ее поверхности, обнаруживается действе магнитных сил. Северный магнитный полюс N S . находится в Северном полушарии, вблизи северного берега острова Виктория (Канада). Оба полюса непрерывно перемещаются (действуют) на земной поверхности.

Кроме того, ось магнитного поля не проходит через центр Земли, а отстаёт от него на 430 км. Магнитное поле Земли не симметрично. Благодаря тому, что ось магнитного поля проходит всего под углом 11,5 градусов к оси вращения планеты, мы можем пользоваться компасом.

Раздел 3. Гипотезы и астрофизические теории происхождения магнитного поля Земли

Гипотеза 1.

М еханизм гидромагнитного динамо

Наблюдаемые свойства магнитного поля Земли согласуются с представлением о его возникновении благодаря механизму гидромагнитного динамо. В этом процессе первоначальное магнитное поле усиливается в результате движений (обычно конвективных или турбулентных) электропроводящего вещества в жидком ядре планеты. При температуре вещества в несколько тысяч кельвин его проводимость достаточно высока, чтобы конвективные движения, происходящие даже в слабо намагниченной среде, могли возбуждать изменяющиеся электрические токи, способные, в соответствии с законами электромагнитной индукции, создавать новые магнитные поля. Затухание этих полей либо создает тепловую энергию (по закону Джоуля), либо приводит к возникновению новых магнитных полей. В зависимости от характера движений эти поля могут либо ослаблять, либо усиливать исходные поля. Для усиления поля достаточно определенной асимметрии движений. Таким образом, необходимым условием гидромагнитного динамо является само наличие движений в проводящей среде, а достаточным - наличие определенной асимметрии (спиральности) внутренних потоков среды. При выполнении этих условий процесс усиления продолжается до тех пор, пока растущие с увеличением силы токов потери на джоулево тепло не уравновесят приток энергии, поступающей за счет гидродинамических движений.

Динамо-эффект - самовозбуждение и поддержание в стационарном состоянии магнитных полей вследствие движения проводящей жидкости или газовой плазмы. Его механизм подобен генерации электрического тока и магнитного поля в динамо-машине с самовозбуждением. С динамо-эффектом связывают происхождение собственных магнитных полей Солнца Земли и планет, а также их локальные поля, например, поля пятен и активных областей.

Гипотеза 2.

В ращающаяся гидросфера как возможный источник магнитного поля Земли.

Сторонники этой гипотезы предполагают, что проблема происхождения магнитного поля Земли, со всеми его вышеперечисленными особенностями, могла бы найти своё решение на основе единой модели, проясняющей, каким образом источник земного магнетизма связан с гидросферой. Об этой связи, считают они, свидетельствует множество фактов. Прежде всего, упоминавшийся выше "перекос" магнитной оси заключается в том, что она наклонена и смещена в сторону Тихого океана; при этом она расположена почти симметрично по отношению к акватории Мирового океана. Всё говорит о том, что сама морская вода, будучи в движении, порождает магнитное поле. Следует сказать о том, что эта концепция согласуется с данными палеомагнитных исследований, которые интерпретируются как свидетельства неоднократных переключений магнитных полюсов.

Уменьшение магнитного поля обусловлено деятельностью цивилизации которая приводит к глобальному закислению окружающей среды в основном через накопление в ней углекислого газа. Такая деятельность цивилизации, с учётом вышеизложенного, может оказаться для неё самоубийственной.

Гипотеза 3

З емля как двигатель постоянного тока с самовозбуждением

Солнце

Рис. 10Схема взаимодействия Солнце-Земля:

(-) - поток заряженных частиц;

1с - ток Солнца;

1з - круговой ток Земли;

Мв - момент вращения Земли;

со - угловая скорость Земли;

Фз - магниный поток, создаваемый полем Земли;

Фс - магнитный поток, создаваемый током солнечного ветра.

Относительно Земли солнечный ветер представляет собой поток заряженных частиц постоянного направления, а это не что иное, как электрический ток. Согласно определению направления тока он направлен в сторону, противоположную движению отрицательно заряженных частиц, т.е. от Земли к Солнцу.

Рассмотрим взаимодействие тока Солнца с возбужденным магнитным полем земли. В результате взаимодействия на Землю действует вращающий момент М 3 , направленный в сторону вращения Земли. Таким образом, Земля относительно солнечного ветра проявляет себя аналогично двигателю постоянного тока с самовозбуждением. Источником энергии (генератором) в данном случае является Солнце.

Токовый слой Земли, в значительной степени, определяет протекание электрических процессов в атмосфере (грозы, полярные сияния, огни «святого Эльма»). Замечено, что при извержении вулканов значительно активизируются электрические процессы в атмосфере.

Из выше сказанного следует: источник магнитного поля Земли до сих пор не установлен наукой, которая имеет дело лишь с изобилием гипотез, выдвинутых на этот счет.

Гипотеза, прежде всего, должна объяснять происхождение составляющей магнитного поля Земли, из-за планета ведёт себя как постоянный магнит с северным магнитным полюсом вблизи южного географического полюса и наоборот.

Сегодня почти общепринята гипотеза о вихревых электрических токах, текущих во внешней части Земного ядра, у которой обнаруживается некоторые свойства жидкости. Подсчитано, что зона, в которой действует механизм “динамо” находится на расстоянии 2,25-0,3 радиуса Земли.

Раздел 4. Обзор планет Солнечной системы, обладающих магнитным полем

В настоящее время почти общепринята гипотеза о вихревых электрических токах, текущих во внешней части планетарного ядра, у которого обнаруживаются некоторые свойства жидкости.

Земля и восемь других планет вращаются вокруг Солнца. (Рис. 11) Оно - одна из 100 миллиардов звезд, входящих в нашу Галактику.

Рис.11 Планеты Солнечной системы

Рис.12 Меркурий

Высокая плотность Меркурия приводит к выводу о том, что планета имеет железоникелевое ядро. Мы не знаем, является ядро Меркурия плотным или представляет собой как у Земли, смесь плотного и жидкого вещества. Меркурий обладает весьма существенным магнитным полем, что позволяет предположить, что в нем остается тонкий слой расплавленного материала, возможно, соединения железо и серы, который окружает плотное ядро.

Течения внутри этого жидкого поверхностного слоя объясняют происхождение магнитного поля. Однако без воздействия стремительного вращения планеты движение жидкой части ядра было бы слишком незначительным, что бы объяснить подобную силу магнитного поля. Магнитное поле свидетельствует о том, что мы столкнулись с «остаточным» магнетизмом ядра, «замороженным» в ядре во время его затвердевания.

Венера

Плотность Венеры лишь немногим меньше плотности Земли. Из этого следует, что ее ядро занимает примерно 12% общего объёма планеты, а граница между ядром и мантией находится примерно на полпути от центра до поверхности. Венера не имеет магнитного поля, ну даже если часть ее ядра является жидкой, мы не должны были ожидать возникновения внутри ее магнитного поля, потому что она вращается слишком медленно для возникновения необходимых потоков

Рис.13 Земля

Сильное магнитное поле Земли возникает внутри жидкого внешнего ядра, плотность которого позволяет предположить, что оно состоит из расплавленной смеси железа и такого менее плотного элемента, как сера. Твёрдое внутреннее ядро состоит преимущественно из железа с включением нескольких процентов никеля.

Марс

Mariner 4 показал, что на Марсе нет сильного магнитного поля, а следовательно, ядро планеты не может быть жидким. Однако когда Mars Global Surveyor приблизился к планете на 120 км, оказалось, что некоторые области Марса обладают сильным остаточным магнетизмом, возможно, сохранившимся с более ранних времен, когда ядро планеты было жидким и могло генерировать мощное магнитное поле. Mariner 4 показал, что на Марсе нет сильного магнитного поля, а следовательно, ядро планеты не может быть жидким.

Рис.14 Юпитер

Ядро Юпитера должно быть небольшим но, скорее всего его масса в 10-20 раз превышает массу Земли. Состояние каменистых материалов в ядре Юпитера нам не известно. Скорее всего они должны быть расплавленными, но огромное давление может сделать его твёрдым.

Юпитер обладает самым мощным магнитным полем из всех планет Солнечной системы. Оно в 20000 тысяч превышает мощность магнитного поля Земли. Магнитное поле Юпитера наклонено относительно оси вращения планеты на 9,6 градусов и генерируется благодаря конвекции в толстом слое металлического водорода.

Рис.15 Сатурн

Внутреннее строение Сатурна сопоставимо с внутренним строением остальных гигантских планет. Сатурн обладает магнитным полем, мощность которого в 600 раз превышает мощность магнитного поля Земли. Это своеобразный вариант поля Юпитера. На Сатурне возникают такие же полярные сияния. Единственное их отличие от юпитерианских в том, что они в точности совпадают с осью вращения планеты. Подобно полю Юпитера, магнитное поле Сатурна генерируется процессами конвекции, протекающими внутри слоя металлического водорода.

Рис.16 Уран

Уран имеет почти такую же плотность что и Юпитер. Каменистое центральное ядро, вероятно, испытывает давление примерно 8 миллионов атмосфер, а температура его составляет 8000 0 . Уран обладает мощным магнитным полем, примерно в 50 раз превышающим магнитное поле Земли. Магнитное поле наклонено относительно оси вращения планеты под углом 59 0 , что позволяет определить скорость внутреннего вращения. Центр симметрии магнитного поля Урана расположен примерно на одной трети расстояние от центра планеты до его поверхности. Это говорит о том, что магнитное поле вырабатывается благодаря конвекционным потокам внутри ледяной части внутреннего строения планеты.

Рис.17 Нептун

Внутренняя структура очень сходна с Ураном. Магнитное поле Нептуна примерно в 25 раз превышает магнитное поле Земли и в 2 раза слабее магнитного поля Урана. Как и у него. Оно наклонено под углом 47 градусов к оси вращения планеты. Таким образом, можно сказать, что поле Нептуна возникло в результате конвекционных потоков в слои жидкого льда. В таком случае центр симметрии магнитного поля лежит довольно далеко от центра планеты, на полпути от центра к поверхности.

Плутон

У нас есть конкретной информации о внутреннем строении Плутона. Плотность говорит о том, что под ледяной мантией, скорее всего, скрывается каменистое ядро, в котором сосредоточено около 70% массы планеты. Вполне возможно, что внутри каменистого ядра ещё и железистое ядро.

Осознание того, что Плутон по своим свойствам совпадает со многими объектами пояса Койпера, привело многих ученых к мысли о том, что Плутон не должен считаться планетой, а классифицироваться как ещё один объект пояса Койпера. Международный астрономический союз положил конец этим спорам: на основе исторического прецедента в ближайшем будущем Плутон будет продолжать считаться планетой.

Таблица1-“Основные астрономические характеристики планет”.

Т аким образом мы пришли к выводу: такой критерий как магнитное поле выступает значимой астрономической характеристикой планет солнечной системы. Большинство планет Солнечной системы (Табл.1) в той или иной степени обладают магнитными полями. По убыванию дипольного магнитного момента на первом месте Юпитер и Сатурн, а за ними следуют Земля, Меркурий и Марс, причем по отношению к магнитному моменту Земли значение их моментов составляет 20 000, 500, 1, 3/5000 3/10000.

Раздел 5. Роль магнитного поля в существовании и развитие жизни на Земле

Магнитное поле Земли ослабевает и это создает серьезную угрозу всему живому на планете. По оценкам ученых, этот процесс начался примерно 150 лет назад и в последнее время ускорился. К настоящему моменту магнитное поле планеты ослабело уже, примерно, на 10-15%.

В ходе этого процесса, как считают ученые, магнитное поле планеты постепенно ослабеет, затем практически исчезнет, а потом возникнет вновь, но будет иметь противоположную полярность.

Стрелки компасов показывавшие ранее на Северный полюс, начнут показывать на Южный магнитный полюс, место которого займет Северный. Отметим, что речь идет именно о магнитных, а не о географических полюсах.

Магнитное поле играет очень большую роль в жизни Земли: оно, с одной стороны, защищает планету от потока заряженных частиц, летящих от Солнца и из глубин космоса, а с другой - служит как бы дорожным указателем для ежегодно мигрирующих живых существ. Что случится, если это поле исчезнет, точно предсказать не берется никто, отмечает The New York Times .

Можно предположить, что пока будет проходить смена полюсов многое и на небе, и на земле, пойдет вразнос. Смена полюсов может обернуться авариями на высоковольтных линиях, сбоями в работе спутников, проблемами для астронавтов. Смена полярности приведет к значительному расширению озоновых дыр, а северное сияние станет будет появляться над экватором.

С серьезными проблемами столкнуться животные, ориентирующиеся по "природным" компасам. Рыбы, птицы и звери потеряют ориентацию, и не будут знать, в какую сторону надо мигрировать.

Однако, по мнению некоторых специалистов, у братьев наших меньших может и не возникнуть подобных катастрофических проблем. Перемещение полюсов займет около тысячи лет. Специалисты считают, что животные, ориентирующиеся по магнитным силовым линиям Земли, успеют приспособиться и выживут.

Несмотря на то, что окончательная смена полюсов, скорее всего, произойдет через сотни лет, сам этот процесс уже наносит ущерб спутникам. Последний раз, как считается, подобный катаклизм произошел 780 тысяч лет назад.

Следовательно: в эпохи, когда Земля не имеет магнитного поля, у нее исчезает защитный антирадиационный щит. Значительно (в несколько раз) увеличение радиационного фона может значительно влиять на биосферу.

Заключение

    Проблема изучения магнитного является крайне актуальной, поскольку. В эпохи, когда Земля не имеет магнитного поля, у нее исчезает защитный антирадиационный щит. Значительно (в несколько раз) увеличение радиационного фона может значительно влиять на биосферу: одни группы организмов должны вымирать, среди других может возрастать количество мутаций и т. п. А если принять во внимания Солнечные вспышки, т.е. колоссальные по мощности взрывы на Солнце, которые извергают чрезвычайно сильные потоки космических лучей, то следует сделать вывод, что эпохи исчезновения магнитного поля Земли, является эпохами катастрофического влияния на биосферу со стороны Космоса.

    Магнитное поле представляет собой особую форму материи, посредством которого осуществляется взаимодействие между движущимися электрическими заряженными частицами.

Основные свойства магнитного поля:

а) Магнитное поле порождается электрическим током (движущиеся заряды).

б) Магнитное поле обнаруживается по действию на ток (движущиеся заряды),

Магнитное поле характеризуют:

а) Магнитная индукция В - основная силовая характеристика магнитного поля. б) Напряженность магнитного поля Н – вспомогательная величина.

Графически магнитное поле изображают при помощи линий магнитной индукции.

    Наиболее изученным является магнитное поле Земли. В любой точке пространства, окружающего Землю и на ее поверхности, обнаруживается действе магнитных сил. Северный магнитный полюс N расположен Южном полушарии, вблизи берегов Антарктиды, а южный магнитный полюс S . находится в Северном полушарии, вблизи северного берега острова Виктория (Канада). Оба полюса непрерывно перемещаются (действуют) на земной поверхности. Кроме того, ось магнитного поля не проходит через центр Земли, а отстаёт от него на 430 км. Магнитное поле Земли не симметрично. Благодаря тому, что ось магнитного поля проходит всего под углом 11,5 градусов к оси вращения планеты, мы можем пользоваться компасом.

    Источник магнитного поля Земли до сих пор не установлен наукой, которая имеет дело лишь с изобилием гипотез, выдвинутых на этот счет.Гипотеза, прежде всего, должна объяснять происхождение составляющей магнитного поля Земли, из-за которой планета ведёт себя как постоянный магнит с северным магнитным полюсом вблизи южного географического полюса и наоборот. Сегодня почти общепринята гипотеза о вихревых электрических токах, текущих во внешней части Земного ядра, у которой обнаруживается некоторые свойства жидкости. Подсчитано, что зона, в которой действует механизм “динамо” находится на расстоянии 2,25-0,3 радиуса Земли. Следует заметить, что гипотезы, объясняющие механизм возникновения магнитного поля планет, довольно противоречивы и до настоящего времени не подтверждены

    Большинство планет Солнечной системы в той или иной степени обладают магнитными полями. Нами собраны из различных источников и систематизированы данные об особенностях различных планет солнечной системы. Этими данными мы дополнили общепринятую таблицу “Основных астрономических характеристик планет”. Мы считаем, что критерий “Магнитное поле” является одним из ведущих характеристик планет солнечной системы. По убыванию дипольного магнитного момента на первом месте Юпитер и Сатурн, а за ними следуют Земля, Меркурий и Марс, причем по отношению к магнитному моменту Земли значение их моментов составляет 20 000, 500, 1, 3/5000, 3/10000..

6. Теоретическая значимость исследования заключается в том, что:

1)систематизирован материал о Магнитном поле Земли и планет Солнечной системы;

2)Уточнены ведущие физические характеристики магнитного поля планет солнечной системы и дополнена таблица “ Основных астрономических характеристик планет ” с данными о магнитных полях Солнечной системы;

Кроме того, теоретическая значимость по теме “Магнитное поле планет солнечной системы” позволило расширить мои знания по физике и астрономии

Используемая литература

1 .Говорков В. А. Электрические и магнитные поля. “Энергия”, М, 1968 – 50 с.

2. Дэвид Ротери Планеты, Фаир-Пресс”, М, 2005 г – 320с.

3 .Тамм И. Е. О токах в ионосфере, обусловливающих вариации земного магнитного поля. Собрание научных трудов, т. 1, “Наука”, М., 1975 – 100с.

4. Яновский Б. М. Земной магнетизм.“Издательство Ленинградского университета”. Ленинград, 1978 г. – 75с.

П риложение

Тезаурус

    Г азовые гиганты- две крупнейшие гигантские планеты (Юпитер и Сатурн), обладающие более глубоким внешним газовым слоем, чем две другие гигантские планеты.

    Г игантские планеты- четыре крупнейшие планеты, расположенные во внешней области Солнечной системы (Юпитер, Сатурн, Уран и Нептун),масса которых в десятки или сотни раз превышает массу Земли и которые не имеют твердой поверхности.

    К ойпера пояс - область Солнечной системы, находящаяся за орбитой Нептуна на расстоянии 30-50.а.е. От Солнца, населенная небольшими ледяными объектами субпланетарного размера, называемыми (за исключением Плутона и его спутника Харона, являющихся крупнейшими телами этого региона) объектами пояса Койпера. Существование пояса Койпера теоретический предсказано Кеннетом Эджвортом(1943) и Эджворта-Копейра(или диск).Объекты, в нем находящиеся, называются объектами пояса Койпера или объектами Эджворта-Копейра.

    К ора - внешний, химический отличный от других слой твердого планетарного тела. На планетах земного типа К.является каменистой и содержит большее количество элементов низкой плотности, чем нижележащая мантия. На ледяных спутниках или сходных с ними телах К.(там, где она есть) богаче солями и летучими льдами, чем нижележащая ледяная мантия.

    Л ед - этот термин иногда используется для обозначения замерзшей воды, но может означать и другие летучие вещества в замерзшем состоянии (метан, аммиак, моноксид углерода, диоксид углерода и азот- либо по отдельности, либо в соединении).

    М антия - композиционно отличная порода, лежащая за пределами ядра твердого планетарного тела. У планет земного типа М.каменистые, у ледяных спутников- ледяные. В некоторых случаях внешняя твердая порода химических слегка отличается от состава самой М. В таком случае она называется корой.

    П ланета - один из крупных объектов, обращающихся вокруг Солнца (или иной звезды).Девять тел (Меркурий, Венера, Плутон) называются П.нашей Солнечной системы. Точное определение дать невозможно, поскольку Плутон, по- видимому, является исключительно крупным объектом пояса Койпера (большинство подобных объектов слишком малы, чтобы их можно было считать П.) в то время как некоторые спутники П.по своему размеру, составу и другим характеристиками вполне можно было бы назвать П.

    П ланеты земного типа - Земля и подобные ей небесные тела(обладающие железистым ядром и каменистой поверхностью).К таким планетам относятся Меркурий, Венера и Марс. К ним можно отнести также Луну и крупный спутник Юпитера-Ио.

    П рецессия - медленное движение оси вращения Земли по круговому конусу с осью, угол 23-27градусов.

Период полного оборота составляет около 26 тысяч лет. Вследствие П. меняется положение небесного экватора; точки весеннего и осеннего равноденствия медному годовому движению Солнца на 50,24 секунды в год; плюс мира перемещается между звездами; экваториальные координаты звезд непрерывно изменяются.

    П роградное движение - обращения или вращение, направленное против часовой стрелки, если смотреть с северного полюса Солнца(или Земли). Если говорить о спутниках, орбитальное движение считается проградным, если оно совпадает с направлением вращения планеты. Большинство движений в Солнечной системе являются проградными.

    Р етроградное движение-обращение или вращение, направленное по часовой стрелке, если смотреть с северного полюса Солнца(или Земли). Является противоположным проградному движению. Если говорить о спутниках, если оно противоположно направлению вращения планеты.

    С олнечная система- Солнце и тела, гравитационно с ним связанные (то есть планеты, их спутники, астероиды, объекты пояса Койпера, кометы и т.п.).

    Я дро - плотный внутренний регион планетарного тела, который по составу отличается от остальных частей планеты. Я. лежит ниже мантии. Я.планет земного типа богаты железом. Крупные ледяные спутники и гигантские планеты имеют каменистые Я., внутри которых могут быть и железистые Я.

В природе ведущую роль играю четыре силы:

  • ядерная сила, удерживающая протоны и нейтроны в ядре атомов
  • атомная сила, удерживающая вмести частицы и атомы
  • сила тяжести.
  • электромагнитная сила, электричество и магнетизм.

Однако, если с первыми тремя все ясно, значение магнетизма часто недооценивают. Просто потому, что мы не ощущаем магнетизм в обычной жизни, не чувствуем магнитные поля, да и самый мощный магнит не оказывает на нас никакого влияния. Иными словами, мы даже не задумываемся о нем.

А ведь на самом деле, магнетизм в нашей жизни играет огромную роль. Скажем, вы знали, что единственное, что мешает людям проходить через стены или проваливаться сквозь пол, это магнитное поле ? Скорее всего не знали. А почему так происходит?

Молекулы и атомы невероятно малы, а расстояние между атомами невероятно широко. Если бы мы уменьшились до размеров атомов, то обнаружили бы, что пространство вокруг нас будто бы состоит из сплошной пустоты.

Расстояние между электронами, которые вращаются вокруг протонов в ядре, также довольно велико. Для примера, представим себе «атомный вентилятор», где электроны – это лопасти, а ядро — центральная часть к которой прикреплены лопасти. Когда наш «вентилятор» не работает, между лопастями можно свободно просунуть что угодно, но стоит его включить, вращающие лопасти словно бы сольются в сплошной круг. Иными словами, пустота вдруг обретает плотность!

Происходит это потому что между отрицательно заряженными электронами и положительно заряженными протонами возникает электромагнитное притяжение, и они начинают вращаться. А когда они вращаются также быстро, как лопасти вентилятора, атомы начинают всё от себя отталкивать. То есть мы видим ту же картину — за счет магнетизма «атомная пустота» вдруг обретает плотность, а масса атомов соединенных вместе, начинают вести себя как твердое тело. Поэтому нам и не удается пройти сквозь стену.

Иными словами плотность материи, её осязаемость, создают не сами атомы из которых эта материя состоит, а магнитное поле.

Можно представить себе силовые линии магнитного поля , как полосы движения на автомагистрали. Хотя они и лежат рядом, но никогда не пересекаются. Между ними как бы лежит дорожная разделительная полоса.

Эта аналогия позволяет объяснить некоторые процессы, происходящие на Солнце. Представьте себе шоссе, в котором есть центральная полоса для движения автомобилей сразу в двух направлениях. Если нет правил, которые регулируют движение по такой полосе, то все захотят поехать по этой полосе «в свою» сторону, начнется хаос и, обязательно случится грандиозная авария.

А теперь представьте, что это шоссе – на Солнце, а длина скопления автомобилей составляет 35 тыс. километров. Колоссальное количество горящего материала после такой «аварии» взлетит вверх и устремится прямо в космос. Это и есть выброс коронарной массы. Обычно выброс имеет гигантский размер, сосредотачивая в себе более 10 млрд. тонн солнечной плазмы. При этом, выброс коронарной массы это не «местное» явление, его размеры таковы, что он представляет серьезную угрозу даже для жителей Земли.

А ведь кроме коронарных выбросов, Солнце постоянно «балует» нас не только вспышками, но и постоянным излучением инфракрасных и рентгеновских лучей, иными словами, довольно странно, почему нашему «источнику жизни» до сих пор не удалось нас убить!

К нашему счастью, Земля весьма неплохо защищена от космических невзгод, причем природа её защиты также основана на принципах магнетизма. Сам земной шар представляет собой громадный магнит, за счет чего Земля окружена мощным магнитным полем , которое, как щитом защищает нас от «шалостей» Солнца.

Магнитосфера – гигантское магнитное поле, создаваемое вращающимся ядром планеты. Оно простирается на 70 тыс. км. вокруг планеты. Также как одно магнитное кольцо силовых линий отталкивает другое (то есть они никогда не пересекаются), так и магнитосфера Земли отталкивает магнитную плазму Солнца .

Обычно, миллиарды тонн раскаленной и заряженной плазмы поражают нашу планету, но, не долетев до нее, улетают прочь. Только крошечная часть магнитной бури просачивается сквозь небольшое открытое пространство полюсов, и мы можем любоваться полярным сиянием. Без магнитосферы Земли опасные радиоактивные частицы давно убили бы все формы жизни на ней. К счастью, к нам проходит только полезные солнечные волны – свет и тепло.

Может возникнуть вопрос: как наша магнитосфера защищает нас от выбросов коронарной массы, но пропускает солнечный свет. Все дело в том, что коронарные выбросы – это заряженные частицы, и магнитное поле «ловит» эти электрические заряды. У света электрического заряда нет, поэтому он проходит сквозь магнитное поле, как ни в чем не бывало.

Но откуда берутся мощные магнитные силы Земли? Ответ может дать один из самых старых и простейших магнитометров – компас. Многие считают, что компас всегда указывает на север, но это утверждение не верно. Компас указывает на источник мощного магнитного поля, и в условиях Земли, таким источником будет ничто иное как северный полюс планеты. Проверьте это и сами — разместите рядом с компасом мощный магнит, и стрелка немедленно повернется с «севера» по направлению к нему.

Впрочем, даже если принять условность, что компас показывает на северный полюс, это утверждение все равно не будет полностью верным. Компас указывает не на географический полюс планеты (тот самый, северный), а на магнитный северный полюс , по сравнению с географическим, несколько смещенный в сторону, и находящийся на самом севере Канады.

Магнитный полюс не является магнитом сам по себе. Магнитное поле создают силы глубоко внутри нашей планеты. Магнитные поля порождаются двигающимися электрическими потоками, а Земля – это «один большой поток». Металлическое ядро планеты также вертится и за счет этого происходит генерация магнитного поля.

Магнитное поле Земли – это не статичная устойчивая вещь. Со временем оно может измениться. Потоки в недрах Земли могут сменить направление, а значит изменится и направление магнитного поля. Северный и Южный полюса могут попросту перевернуться, причем такое на нашей планете уже случалось.

Мы знаем, что ориентация магнитных полюсов Земли меняется каждые 100 тыс. лет. Глубоководная и ледовая геология свидетельствует, что 780 тыс. лет стрелка компаса указывала на юг, а за 50 тыс. лет до этого компас указывал на север. Явление внезапного переворота полюсов называется магнитной инверсией , и когда оно случится в следующий раз, мы пока сказать не в состоянии.

Никто не знает, как магнитная инверсия повлияет на жизнь людей. Компасы будут указывать на юг, миграция птиц будет нарушена, GPS-навигация будет бесполезна. Но могут быть и более тяжелые последствия. Смена геомагнитных полюсов может ослабить или вообще убрать магнитное поле. Проблема в том, что слабое магнитное поле не сможет защитить нас от смертельной радиации Солнца.

Солнечный магнетизм создается движением плазмы по поверхности Солнца. Магнетизм, как мы вспоминали, порождается движущимися потоками электрических зарядов. А Солнце, как и Земля – это один большой нескончаемый поток заряженных частиц. С Земли можно разглядеть один магнитный феномен – пятна на Солнце.

Любое такое пятно, это магнитный вихрь на поверхности Солнца, именно такие мощные магнитные вихри вызывают вспышки на Солнце . Фактически, каждая вспышка — это гигантский термоядерный взрыв, мощностью далеко превосходящий все ядерные арсеналы землян.

Вспышки и вызываемые ими магнитные бури так мощны, что оказывают влияние не только на Землю, но и на соседние планеты. Не даром говорят, что магнитные возмущения на Солнце, создают атмосферу во всей нашей Солнечной системе и называются космической погодой.

Рентгеновское излучение чрезвычайно опасно для электроники и могут причинить миллиардный ущерб спутникам связи и навигации. Поэтому уметь предсказывать «космическую погоду» — вещь жизненно важная для освоения космоса.

В некотором роде, мы уже умеем предсказывать особо сильные бури на Солнце. Гигантские выбросы коронарной массы происходят каждые 11 лет, когда солнечные пятна, вспышки и прочая активность достигает максимума. Однако, точно предсказать нельзя, когда произойдет выброс массы и с какой-либо группы пятен.

Если у Земли есть магнитное поле, то есть ли оно у других планет? С началом космических полетов в 60-е годы мы смогли обнаружить магнитные поля других планет, и это были удивительные открытия. У всех четырех гигантских планет – Юпитера , Сатурна , Урана и Нептуна – есть активные магнитные поля.

Самое мощное магнитное поле в нашей системе – у Юпитера. Оно в 10 раз больше земного и протянулось на 6 млн. км. вокруг планеты. Мы наблюдаем полярные сияние на Юпитере и Сатурне и знаем, что они возникают там точно так же как и на Земле – магнитосфера этих планет отклоняет частички Солнца на полюса и они светятся там так же, как и на Земле.

Но ближе к Солнцу, магнитные поля встречаются реже. На Меркурии очень слабое магнитное поле, всего 1% от земного. У Венеры его вообще нет. Но загадочнее всех – красная планета Марс.

В конце 90-х космический аппарат Mars Global Surveyor вышел на орбиту Марса с магнетометром, и он показал, что на Марсе нет глобального магнитного поля. Зато Surveyor обнаружил, что по всей планете разбросаны маломощные магнитные поля. НАСА полагает, что это полеомагнетизм , то есть остатки магнитного поля, существовавшего миллиарды лет тому назад. Было ли на Марсе магнитное поле, как на Земле? Если было, то что с ним случилось?

К счастью нам не нужно отправляться на красную планету, чтобы выяснить это, потому что кусочек красной планеты уже у нас. У нас есть образцы камней с Марса, это метеориты выбитые с его поверхности после удара астероида или кометы миллионы лет назад. Осмотр одного из таких камней — ALH84001, с помощью квантового микроскопа Массачусетского университета (SQUID microscope ) показал, что камень намагничен, и этому магнетизму 4 млрд. лет. То есть под поверхностью метеорита оказались следы былой магнитосферы Марса.

Это дало нам неожиданные открытие: в начале истории Марс был совершенно иным, чем сейчас. Атмосфера была значительно плотнее, вероятно, по поверхности текла вода, а температура была намного выше. В общем, он был похож на Землю. Что случилось потом мы не знаем, но примерно 4,1 млрд. лет магнитное поле планеты вдруг исчезло. Поразительно, но по времени это совпало с началом превращения Марса из теплой и влажной планеты в нынешнюю сухую и холодную.

Одна из гипотез, почему исчезло магнитное поле Марса предполагает, что у него не было мощной магнитосферы для защиты от космического излучения, и солнечные ветра уносили прочь от Марса его атмосферу. Атмосфера становилась все тоньше и потом совсем исчезла. Марс, фигурально выражаясь, умер.

Может ли такое случиться на Земле? Да. Большей проблемой здесь предстает инверсия магнитного поля Земли, о которой мы говорили выше. Во время геомагнитной инверсии Земля может остаться без защиты магнитосферы не несколько дней или дольше. И это может привести планету к марсианскому сценарию, когда мы вдруг окажемся полностью беззащитны перед космическими бурями.

Магнитные бури уже поражали Землю прежде. В 1989 году солнечная вспышка ударила по Северной Америке и оставила без электричества весь Квебек. Но эта буря была сравнительно слабой по сравнению с событиями разыгравшимися в 1859 году («Событие Кэррингтона» ) – тогда полярное сияние видели даже на юге Кубы, а телеграфные провода и трансформаторы заискрились по всему Американскому континенту.

Что случилось бы, если бы буря 1859 года произошла сейчас? Гамма- и рентгеновские лучи уничтожили бы практически все искусственные спутники, по линиям электропередач прошли бы заряды индуцированного тока, что вывело бы из строя все электроподстанции, а все подключенное к сети электрооборудование мгновенно вышло бы из строя.
Воду пришлось бы по старинке качать не электронасосом, а вручную, пользоваться не электролампочкой, а свечкой. В общем, мы вернулись бы в доэлектрические времена. Но развитый мир настолько привык и приспособился к электросетям, что вряд ли сможет дальше существовать.

Чтобы избежать подобных катастроф, сегодня ученые стараются разработать защиту от подобной бури – придумывают предохранители для трансформаторов на подстанциях, пытаются предсказывать магнитные вспышки. Но как эффективно все это сработает в «час Х», покажет только время.