Магнитное поле возникает тогда когда. Магнитное поле определение

Магнитное поле это материя, которая возникает вокруг источников электрического тока, а также вокруг постоянных магнитов. В пространстве магнитное поле отображается как совокупление сил, которые способны оказать воздействие на намагниченные тела. Это действие объясняется наличием движущих разрядов на молекулярном уровне.

Магнитное поле формируется только вокруг электрических зарядов, которые находятся в движении. Именно поэтому магнитное и электрическое поле являются, неотъемлемыми и вместе формируют электромагнитное поле . Компоненты магнитного поля взаимосвязаны и воздействуют друг на друга, изменяя свои свойства.

Свойства магнитного поля:
1. Магнитное поле возникает под воздействие движущих зарядов электрического тока.
2. В любой своей точке магнитное поле характеризуется вектором физической величины под названием магнитная индукция , которая является силовой характеристикой магнитного поля.
3. Магнитное поле может воздействовать только на магниты, на токопроводящие проводники и движущиеся заряды.
4. Магнитное поле может быть постоянного и переменного типа
5. Магнитное поле измеряется только специальными приборами и не может быть воспринятым органами чувств человека.
6. Магнитное поля является электродинамическим, так как порождается только при движении заряженных частиц и оказывает влияние только на заряды, которые находятся в движении.
7. Заряженные частицы двигаются по перпендикулярной траектории.

Размер магнитного поля зависит от скорости изменения магнитного поля. Соответственно этому признаку существуют два вида магнитного поля: динамичное магнитное поле и гравитационное магнитное поле . Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей строения этих частиц.

Магнитный момент
возникает в том случае, когда магнитное поле воздействует на токопроводящую раму. Другими словами, магнитный момент это вектор, который расположен на ту линию, которая идет перпендикулярно раме.

Магнитное поле можно изобразить графически с помощью магнитных силовых линий. Эти линии проводятся в таком направлении, так чтобы направление сил поля совпало с направлением самой силовой линии. Магнитные силовые линии являются непрерывными и замкнутыми одновременно.

Направление магнитного поля определяется с помощью магнитной стрелки. Силовые линии определяют также полярность магнита, конец с выходом силовых линий это северный полюс, а конец, с входом этих линий, это южный полюс.

Очень удобно наглядно оценить магнитное поле с помощью обычных железных опилок и листка бумаги.
Если мы на постоянный магнит положим лист бумаги, а сверху насыпим опилок, то частички железа выстроятся соответственно силовым линиям магнитного поля.

Направление силовых линий для проводника удобно определять по знаменитому правилу буравчика или правилу правой руки . Если мы обхватим проводник рукой так, чтобы большой палец смотрел по направлению тока(от минуса к плюсу), то 4 оставшиеся пальцы покажут нам направление силовых линий магнитного поля.

А направление силы Лоренца - силы, с которой действует магнитное поле на заряженную частицу или проводник с током, по правилу левой руки .
Если мы расположим левую руку в магнитном поле так, что 4 пальца смотрели по направлению тока в проводнике, а силовые линии входили в ладонь, то большой палец укажет направление силы Лоренца, силы действующей на проводник помещенный в магнитное поле.

На этом собственно всё. Появившиеся вопросы обязательно задавайте в комментариях.

Магнитные поля возникают в природе и могут создаваться искусственно. Человек заметил их полезные характеристики, которые научился применять в повседневной жизни. Что же является источником магнитного поля?

Как развивалось учение о магнитном поле

Магнитные свойства некоторых веществ были замечены еще в древности, но по-настоящему их изучение началось в средневековой Европе. Используя мелкие стальные иголки, ученый из Франции Перегрин обнаружил пересечение силовых магнитных линий в определенных пунктах – полюсах. Только через три века, руководствуясь этим открытием, Гилберт продолжил его изучение и впоследствии защищал свою гипотезу, что Земля обладает собственным магнитным полем.

Бурное развитие теории магнетизма началось с начала 19-го века, когда Ампер обнаружил и описал влияние электрического поля на возникновение магнитного, а открытие Фарадеем электромагнитной индукции установило и обратную взаимосвязь.

Что такое магнитное поле

Магнитное поле проявляется в силовом воздействии на электрозаряды, находящиеся в движении, или на тела, у которых имеется магнитный момент.

  1. Проводники, по которым проходит электрический ток;
  2. Постоянные магниты;
  3. Изменяющееся электрическое поле.

Первопричина возникновения магнитного поля идентична для всех источников: электрические микрозаряды – электроны, ионы или протоны обладают собственным магнитным моментом либо находятся в направленном движении.

Важно! Взаимно порождают друг друга электрические и магнитные поля, меняющиеся с течением времени. Эта взаимосвязь определяется уравнениями Максвелла.

Характеристики магнитного поля

Характеристиками магнитного поля являются:

  1. Магнитный поток, скалярная величина, определяющая, сколько силовых линий магнитного поля проходит через заданное сечение. Обозначается буквой F. Рассчитывается по формуле:

F = B x S x cos α,

где В – вектор магнитной индукции, S – сечение, α – угол наклона вектора к перпендикуляру, проведенному к плоскости сечения. Единица измерения – вебер (Вб);

  1. Вектор магнитной индукции (В) показывает силу, действующую на зарядоносители. Он направлен в сторону северного полюса, куда указывает обычная магнитная стрелка. Количественно магнитную индукцию измеряют в теслах (Тл);
  2. Напряженность МП (Н). Определяется магнитной проницаемостью различных сред. В вакууме проницаемость принимается за единицу. Направление вектора напряженности совпадает с направлением магнитной индукции. Единица измерения – А/м.

Как представить магнитное поле

Легко видеть проявления магнитного поля на примере постоянного магнита. Он имеет два полюса, и в зависимости от ориентации два магнита притягиваются или отталкиваются. Магнитное поле характеризует процессы, происходящие при этом:

  1. МП математически описывается, как векторное поле. Оно может быть построено посредством многих векторов магнитной индукции В, каждый из которых направлен в сторону северного полюса стрелки компаса и имеет длину, зависящую от магнитной силы;
  2. Альтернативный способ представления заключается в использовании силовых линий. Эти линии никогда не пересекаются, нигде не начинаются и не останавливаются, образуя замкнутые петли. Линии МП объединяются в области с более частым расположением, где магнитное поле является самым сильным.

Важно! Плотность силовых линий указывает на прочность магнитного поля.

Хотя в действительности МП видеть нельзя, силовые линии легко визуализировать в реальном мире, расположив железные опилки в МП. Каждая частица ведет себя как крошечный магнит с северным и южным полюсом. Результатом является шаблон, похожий на силовые линии. Ощутить воздействие МП человек не способен.

Измерение магнитного поля

Так как это величина векторная, для измерения МП существует два параметра: сила и направление. Направление легко измерить с помощью компаса, соединенного с полем. Пример – компас, помещенный в магнитное поле Земли.

Измерение других характеристик значительно сложнее. Практические магнитометры появились только в 19-м веке. Большинство из них работают, используя силу, которую электрон чувствует при движении по МП.

Очень точное измерение малых магнитных полей стало практически осуществимо с момента открытия в 1988 году гигантского магнитосопротивления в слоистых материалах. Это открытие в фундаментальной физике было быстро применено к магнитной технологии жесткого диска для хранения данных на компьютерах, приведшее к тысячекратному увеличению емкости хранилища всего за несколько лет.

В общепринятых системах измерений МП измеряется в тестах (Тл) или в гауссах (Гс). 1 Тл = 10000 Гс. Гаусс часто используется, потому что Тесла – слишком большое поле.

Интересно. Маленький магнит на холодильнике создает МП, равное 0,001 Тл, а магнитное поле Земли в среднем – 0,00005 Тл.

Природа возникновения магнитного поля

Магнетизм и магнитные поля являются проявлениями электромагнитной силы. Есть два возможных способа, как организовать энергозаряд в движении и, следовательно, магнитное поле.

Первый – это подсоединить провод к источнику тока, вокруг него образуется МП.

Важно! По мере увеличения тока (количества зарядов в движении) пропорционально увеличивается МП. При удалении от провода поле снижается в зависимости от расстояния. Это описывается законом Ампера.

Некоторые материалы, имеющие более высокую магнитопроницаемость, способны концентрировать магнитные поля.

Поскольку магнитное поле – это вектор, необходимо определить его направление. Для обычного тока, протекающего через прямой провод, направление можно найти по правилу правой руки.

Чтобы использовать правило, надо представить, что провод обхвачен правой рукой, а большой палец указывает направление тока. Тогда четыре остальных пальца покажут направление вектора магнитной индукции вокруг проводника.

Второй способ создания МП – использование факта, что в некоторых веществах появляются электроны, обладающие собственным магнитным моментом. Так работают постоянные магниты:

  1. Хотя атомы часто имеют много электронов, они в основном соединяются так, что полное магнитное поле пары компенсируется. Говорят, что два электрона, спаренные таким образом, имеют противоположный спин. Поэтому, чтобы что-то намагнитить, нужны атомы, которые имеют один или несколько электронов с одинаковым спином. Например, железо имеет четыре таких электрона и подходит для изготовления магнитов;
  2. Миллиарды электронов, находящиеся в атомах, могут быть случайно ориентированы, и общего МП не будет, независимо от того, сколько неспаренных электронов имеет материал. Он должен быть стабильным при невысокой температуре, чтобы обеспечить общую предпочтительную ориентацию электронов. Высокая магнитопроницаемость обуславливает намагничивание таких веществ при определенных условиях вне влияния МП. Это ферромагнетики;
  3. Другие материалы могут проявлять магнитные свойства при наличии внешнего МП. Внешнее поле служит для выравнивания всех электронных спинов, которое исчезает после удаления МП. Это вещества – парамагнетики. Металл двери холодильника является примером парамагнетика.

Землю можно представить в виде конденсаторных обкладок, заряд которых имеет противоположный знак: «минус» – у земной поверхности и «плюс» – в ионосфере. Между ними находится атмосферный воздух в качестве изоляционной прокладки. Гигантский конденсатор сохраняет постоянный заряд, благодаря влиянию земного МП. Пользуясь этими знаниями, можно создать схему получения электро энергии из магнитного поля Земли. Правда, в результате будут невысокие значения напряжения.

Нужно взять:

  • заземляющее устройство;
  • провод;
  • трансформатор Теслы, способный генерировать высокочастотные колебания и создавать коронный разряд, ионизируя воздух.

Катушка Теслы будет выступать в роли эмиттера электронов. Вся конструкция соединяется вместе, причем для обеспечения достаточной разности потенциалов трансформатор должен быть поднят на значительную высоту. Таким образом, будет создана электрическая цепь, по которой будет протекать маленький ток. Получить большое количество электроэнергии, пользуясь этим устройством, невозможно.

Электричество и магнетизм доминируют во многих мирах, окружающих человека: от самых фундаментальных процессов в природе до ультрасовременных электронных устройств.

Видео

Уже давно магнитное поле вызывает множество вопросов у человека, но и сейчас остается малоизвестным явлением. Его характеристики и свойства пытались исследовать многие ученые, ведь польза и потенциал от применения поля были неоспоримыми фактами.

Давайте будем разбирать все по порядку. Итак, как действует и образуется любое магнитное поле? Правильно, от электрического тока. А ток, если верить учебникам по физике, – это имеющий направление поток заряженных частиц, не так ли? Так вот, когда ток проходит по любому проводнику, около него начинает действовать некая разновидность материи – магнитное поле. Магнитное поле может создаваться током заряженных частиц или магнитными моментами электронов в атомах. Теперь это поле и материя имеют энергию, ее мы видим в электромагнитных силах, которые могут влиять на ток и его заряды. Магнитное поле начинает воздействовать на поток заряженных частиц, и они меняют начальное направление движения перпендикулярно самому полю.

Еще магнитное поле можно назвать электродинамичным, ведь оно образуется около движущихся и воздействует только на движущиеся частицы. Ну а динамичным оно является из-за того, что имеет особое строение во вращающихся бионах на области пространства. Заставить их вращаться и двигаться может обыкновенный электрический движущийся заряд. Бионы передают любые возможные взаимодействия в этой области пространства. Поэтому движущийся заряд притягивает один полюс всех бионов и заставляет их вращаться. Только он может вывести их из состояния покоя, больше ничего, ведь другие силы не смогут влиять на них.

В электрическом поле находятся заряженные частицы, которые очень быстро двигаются и могут преодолеть 300 000 км всего за секунду. Такую же скорость имеет и свет. Магнитное поле не бывает без электрического заряда. Это значит, что частицы невероятно близко связаны друг с другом и существуют в общем электромагнитном поле. То есть, если будут любые изменения в магнитном поле, то изменения будут и в электрическом. Этот закон также обратен.

Мы тут много говорим про магнитное поле, но как же его можно представить? Мы не можем увидеть его нашим человеческим невооруженным глазом. Мало того, из-за невероятно быстрого распространения поля, мы не успеваем его зафиксировать при помощи различных устройств. Но чтобы что-то изучать, надо иметь хоть какое-нибудь представление о нем. Еще часто приходится изображать магнитное поле на схемах. Для того чтобы было проще понять его, проводят условные силовые линии поля. Откуда же их взяли? Их придумали неспроста.

Попробуем увидеть магнитное поле при помощи мелких металлических опилок и обыкновенного магнита. Насыплем на ровную поверхность эти опилки и введем их в действие магнитного поля. Затем увидим, что они будут двигаться, вращаться и выстраиваться в рисунок или схему. Полученное изображение будет показывать примерное действие сил в магнитном поле. Все силы и, соответственно, силовые линии непрерывны и замкнуты в этом месте.

Магнитная стрелка имеет сходные характеристики и свойства с компасом, и ее применяют, чтобы определить направление силовых линий. Если она попадет в зону действия магнитного поля, по ее северному полюсу мы видим направление действия сил. Тогда выделим отсюда несколько выводов: верх обычного постоянного магнита, из которого исходят силовые линии, обозначают северным полюсом магнита. Тогда как южным полюсом обозначают ту точку, где силы замыкаются. Ну а силовые линии внутри магнита на схеме не выделяются.

Магнитное поле, его свойства и характеристики имеют довольно большое применение, потому что во многих задачах его приходится учитывать и исследовать. Это важнейшее явление в науке физике. С ним неразрывно связаны более сложные вещи, такие как магнитная проницаемость и индукция. Чтобы разъяснить все причины появления магнитного поля, надо опираться на реальные научные факты и подтверждения. Иначе в более сложных задачах неправильный подход может нарушить целостность теории.

А сейчас приведем примеры. Все мы знаем нашу планету. Вы скажете, что она не имеет магнитного поля? Может, вы и правы, но ученые говорят, что процессы и взаимодействия внутри ядра Земли рождают огромное магнитное поле, которое тянется на тысячи километров. Но в любом магнитном поле должны быть его полюса. И они существуют, просто расположены немного в стороне от географического полюса. Как же мы его чувствуем? Например, у птиц развиты способности навигации, и они ориентируются, в частности, по магнитному полю. Так, при его помощи гуси благополучно прибывают в Лапландию. Специальные навигационные устройства также используют это явление.

Источниками магнитного поля являются движущиеся электрические заряды (токи) . Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности электрического поля. Такой характеристикой является вектор магнитной индукции Вектор магнитной индукции определяет силы, действующие на токи или движущиеся заряды в магнитном поле.
За положительное направление вектора принимается направление от южного полюса S к северному полюсу N магнитной стрелки, свободно устанавливающейся в магнитном поле. Таким образом, исследуя магнитное поле, создаваемое током или постоянным магнитом, с помощью маленькой магнитной стрелки, можно в каждой точке пространства

Для того, чтобы количественно описать магнитное поле, нужно указать способ определения не только
направления вектора но и его модуляМодуль вектора магнитной индукции равен отношению максимального значения
силы Ампера, действующей на прямой проводник с током, к силе тока I в проводнике и его длине Δl :

Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику. Для определения направления силы Ампера обычно используют правило левой руки : если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы, действующей на проводник.

Межпланетное магнитное поле

Если бы межпланетное пространство было вакуумом, то единственными магнитными полями в нем могли быть лишь поля Солнца и планет, а также поле галактического происхождения, которое простирается вдоль спиральных ветвей нашей Галактики. При этом поля Солнца и планет в межпланетном пространстве были бы крайне слабы.
На самом деле межпланетное пространство не является вакуумом, а заполнено ионизованным газом, испускаемым Солнцем (солнечным ветром). Концентрация этого газа 1-10 см -3 , типичные величины скоростей между 300 и 800 км/с, температура близка к 10 5 К (напомним, что температура короны 2×10 6 К).
Солнечный ветер – истечение плазмы солнечной короны в межпланетное пространство. На уровне орбиты Земли средняя скорость частиц Солнечного ветра (протонов и электронов) около 400 км/с, число частиц – несколько десятков в 1см 3 .

Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. впервые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. В 1635 г. Геллибранд обнаружил, что поле земного магнита медленно меняется, а Эдмунд Галлей провел первую в мире магнитную съемку океанов и создал первые мировые магнитные карты (1702 г.). В 1835 г. Гаусс провел сферический гармонический анализ магнитного поля Земли. Он создал первую в мире магнитную обсерваторию в Гёттингене.

Несколько слов о магнитных картах. Обычно через каждые 5 лет распределение магнитного поля на поверхности Земли представляется магнитными картами трех или более магнитных элементов. На каждой из таких карт проводятся изолинии, вдоль которых данный элемент имеет постоянную величину. Линии равного склонения D называются изогонами, наклонения I – изоклинами, величины полной силы В – изодинамическими линиями или изодинами. Изомагнитные линии элементов H, Z, Х и Y называются соответственно изолиниями горизонтальной, вертикальной, северной или восточной компонент.

Вернемся к рисунку. Там показан круг с угловым радиусом 90°– d, который описывает положение Солнца на земной поверхности. Дуга большого круга, проведенная через точку Р и геомагнитный полюс В, пересекает этот круг в точках H’ n и H’ m , которые указывают положение Солнца соответственно в моменты геомагнитного полудня и геомагнитной полуночи точки Р. Эти моменты зависят от широты точки Р. Положения Солнца в местные истинные полдень и полночь указаны точками H n и Н m соответственно. Когда d положительно (лето в северном полушарии), то утренняя половина геомагнитных суток не равна вечерней. В высоких широтах геомагнитное время может очень сильно отличаться от истинного или среднего времени в течение большей части суток.
Говоря о времени и системах координат, скажем еще об учете эксцентричности магнитного диполя. Эксцентричный диполь медленно дрейфует наружу (к северу и к западу) с 1836 г. Экваториальную плоскость он пересел? примерно в 1862 г. Его траектория по радиальной проекции расположена в районе о-ва Гилберта в Тихом океане

ДЕЙСТВИЕ МАГНИТНОГО ПОЛЯ НА ТОК

В пределах каждого сектора скорость солнечного ветра и плотность частиц систематически изменяются. Наблюдения с помощью ракет показывают, что оба параметра резко увеличиваются на границе сектора. В конце второго дня после прохождения границы сектора плотность очень быстро, а затем, через два или три дня, медленно начинает расти. Скорость солнечного ветра уменьшается медленно на второй или третий день после достижения пика. Секторная структура и отмеченные вариации скорости и плотности тесно связаны с магнитосферными возмущениями. Секторная структура довольно устойчива, поэтому вся структура потока вращается с Солнцем по крайней мере в течение нескольких солнечных оборотов, проходя над Землей приблизительно через каждые 27 дней.





Доброго времени суток, сегодня вы узнаете, что такое магнитное поле и откуда оно берется.

Каждый человек на планете хоть раз, но держал магнит в руках. Начиная от сувенирных магнитиков на холодильник, либо рабочие магниты для сбора железной пыльцы и многое другое. В детстве это была забавная игрушка которая приклеивалась к чёрному металлу, а к остальным металлам нет. Так в чём же секрет магнита и его магнитного поля .

Что такое магнитное поле

В какой момент магнит начинает притягивать к себе? Вокруг каждого магнита существует магнитное поле, попадая в которое, предметы начинают к нему притягиваться. Размер такого поля может различаться в зависимости от размеров магнита и его собственных свойств.

Термин из википедии:

Магнитное поле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения, магнитная составляющая электромагнитного поля.

От куда берётся магнитное поле

Магнитное поле может создаваться током заряженных частиц или магнитными моментами электронов в атомах, а также магнитными моментами других частиц, хотя в заметно меньшей степени.

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы или проводники с . Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B. Она пропорциональна заряду частицы q, составляющей скорости v, перпендикулярной направлению вектора магнитного поля B, и величине индукции магнитного поля B.

У каких предметов есть магнитное поле

Мы часто не задумываемся об этом, но очень многие (если не все) окружающие нас предметы являются магнитами. Мы привыкли к тому, что магнит - это камешек с ярко выраженной силой притяжения к себе, но на самом деле сила притяжения есть практически у всего, просто она значительно ниже. Возьмем хотя бы нашу планету - мы ведь не улетаем в космос, хотя ничем за поверхность не держимся. Поле Земли значительно слабее, чем поле магнита-камешка, поэтому удерживает она нас только за счет своего огромного размера - если Вы когда-нибудь видели, как люди ходят по Луне (диаметр которой в четыре раза меньше), Вы наглядно поймете, о чем речь. Притяжение Земли основано во многом на металлических составляющих.ее коры и ядра - они имеют мощное магнитное поле. Возможно, Вы слышали о том, что рядом с большими залежами железной руды компасы перестают указывать верное направление на север - это потому, что принцип работы компаса основан на взаимодействии магнитных полей, а железная руда притягивает его стрелку.