Предельная ошибка выборки обратно пропорциональна колеблемости признака. Средняя квадратическая стандартная ошибка выборки пояснение для. Ошибки систематические и случайные

При выборочном наблюдении должна быть обеспечена слу-чайность отбора единиц. Каждая единица должна иметь равную с другими возможность быть отобранной. Именно на этом основывается собственно-случайная выборка.

К собственно-случайной выборке относится отбор единиц из всей генеральной совокупности (без предварительного рас-членения ее на какие-либо группы) посредством жеребьевки (преимущественно) или какого-либо иного подобного спосо-ба, например, с помощью таблицы случайных чисел. Случай-ный отбор -- это отбор не беспорядочный. Принцип случай-ности предполагает, что на включение или исключение объ-екта из выборки не может повлиять какой-либо фактор, кро-ме случая. Примером собственно-случайного отбора могут служить тиражи выигрышей: из общего количества выпущен-ных билетов наугад отбирается определенная часть номеров, на которые приходятся выигрыши. Причем всем номерам обеспечивается равная возможность попадания в выборку. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.

Доля выборки есть отношение числа единиц выборочной со-вокупности к числу единиц генеральной совокупности:

Так, при 5%-ной выборке из партии деталей в 1000 ед. объ-ём выборки п составляет 50 ед., а при 10%-ной выборке -- 100 ед. и т.д. При правильной научной организации выборки ошибки репрезентативности можно свести к минимальным значениям, в результате -- выборочное наблюдение становится достаточно точным.

Собственно-случайный отбор «в чистом виде» применяет-ся в практике выборочного наблюдения редко, но он является исходным среди всех других видов отбора, в нем заключаются и реализуются основные принципы выборочного наблюдения.

Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателей: среднюю величину ко-личественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой сово-купности только наличием изучаемого признака).

Выборочная доля (w), или частость, определяется отношением числа единиц, обладающих изучаемым признаком т, к общему числу единиц выборочной совокупности п:

Например, если из 100 деталей выборки (n =100), 95 деталей оказались стандартными =95), то выборочная доля

w =95/100=0,95 .

Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.

Ошибка выборки ? или, иначе говоря, ошибка репрезента-тивности представляет собой разность соответствующих выбо-рочных и генеральных характеристик:

*

*

Ошибка выборки свойственна только выборочным наблюде-ниям. Чем больше значение этой ошибки, тем в большей степе-ни выборочные показатели отличаются от соответствующих генеральных показателей.

Выборочная средняя и выборочная доля по своей сути яв-ляются случайными величинами, которые могут принимать раз-личные значения в зависимости от того, какие единицы сово-купности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возмож-ных ошибок -- среднюю ошибку выборки.

От чего зависит средняя ошибка выборки? При соблюдении принципа случайного отбора средняя ошибка выборки определя-ется прежде всего объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, всё более точно характеризуем всю генеральную совокупность.

Средняя ошибка выборки также зависит от степени варьи-рования изучаемого признака. Степень варьирования, как из-вестно, характеризуется дисперсией? 2 или w(1-w) -- для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка вы-борки, и наоборот. При нулевой дисперсии (признак не варь-ирует) средняя ошибка выборки равна нулю, т. е. любая еди-ница генеральной совокупности будет совершенно точно ха-рактеризовать всю совокупность по этому признаку.

Зависимость средней ошибки выборки от ее объема и степе-ни варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х,p) неизвестны, и следовательно, не представляется возмож-ным нахождение реальной ошибки выборки непосредственно по формулам (форм. 1), (форм. 2).

Ш При случайном повторном отборе средние ошибки теоретически рассчитывают по следующим формулам:

* для средней количественного признака

* для доли (альтернативного признака)

Поскольку практически дисперсия признака в генеральной совокупности? 2 точно неизвестна, на практике пользуются значением дисперсии S 2 , рассчитанным для выборочной сово-купности на основании закона больших чисел, согласно кото-рому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики гене-ральной совокупности.

Таким образом, расчетные формулы средней ошиб-ки выборки при случайном повторном отборе будут следующие:

* для средней количественного признака

* для доли (альтернативного признака)

Однако дисперсия выборочной совокупности не равна диспер-сии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (форм. 5) и (форм. 6), будут прибли-женными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:

Так как п/ (n -1) при достаточно больших п -- величина, близкая к единице, то можно принять, что, а следова-тельно, в практических расчетах средних ошибок выборки мож-но использовать формулы (форм. 5) и (форм. 6). И только в случаях ма-лой выборки (когда объем выборки не превышает 30) необхо-димо учитывать коэффициент п /(n -1) и исчислять среднюю ошибку малой выборки по формуле:

Ш X При случайном бесповторном отборе в приведенные выше формулы расчета средних ошибок выборки необходимо подко-ренное выражение умножить на 1-(n/N), поскольку в процес-се бесповторной выборки сокращается численность единиц генеральной совокупности. Следовательно, для бесповторной вы-борки расчетные формулы средней ошибки выборки примут такой вид:

* для средней количественного признака

* для доли (альтернативного признака)

. (форм. 10)

Так как п всегда меньше N , то дополнительный множи-тель 1-(n/N ) всегда будет меньше единицы. Отсюда следу-ет, что средняя ошибка при бесповторном отборе всегда будет меньше, чем при повторном. В то же время при сравнительно небольшом проценте выборки этот множитель близок к еди-нице (например, при 5%-ной выборке он равен 0,95; при 2%-ной -- 0,98 и т.д.). Поэтому иногда на практике пользуются для определения средней ошибки выборки формулами (форм. 5) и (форм. 6) без указанного множителя, хотя выборку и организуют как бесповторную. Это имеет место в тех случаях, когда число единиц генеральной совокупности N неизвестно или безгра-нично, или когда п очень мало по сравнению с N , и по су-ществу, введение дополнительного множителя, близкого по значению к единице, практически не повлияет на значение средней ошибки выборки.

Механическая выборка состоит в том, что отбор единиц в выборочную совокупность из генеральной, разбитой по ней-тральному признаку на равные интервалы (группы), произво-дится таким образом, что из каждой такой группы в выборку отбирается лишь одна единица. Чтобы избежать систематиче-ской ошибки, отбираться должна единица, которая находится в середине каждой группы.

При организации механического отбора единицы совокуп-ности предварительно располагают (обычно в списке) в опре-деленном порядке (например, по алфавиту, местоположению, в порядке возрастания или убывания значений какого-либо по-казателя, не связанного с изучаемым свойством, и т.д.), после чего отбирают заданное число единиц механически, через оп-ределенный интервал. При этом размер интервала в генеральной совокупности равен обратному значению доли выборки. Так, при 2%-ной выборке отбирается и проверяется каждая 50-я единица (1: 0,02), при 5%-ной выборке -- каждая 20-я едини-ца (1: 0,05), например, сходящая со станка деталь.

При достаточно большой совокупности механический отбор по точности результатов близок к собственно-случайному. По-этому для определения средней ошибки механической выборки используют формулы собственно-случайной бесповторной вы-борки (форм. 9), (форм. 10).

Для отбора единиц из неоднородной совокупности применя-ется, так называемая типическая выборка , которая используется в тех случаях, когда все единицы генеральной совокупности можно разбить на несколько качественно однородных, однотипных групп по признакам, влияющим на изучаемые показатели.

При обследовании предприятий такими группами могут быть, например, отрасль и подотрасль, формы собственности. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.

Типическая выборка обычно применяется при изучении слож-ных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдель-ных отраслях экономики, производительности труда рабочих пред-приятия, представленных отдельными группами по квалификации.

Типическая выборка дает более точные результаты по сравнению с другими способами отбора единиц в выбороч-ную совокупность. Типизация генеральной совокупности обеспечивает репрезентативность такой выборки, представи-тельство в ней каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки.

При определении средней ошибки типической выборки в ка-честве показателя вариации выступает средняя из внутригрупповых дисперсий.

Среднюю ошибку выборки находят по формулам:

* для средней количественного признака

(повторный отбор); (форм. 11)

(бесповоротный отбор); (форм. 12)

* для доли (альтернативного признака)

(повторный отбор); (форм.13)

(бесповторный отбор), (форм. 14)

где - средняя из внутригрупповых дисперсий по вы-борочной совокупности;

Средняя из внутригрупповых дисперсий доли (альтернативного признака) по выборочной совокупности.

Серийная выборка предполагает случайный отбор из генераль-ной совокупности не отдельных единиц, а их равновеликих групп (гнезд, серий) с тем, чтобы в таких группах подвергать наблюде-нию все без исключения единицы.

Применение серийной выборки обусловлено тем, что многие товары для их транспортировки, хранения и продажи упаковываются в пачки, ящики и т.п. Поэтому при контроле качества упакованного товара рациональнее проверить не-сколько упаковок (серий), чем из всех упаковок отбирать необходимое количество товара.

Поскольку внутри групп (серий) обследуются все без исключе-ния единицы, средняя ошибка выборки (при отборе равновеликих серий) зависит только от межгрупповой (межсерийной) дисперсии.

Ш Среднюю ошибку выборки для средней количественного признака при серийном отборе находят по формулам:

(повторный отбор); (форм.15)

(бесповторный отбор), (форм. 16)

где r - число отобранных серий; R - общее число серий.

Межгрупповую дисперсию серийной выборки вычисляют сле-дующим образом:

где - средняя i - й серии; - общая средняя по всей выбо-рочной совокупности.

Ш Средняя ошибка выборки для доли (альтернативного при-знака) при серийном отборе:

(повторный отбор); (форм. 17)

(бесповторный отбор). (форм. 18)

Межгрупповую (межсерийную) дисперсию доли серийной вы-борки определяют по формуле:

, (форм. 19)

где - доля признака в i -й серии; - общая доля признака во всей выборочной совокупности.

В практике статистических обследований помимо рассмот-ренных ранее способов отбора применяется их комбинация (комбинированный отбор).

Ошибки систематические и случайные

Модульная единица 2 Ошибки выборки

Поскольку выборка охватывает, как правило, весьма незначительную часть генеральной совокупности, то следует предполагать, что будут иметь место различия между оценкой и характеристикой генеральной совокупности, которую эта оценка отображает. Эти различия получили название ошибок отображения или ошибок репрезентативности. Ошибки репрезентативности подразделяются на два типа: систематические и случайные.

Систематические ошибки - это постоянное завышение или занижение значения оценки по сравнению с характеристикой генеральной совокупности. Причиной появления систематической ошибки является несоблюдение принципа равновероятности попадания каждой единицы генеральной совокупности в выборку, то есть выборка формируется из преимущественно «худших» (или « лучших») представителей генеральной совокупности. Соблюдение принципа равновозможности попадания каждой единицы в выборку позволяет полностью исключить этот тип ошибок.

Случайные ошибки – это меняющиеся от выборки к выборке по знаку и величине различия между оценкой и оцениваемой характеристикой генеральной совокупности. Причина возникновения случайных ошибок- игра случая при формировании выборки, составляющей лишь часть генеральной совокупности. Этот тип ошибок органически присущ выборочному методу. Исключить их полностью нельзя, задача состоит в том, чтобы предсказать их возможную величину и свести их к минимуму. Порядок связанных в связи с этим действий вытекает из рассмотрения трех видов случайных ошибок: конкретной, средней и предельной.

2.2.1 Конкретная ошибка – это ошибка одной проведенной выборки. Если средняя по этой выборке () является оценкой для генеральной средней (0) и, если предположить, что эта генеральная средняя нам известна, то разница = -0 и будет конкретной ошибкой этой выборки. Если из этой генеральной совокупности выборку повторим многократно, то каждый раз получим новую величину конкретной ошибки: …, и так далее. Относительно этих конкретных ошибок можно сказать следующее: некоторые из них будут совпадать между собой по величине и знаку, то есть имеет место распределение ошибок, часть из них будет равна 0, наблюдается совпадение оценки и параметра генеральной совокупности;

2.2.2 Средняя ошибка – это средняя квадратическая из всех возможных по воле случая конкретных ошибок оценки: , где - величина меняющихся конкретных ошибок; частота (вероятность) встречаемости той или иной конкретной ошибки. Средняя ошибка выборки показывает насколько в среднем можно ошибиться, если на основе оценки делается суждение о параметре генеральной совокупности. Приведенная формула раскрывает содержание средней ошибки, но она не может быть использована для практических расчетов, хотя бы потому, что предполагает знание параметра генеральной совокупности, что само по себе исключает необходимость выборки.



Практические расчеты средней ошибки оценки основываются на той предпосылке, что она (средняя ошибка) по сути является средним квадратическим отклонением всех возможных значений оценки. Эта предпосылка позволяет получить алгоритмы расчета средней ошибки, опирающиеся на данные одной единственной выборки. В частности средняя ошибка выборочной средней может быть установлена на основе следующих рассуждений. Имеется выборка (,… ) состоящая из единиц. По выборке в качестве оценки генеральной средней определена выборочная средняя . Каждое значение(,… ) , стоящее под знаком суммы, следует рассматривать как независимую случайную величину, поскольку при бесконечном повторении выборки первая, вторая и т.д. единицы могут принимать любые значения из присутствующих в генеральной совокупности. Следовательно Поскольку, как известно, дисперсия суммы независимых случайных величин равна сумме дисперсий, то . Отсюда следует, что средняя ошибка для выборочной средней будет равная и находится она в обратной зависимости от численности выборки (через корень квадратный из нее) и в прямой от среднего квадратического отклонения признака в генеральной совокупности. Это логично, поскольку выборочная средняя является состоятельной оценкой для генеральной средней и по мере увеличения численности выборки приближается по своему значению к оцениваемому параметру генеральной совокупности. Прямая зависимость средней ошибки от колеблемости признака обусловлена тем, что чем больше изменчивость признака в генеральной совокупности, тем сложнее на основе выборки построить адекватную модель генеральной совокупности. На практике среднее квадратическое отклонение признака по генеральной совокупности заменяется его оценкой по выборке, и тогда формула для расчета средней ошибки выборочной средней приобретает вид:, при этом учитывая смещенность выборочной дисперсии , выборочное среднее квадратическое отклонение рассчитывается по формуле = . Так как символом n обозначена численность выборки. ,то в знаменателе при расчете среднего квадратического отклонения должна использоваться не численность выборки (n), а так называемое число степеней свободы (n-1). Под числом степеней свободы понимается число единиц в совокупности, которые могут свободно варьировать (изменяться), если по совокупности определена какая-либо характеристика. В нашем случае, поскольку по выборке определена ее средняя, свободно варьировать могут единицы.

В таблице 2.2 приведены формулы для расчета средних ошибок различных выборочных оценок. Как видно из этой таблицы, величина средней ошибки по всем оценкам находится в обратной связи с численностью выборки и в прямой с колеблемостью. Это можно сказать и относительно средней ошибки выборочной доли (частости). Под корнем стоит дисперсия альтернативного признака, установленная по выборке ()

Приведенные в таблице 2.2 формулы относятся к так называемому случайному, повторному отбору единиц в выборку. При других способах отбора, о которых речь пойдет ниже, формулы будут несколько видоизменяться.

Таблица 2.2

Формулы для расчета средних ошибок выборочных оценок

2.2.3 Предельная ошибка выборки Знание оценки и ее средней ошибки в ряде случаев совершенно недостаточно. Например, при использовании гормонов при кормлении животных знать только средний размер неразложившихся их вредных остатков и среднюю ошибку, значит подвергать потребителей продукции серьезной опасности. Здесь настоятельно напрашивается необходимость определения максимальной (предельной ошибки ). При использовании выборочного метода предельная ошибка устанавливается не в виде конкретной величины, а виде равных границ

(интервалов) в ту и другую сторону от значения оценки.

Определение границ предельной ошибки основывается на особенностях распределения конкретных ошибок. Для так называемых больших выборок, численность которых более 30 единиц () , конкретные ошибки распределяются в соответствии с нормальным законом распределения; при малых выборках () конкретные ошибки распределяются в соответствии с законом распределения Госсета

(Стьюдента). Применительно к конкретным ошибкам выборочной средней функция нормального распределения имеет вид: , где - плотность вероятности появления тех или иных значений , при условии, что , где выборочные средние; - генеральная средняя, - средняя ошибка для выборочной средней. Поскольку средняя ошибка () является величиной постоянной, то в соответствии с нормальным законом распределяются конкретные ошибки , выраженные в долях средней ошибки, или так называемых нормированных отклонениях.

Взяв интеграл функции нормального распределения, можно установить вероятность того, что ошибка будет заключена в некотором интервале изменения t и вероятность того, что ошибка выйдет за пределы этого интервала (обратное событие). Например, вероятность того, что ошибка не превысит половину средней ошибки (в ту и другую сторону от генеральной средней) составляет 0,3829, что ошибка будет заключена в пределах одной средней ошибки - 0,6827, 2-х средних ошибок -0,9545 и так далее.

Взаимосвязь между уровнем вероятности и интервалом изменения t (а в конечном счете интервалом изменения ошибки) позволяет подойти к определению интервала (или границ) предельной ошибки, увязав его величину с вероятностью осуществления.. Вероятность осуществления -это вероятность того, что ошибка будет находится в некотором интервале. Вероятность осуществления будет «доверительной» в том случае, если противоположное событие (ошибка будет находится вне интервала) имеет такую вероятность появления, которой можно пренебречь. Поэтому доверительный уровень вероятности устанавливают, как правило, не ниже 0,90 (вероятность противоположного события равна 0,10). Чем больше негативных последствий имеет появление ошибок вне установленного интервала, тем выше должен быть доверительный уровень вероятности (0,95; 0,99 ; 0,999 и так далее).

Выбрав доверительный уровень вероятности по таблице интеграла вероятности нормального распределения, следует найти соответствующее значение t, а затем используя выражение =определить интервал предельной ошибки . Смысл полученной величины в следующем – с принятым доверительным уровнем вероятности предельная ошибка выборочной средней не превысит величину .

Для установления границ предельной ошибки на основе больших выборок для других оценок (дисперсии, среднего квадратического отклонения, доли и так далее) используется выше рассмотренный подход, с учетом того, что для определения средней ошибки для каждой оценки используется свой алгоритм.

Что касается малых выборок () то, как уже говорилось, распределение ошибок оценок соответствует в этом случае распределению t - Стьюдента. Особенность этого распределения состоит в том, что в качестве параметра в нем, наряду с ошибкой, присутствует численность выборки,вернее не численность выборки, а число степеней свободы При увеличении численности выборки распределение t-Стьюдента приближается к нормальному, а при эти распределения практически совпадают. Сопоставляя значения величины t-Стьюдента и t - нормального распределения при одной и той же доверительной вероятности можно сказать, что величина t-Стьюдента всегда больше t - нормального распределения, причем, различия возрастают с уменьшением численности выборки и с повышением доверительного уровня вероятности. Следовательно, при использовании малых выборок имеют место по сравнению с выборками большими, более широкие границы предельной ошибки, причем, эти границы расширяются с уменьшением численности выборки и повышением доверительного уровня вероятности.

Понятие и расчет ошибки выборки.

Задачей выборочного наблюдения является дача верных представлений о сводных показателях всей совокупности на основе некоторой их части, подвергнутой наблюдению. Возможное отклонение выборочной доли и выборочной средней от доли и средней в генеральной совокупности называется ошибкойвыборки или ошибкойрепрезентативности. Чем больше величина этой ошибки, тем больше показатели выборочного наблюдения отличаются от показателей генеральной совокупности.

Различаются:

Ошибки выборки;

Ошибки регистрации.

Ошибки регистрации возникают при неправильном установлении факта в процессе наблюдения. Они свойственны как сплошному наблюдению, так и выборочному, но в выборочном их меньше.

По природе ошибки бывают:

Тенденциозные – преднамеренные, т.е. были отобраны либо лучшие, либо худшие единицы совокупности. При этом наблюдения теряют смысл;

Случайные – основной организационный принцип выборочного наблюдения состоит в том, чтобы не допустить преднамеренного отбора, т.е. обеспечить строгое соблюдение принципа случайного отбора.

Общим правилом случайного отбора является: у отдельных единиц генеральной совокупности должны быть совершенно одинаковые условия и возможности упасть в число единиц, входящих в выборку. Это характеризует независимость результата выборки от воли наблюдателя. Воля же наблюдателя порождает тенденциозные ошибки. Ошибка выборки при случайном отборе носит случайный характер. Она характеризует размеры отклонений генеральных характеристик от выборочных.

В связи с тем, что признаки в изучаемой совокупности варьируют, то состав единиц, попавших в выборку, может не совпадать с составом единиц всей совокупности. Это означает, что Р и не совпадают с W и . Возможное расхождение между этими характеристиками определяется ошибкой выборки, которая определяется по формуле:

где - генеральная дисперсия.

где - выборочная дисперсия.

Отсюда видно, где генеральная дисперсия отличается от выборочной дисперсии в раз.

Существует повторный и бесповторный отбор. Сущность повторного отбора состоит в том, что каждая, попавшая в выборку единица, после наблюдения возвращается в генеральную совокупность и может быть исследована повторно. При повторном отборе средняя ошибка выборки рассчитывается:

Для показателя доли альтернативного признака дисперсия выборки определяется по формуле:

На практике повторный отбор применяется редко. При бесповторном отборе, численность генеральной совокупности N в ходе выборки сокращается, формула средней ошибки выборки для количественного признака имеет вид:



, тогда

Одно из возможных значений, в которых может находиться доля изучаемого признака равно:

где - ошибка выборки альтернативного признака.

Пример .

При выборочном обследовании 10 % изделий партии готовой продукции по методу без повторного отбора получены следующие данные о содержании влаг в образцах.

Определить средний % влажности, дисперсию, среднее квадратическое отклонение, с вероятностью 0,954 возможные пределы, в которых ожидается ср. % влажности всей готовой продукции, с вероятность 0,987 возможные пределы удельного веса стандартной продукции при условии, что к нестандартной партии относятся изделия с влажностью до 13 и выше 19 %.

Лишь с определенной вероятностью можно утверждать, что генеральная доля от выборочной доли и генеральная средняя от выборочной средней, отклоняются в t раз.

В статистике эти отклонения называются предельнымиошибкамивыборки и обозначаются .

Вероятность суждений можно повысить или понизить в t раз. При вероятности 0,683 , при 0,954 , при 0,987 , тогда показатели генеральной совокупности по показателям выборки определяются.

Расхождения между величиной какого-либо показателя, найденного посредством статистического наблюдения, и действительными его размерами называются ошибками наблюдения . В зависимости от причин возникновения различают ошибки регистрации и ошибки репрезентативности.

Ошибки регистрации возникают в результате неправильного установления фактов или ошибочной записи в процессе наблюдения или опроса. Они бывают случайными или систематическими. Случайные ошибки регистрации могут быть допущены как опрашиваемыми в их ответах, так и регистраторами. Систематические ошибки могут быть и преднамеренными, и непреднамеренными. Преднамеренные – сознательные, тенденциозные искажения действительного положения дела. Непреднамеренные вызываются различными случайными причинами (небрежность, невнимательность).

Ошибки репрезентативности (представительности) возникают в результате неполного обследования и в случае, если обследуемая совокупность недостаточно полно воспроизводит генеральную совокупность. Они могут быть случайными и систематическими. Случайные ошибки репрезентативности – это отклонения, возникающие при несплошном наблюдении из-за того, что совокупность отобранных единиц наблюдения (выборка) неполно воспроизводит всю совокупность в целом. Систематические ошибки репрезентативности – это отклонения, возникающие вследствие нарушения принципов случайного отбора единиц. Ошибки репрезентативности органически присущи выборочному наблюдению и возникают в силу того, что выборочная совокупность не полностью воспроизводит генеральную. Избежать ошибок репрезентативности нельзя, однако, пользуясь методами теории вероятностей, основанными на использовании предельных теорем закона больших чисел, эти ошибки можно свести к минимальным значениям, границы которых устанавливаются с достаточно большой точностью.

Ошибки выборки – разность между характеристиками выборочной и генеральной совокупности. Для среднего значения ошибка будет определяться по формуле

где

Величина
называетсяпредельной ошибкой выборки.

Предельная ошибка выборки – величина случайная. Исследованию закономерностей случайных ошибок выборки посвящены предельные теоремы закона больших чисел. Наиболее полно эти закономерности раскрыты в теоремах П. Л. Чебышева и А. М. Ляпунова.

Теорему П. Л. Чебышева применительно к рассматриваемому методу можно сформулировать следующим образом: при достаточно большом числе независимых наблюдений можно с вероятностью, близкой к единице (т. е. почти с достоверностью), утверждать, что отклонение выборочной средней от генеральной будет сколько угодно малым. В теореме П. Л. Чебышева доказано, что величина ошибки не должна превышать. В свою очередь величина, выражающая среднее квадратическое отклонение выборочной средней от генеральной средней, зависит от колеблемости признака в генеральной совокупностии числа отобранных единицn . Эта зависимость выражается формулой

, (7.2)

где зависит также от способа производства выборки.

Величину =называютсредней ошибкой выборки. В этом выражении– генеральная дисперсия,n – объем выборочной совокупности.

Рассмотрим, как влияет на величину средней ошибки число отбираемых единиц n . Логически нетрудно убедиться, что при отборе большого числа единиц расхождения между средними будут меньше, т. е. существует обратная связь между средней ошибкой выборки и числом отобранных единиц. При этом здесь образуется не просто обратная математическая зависимость, а такая зависимость, которая показывает, что квадрат расхождения между средними обратно пропорционален числу отобранных единиц.

Увеличение колеблемости признака влечет за собой увеличение среднего квадратического отклонения, а следовательно, и ошибки. Если предположить, что все единицы будут иметь одинаковую величину признака, то среднее квадратическое отклонение станет равно нулю и ошибка выборки также исчезнет. Тогда нет необходимости применять выборку. Однако следует иметь в виду, что величина колеблемости признака в генеральной совокупности неизвестна, поскольку неизвестны размеры единиц в ней. Можно рассчитать лишь колеблемость признака в выборочной совокупности. Соотношение между дисперсиями генеральной и выборочной совокупности выражается формулой

Поскольку величина при достаточно большихn близка к единице, можно приближенно считать, что выборочная дисперсия равна генеральной дисперсии, т. е.

Следовательно, средняя ошибка выборки показывает, какие возможны отклонения характеристик выборочной совокупности от соответствующих характеристик генеральной совокупности. Однако о величине этой ошибки можно судить с определенной вероятностью. На величину вероятности указывает множитель

Теорема А. М. Ляпунова . А. М. Ляпунов доказал, что распределение выборочных средних (следовательно, и их отклонений от генеральной средней) при достаточно большом числе независимых наблюдений приближенно нормально при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически теорему Ляпунова можно записать так:

(7.3)

где
, (7.4)

где
– математическая постоянная;

предельная ошибка выборки , которая дает возможность выяснить, в каких пределах находится величина генеральной средней.

Значения этого интеграла для различных значений коэффициента доверия t вычислены и приводятся в специальных математических таблицах. В частности, при:

Поскольку t указывает на вероятность расхождения
, т. е. на вероятность того, на какую величину генеральная средняя будет отличаться от выборочной средней, то это может быть прочитано так: с вероятностью 0,683 можно утверждать, что разность между выборочной и генеральной средними не превышает одной величины средней ошибки выборки. Другими словами, в 68,3 % случаев ошибка репрезентативности не выйдет за пределы
С вероятностью 0,954 можно утверждать, что ошибка репрезентативности не превышает
(т. е. в 95 % случаев). С вероятностью 0,997, т. е. довольно близкой к единице, можно ожидать, что разность между выборочной и генеральной средней не превзойдет трехкратной средней ошибки выборки и т. д.

Логически связь здесь выглядит довольно ясно: чем больше пределы, в которых допускается возможная ошибка, тем с большей вероятностью судят о ее величине.

Зная выборочную среднюю величину признака
и предельную ошибку выборки
, можно определить границы (пределы), в которых заключена генеральная средняя

1 . Собственно-случайная выборка – этот способ ориентирован на выборку единиц из генеральной совокупности без всякого расчленения на части или группы. При этом для соблюдения основного принципа выборки – равной возможности всем единицам генеральной совокупности быть отобранным – используются схема случайного извлечения единиц путем жеребьевки (лотереи) или таблицы случайных чисел. Возможен повторный и бесповторный отбор единиц

Средняя ошибка собственно-случайной выборкипредставляет собойсреднеквадратическое отклонение возможных значений выборочной средней от генеральной средней. Средние ошибки выборки при собственно-случайном методе отбора представлены в табл. 7.2.

Таблица 7.2

Средняя ошибка выборки μ

При отборе

повторном

бесповторном

Для средней

В таблице использованы следующие обозначения:

– дисперсия выборочной совокупности;

– численность выборки;

– численность генеральной совокупности;

– выборочная доля единиц, обладающих изучаемым признаком;

– число единиц, обладающих изучаемым признаком;

– численность выборки.

Для увеличения точности вместо множителя следует брать множитель
, но при большой численностиN различие между этими выражениями практического значения не имеет.

Предельная ошибка собственно-случайной выборки
рассчитывается по формуле

, (7.6)

где t – коэффициент доверия зависит от значения вероятности.

Пример. При обследовании ста образцов изделий, отобранных из партии в случайном порядке, 20 оказалось нестандартными. С вероятностью 0,954 определите пределы, в которых находится доля нестандартной продукции в партии.

Решение . Вычислим генеральную долю (Р ):
.

Доля нестандартной продукции:
.

Предельная ошибка выборочной доли с вероятностью 0,954 рассчитывается по формуле (7.6) с применением формулы табл. 7.2 для доли:

С вероятностью 0,954 можно утверждать, что доля нестандартной продукции в партии товара находится в пределах 12 % ≤ P ≤ 28 %.

В практике проектирования выборочного наблюдения возникает потребность определения численности выборки, которая необходима для обеспечения определенной точности расчета генеральных средних. Предельная ошибка выборки и ее вероятность при этом являются заданными. Из формулы
и формул средних ошибок выборки устанавливается необходимая численность выборки. Формулы для определения численности выборки (n ) зависят от способа отбора. Расчет численности выборки для собственно-случайной выборки приведен в табл. 7.3.

Таблица 7.3

Предполагаемый отбор

для средней

Повторный

Бесповторный

2 . Механическая выборка – при этом методе исходят из учета некоторых особенностей расположения объектов в генеральной совокупности, их упорядоченности (по списку, номеру, алфавиту). Механическая выборка осуществляется путем отбора отдельных объектов генеральной совокупности через определенный интервал (каждый 10-й или 20-й). Интервал рассчитывается по отношению, гдеn – численность выборки,N – численность генеральной совокупности. Так, если из совокупности в 500 000 единиц предполагается получить 2 %-ную выборку, т. е. отобрать 10 000 единиц, то пропорция отбора составит
Отбор единиц осуществляется в соответствии с установленной пропорцией через равные интервалы. Если расположение объектов в генеральной совокупности носит случайный характер, то механическая выборка по содержанию аналогична случайному отбору. При механическом отборе применяется только бесповторная выборка .

Средняя ошибка и численность выборки при механическом отборе подсчитывается по формулам собственно-случайной выборки (см. табл. 7.2 и 7.3).

3 . Типическая выборка , при котрой генеральная совокупность делится по некоторым существенным признакам на типические группы; отбор единиц производится из типических групп. При этом способе отбора генеральная совокупность расчленяется на однородные в некотором отношении группы, которые имеют свои характеристики, и вопрос сводится к определению объема выборок из каждой группы. Может бытьравномерная выборка – при этом способе из каждой типической группы отбирается одинаковое число единиц
Такой подход оправдан лишь при равенстве численностей исходных типических групп. При типическом отборе, непропорциональном объему групп, общее число отбираемых единиц делится на число типических групп, полученная величина дает численность отбора из каждой типической группы.

Более совершенной формой отбора является пропорциональная выборка . Пропорциональной называется такая схема формирования выборочной совокупности, когда численность выборок, взятых из каждой типической группы в генеральной совокупности, пропорциональна численностям, дисперсиям (или комбинированно и численностям, и дисперсиям). Условно определяем численность выборки в 100 единиц и отбираем единицы из групп:

пропорционально численности их генеральной совокупности (табл. 7.4). В таблице обозначено:

N i – численность типической группы;

d j – доля (N i /N );

N – численность генеральной совокупности;

n i – численность выборки из типической группы вычисляется:

, (7.7)

n – численность выборки из генеральной совокупности.

Таблица 7.4

N i

d j

n i

пропорционально среднему квадратическому отклонению (табл. 7.5).

здесь  i – среднее квадратическое отклонение типических групп;

n i – численность выборки из типической группы вычисляется по формуле

(7.8)

Таблица 7.5

N i

n i

комбинированно (табл. 7.6).

Численность выборки вычисляется по формуле

. (7.9)

Таблица 7.6

i N i

При проведении типической выборки непосредственный отбор из каждой группы проводится методом случайного отбора.

Средние ошибки выборки рассчитываются по формулам табл. 7.7 в зависимости от способа отбора из типических групп.

Таблица 7.7

Способ отбора

Повторный

Бесповторный

для средней

для доли

для средней

для доли

Непропорциональный объему групп

Пропорциональный объему групп

Пропорциональный колеблемости в группах (является наивыгоднейшим)

здесь
– средняя из внутригрупповых дисперсий типических групп;

– доля единиц, обладающих изучаемым признаком;

– средняя из внутригрупповых дисперсий для доли;

– среднее квадратическое отклонение в выборке изi -й типической группы;

– объем выборки из типической группы;

– общий объем выборки;

– объем типической группы;

– объем генеральной совокупности.

Численность выборки из каждой типической группы должна быть пропорциональна среднему квадратическому отклонению в этой группе
.Расчет численности
производится по формулам, приведенным в табл. 7.8.

Таблица 7.8

4 . Серийная выборка – удобена в тех случаях, когда единицы совокупности объединены в небольшие группы или серии. При серийной выборке генеральную совокупность делят на одинаковые по объему группы – серии. В выборочную совокупность отбираются серии. Сущность серийной выборки заключается в случайном или механическом отборе серий, внутри которых производится сплошное обследование единиц. Средняя ошибка серийной выборки с равновеликими сериями зависит от величины только межгрупповой дисперсии. Средние ошибки сведены в табл. 7.9.

Таблица 7.9

Способ отбора серии

для средней

для доли

Повторный

Бесповторный

Здесь R – число серий в генеральной совокупности;

r – число отобранных серий;

– межсерийная (межгрупповая) дисперсия средних;

– межсерийная (межгрупповая) дисперсия доли.

При серийном отборе необходимую численность отбираемых серий определяют так же, как и при собственно-случайном методе отбора.

Расчет численности серийной выборки производится по формулам, приведенным в табл. 7.10.

Таблица 7.10

Пример. В механическом цехе завода в десяти бригадах работает 100 рабочих. В целях изучения квалификации рабочих была произведена 20 %-ная серийная бесповторная выборка, в которую вошли две бригады. Получено следующее распределение обследованных рабочих по разрядам:

Разряды рабочих в бригаде 1

Разряды рабочих в бригаде 2

Разряды рабочих в бригаде 1

Разряды рабочих в бригаде 2

Необходимо определить с вероятностью 0,997 пределы, в которых находится средний разряд рабочих механического цеха.

Решение. Определим выборочные средние по бригадам и общую среднюю как среднюю взвешенную из групповых средних:

Определим межсерийную дисперсию по формулам (5.25):

Рассчитаем среднюю ошибку выборки по формуле табл. 7.9:

Вычислим предельную ошибку выборки с вероятностью 0,997:

С вероятностью 0,997 можно утверждать, что средний разряд рабочих механического цеха находится в пределах

    Формула доверительной вероятности при оценке генераль ной доли признака. Средняя квадратическая ошибка повторной и бесповторной выборок и построение доверительного интервала для генеральной доли признака.

  1. Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бес­повторной выборок и построение доверительного интервала для генеральной средней.

Построение доверительного интервала для гeнеральной средней и гeнеральной доли по большим выборкам . Для построения доверительных интервалов для параметров генеральных совокупностей м.б. реализованы 2 подхода, основанных на знании точного (при данном объеме выборки n) или асимптотического (при n → ∞) распределения выборочных характеристик (или некоторых функций от них). Первый подход реализован далее при построении интервальных оценок параметров для малых выборок. В данном параграфе рассматривается второй подход, применимый для больших выборок (порядка сотен наблюдений).

Теорема . Вер-ть того, что отклонение выборочной средней (или доли) от генеральной средней (или доли) не превзойдет число Δ > 0 (по абсолютной величине), равна:

Где

,

Где
.

Ф(t) - функция (интеграл вероятностей) Лапласа.

Формулы получили название формул доверительной вер-ти для средней и доли .

Среднее квадратическое отклонение выборочной средней и выборочной долисобственно-случайной выборки называетсясредней квадратической (стандартной) ошибкой выборки (для бесповторной выборки обозначаем соответственно и).

Следствие 1 . При заданной доверительной вер-ти γ предельная ошибка выборки равна t-кратной величине средней квадратической ошибки, где Ф(t) = γ, т.е.

,

.

Следствие 2 . Интервальные оценки (доверительные интервалы) для генеральной средней и генеральной доли могут быть найдены по формулам:

,

.

  1. Определение необходимого объема повторной и бесповтор­ной выборок при оценке генеральной средней и доли.

Для проведения выборочного наблюдения весьма важно правильно установить объем выборки n, к-ый в значительной степени определяет необходимые при этом временные, трудовые и стоимостные затраты для определения n необходимо задать надежность (доверительную вер-ть) оценки γ и точность (предельную ошибку выборки) Δ.

Если найден объем повторной выборки n, то объем соответствующей бесповторной выборки n" можно определить по формуле:

.

Т.к.
, то при одних и тех же точности и надежности оценок объем бесповторной выборки n" всегда меньше объема повторной выборки n.

  1. Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.

Определение . Статистической гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.

Различают простую и сложную статистические гипотезы . Простая гипотеза , в отличие от сложной, полностью определяет теоретическую функцию распределения СВ.

Проверяемую гипотезу обычно называют нулевой (или основной ) и обозначают Н 0 . Наряду с нулевой гипотезой рассматривают альтернативную , или конкурирующую , гипотезу H 1 , являющуюся логическим отрицанием Н 0 . Нулевая и альтернативная гипотезы представляют собой 2 возможности выбора, осуществляемого в задачах проверки статистических гипотез.

Суть проверки статистической гипотезы заключается в том, что используется специально составленная выборочная характеристика (статистика)
, полученная по выборке
, точное или приближенное распределение которой известно.

Затем по этому выборочному распределению определяется критическое значение - такое, что если гипотеза Н 0 верна, то вер-ть
мала; так что в соответствии с принципом практической уверенности в условиях данного исследования событие
можно (с некоторым риском) считать практически невозможным. Поэтому, если в данном конкретном случае обнаруживается отклонение
, то гипотеза Н 0 отвергается, в то время как появление значения
, считается совместимым с гипотезой Н 0 , которая тогда принимается (точнее, не отвергается). Правило, по которому гипотеза Н 0 отвергается или принимается, называется статистическим критерием или статистическим тестом .

Принцип практической уверенности:

Если вер-ть события А в данном испытании очень мала, то при однократном выполнении испытания можно быть уверенным в том, что событие А не произойдет, и в практической д-ти вести себя так, как будто событие А вообще невозможно.

Т.о., множество возможных значений статистики - критерия (критической статистики) разбивается на 2 непересекающихся подмножества:критическую область (область отклонения гипотезы) W и область допустимых значений (область принятия гипотезы) . Если фактически наблюдаемое значение статистики критерияпопадает в критическую область W, то гипотезу Н 0 отвергают. При этом возможны четыре случая:

Определение . Вероятность α допустить ошибку l-го рода, т.е. отвергнуть гипотезу Н 0 , когда она верна, называется уровнем значимости , или размером критерия .

Вероятность допустить ошибку 2-го рода, т.е. принять гипотезу Н 0 , когда она неверна, обычно обозначают β.

Определение . Вероятность (1-β) не допустить ошибку 2-го рода, т.е. отвергнуть гипотезу Н 0 , когда она неверна, называется мощностью (или функцией мощности ) критерия .

Следует предпочесть ту критическую область, при которой мощность критерия будет наибольшей.