Признаки системы и их характеристика. Признаки системности и системные концепции. Множественность моделей систем. Определение понятия «проблема», «цель», «система»

Понятие «система» широко используется в науке, технике и повседневной жизни, когда говорят о некоторой упорядоченной совокупности любого содержания. Система является фундаментальным понятием как системотехники, так и базовых теоретических дисциплин (теории систем, исследования операций, системного анализа и кибернетики). Система - это объективное единство закономерно связанных друг с другом предметов, явленна, сведении, а также знаний о природе, обществе u m.п. . Каждый объект, чтобы его можно было считать системой, должен обладать четырьмя основными свойствами или признаками (целостностью и делимостью, наличием устойчивых связей, организацией и эмерджентностью).

Основные признаки систем

Целостность и делимость. Система - это прежде всего целостная совокупность элементов. Это означает, что, с одной стороны, система - целостное образование и, с другой - в ее составе отчетливо могут быть выделены целостные объекты (элементы). При этом следует иметь в виду, что элементы существуют лишь в системе. Вне системы это в лучшем случае объекты, обладающие системнозначимыми свойствами. При вхождении в систему элемент приобретает системнооп-ределенное свойство взамен системнозначимого. Для системы первичным является признак целостности, т. е. она рассматривается как единое целое, состоящее из взаимодействующих частей, часто разнокачественных, но одновременно совместимых.

Наличие устойчивых связей. Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящих по мощности (силе) связи этих элементов с элементами, не входящими в данную систему, является следующим атрибутом системы. Система существует как некоторое целостное образование, когда мощность (сила) существенных связей между элементами системы на интервале времени, не равном нулю, больше, чем мощность связей этих же элементов с внешней средой. Для информационных связей оценкой потенциальной мощности может служить пропускная способность данной информационной системы, а реальной мощности - действительная величина потока информации. Однако в общем случае при оценке мощности информационных связей необходимо учитывать качественные характеристики передаваемой информации (ценность, полезность, достоверность и т. п.).

Организация . Это свойство характеризуется наличием определенной организации, что проявляется в снижении энтропии (степени неопределенности) системы H(S) по сравнению с энтропией систе-моформирующих факторов H(F), определяющих возможность создания системы.

Эмерджентность . Эмерджентность предполагает наличие таких качеств (свойств), которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности.

Наличие интегрированных качеств показывает, что свойства системы хотя и зависят от свойств элементов, но не определяются ими полностью. Отсюда можно сделать выводы:

1) система не сводится к простой совокупности элементов;

2) расчленяя систему на отдельные части, изучая каждую из них в отдельности, нельзя познать все свойства системы в целом.

Любой объект, который обладает всеми рассматриваемыми свойствами можно называть системой. Одни и те же элементы (в зависимости от принципа, используемого для их объединения в систему) могут образовывать различные по свойствам системы. Поэтому характеристики системы в целом определяются не только и не столько характеристиками составляющих ее элементов, сколько характеристиками связей между ними. Наличие взаимосвязей (взаимодействия) между элементами определяет особое свойство сложных систем -организованную сложность. Добавление элементов в систему не только вводит новые связи, но и изменяет характеристики многих или всех прежних взаимосвязей, приводит к исключению некоторых из них или появлению новых.

Понятие «черного ящика»

Одним из главных средств преодоления организованной сложности системы - это декомпозиция, т. е. деление системы на части (так называемые «черные ящики») и организация этих частей в иерархическую систему. Расчленение системы на соподчиненные части производится так, чтобы каждая часть содержала объекты, наиболее тесно связанные друг с другом. Следовательно, расчленение системы производится по слабым связям.

Декомпозиция является условным приемом, позволяющим в конечном итоге оценить степень сложности объекта и привести его к некоторым конечным элементам, анализ которых может быть выполнен известными методами. Будем считать, что элемент - это часть системы, дальнейшее разделение которого приводит к нарушению функциональных связей элемента и получению свойств выделенной совокупности, не адекватных свойствам элемента как целого.

Выгода в использовании «черных ящиков» заключается в том, что пользователю необходимо знать лишь вход и выход «черного ящика» и его назначение, т. е. выполняемую функцию, не вдаваясь в принципы работы и используемые алгоритмы. В обыденной жизни мы достаточно часто сталкиваемся с «черными ящиками» и охотно пользуемся ими. Например, мы используем принтер для подготовки документов, не зная, каким образом он производит перекодирование и печать информации. Мы можем заменить принтер на другой при поломке или на более современный, не будучи специалистами по техническому обеспечению. Идея организации «черных ящиков» в иерархические структуры взята человеком у природы. Все сложные системы Вселенной организованы в иерархии. И сама Вселенная включает галактики, звездные системы, планеты и т. д.

Иерархическая система

Если множество элементов объединено в систему по определенному признаку, то всегда можно ввести некоторые дополнительные признаки для разделения этого множества на подмножества, выделяя тем самым из системы ее составные части - подсистемы. Возможность многократного деления системы на подсистемы приводит к тому, что любая система содержит ряд подсистем, полученных выделением из исходной системы. В свою очередь, эти подсистемы состоят из более мелких подсистем и т. д.

Подсистемы, полученные выделением из одной исходной системы, относят к подсистемам одного уровня или ранга. При дальнейшем делении получаем подсистемы более низкого уровня. Такое деление называют иерархией (деление должностей на высшие и низшие, порядок подчинения низших по должности лиц высшим и т. п.). Одну и ту же систему можно делить на подсистемы по-разному - это зависит от выбранных правил объединения элементов в подсистемы. Наилучшим, очевидно, будет набор правил, который обеспечивает системе в целом наиболее эффективное достижение цели.

При делении системы на подсистемы следует помнить о правилах такого разбиения:

· каждая подсистема должна реализовывать единственную функцию системы;

· выделенная в подсистему функция должна быть легко понимаема независимо от сложности ее реализации;

· связь между подсистемами должна вводиться только при наличии связи между соответствующими функциями системы;

· связи между подсистемами должны быть простыми (насколько это возможно).

Число уровней, число подсистем каждого уровня может быть различным. Однако всегда необходимо соблюдать одно важное правило: подсистемы, непосредственно входящие в одну систему более высокого уровня, действуя совместно, должны выполнять все функции той системы, в которую они входят.

Управление любой организацией, производящей товары или оказывающей услуги, строится по иерархическому принципу. Деятельность по созданию товаров и услуг имеет место во всех организациях. Производство - это создание товаров и оказание услуг путем преобразования входа системы (необходимых ресурсов всех видов) в ее выход (готовые товары и услуги). На производственных фирмах деятельность по созданию товаров обычно очевидна. Ее результатом являются конкретные товары (например, станки или самолеты). В других организациях. которые не создают физические товары, производственные функции могут быть менее очевидны, скрыты от публики и каждого из покупателей. Например, это деятельность, которая осуществляется в банке, офисе аэролинии или колледже. Деятельность таких компаний называют сервисом. Управляющие производственной деятельностью принимают решения, которые необходимы для преобразования ресурсов в товары и услуги.

В иерархической системе, управления любая подсистема некоторого уровня подчинена подсистеме более высокого уровня, в состав которой она входит и управляется ею. Для систем управления деление системы возможно до тех пор, пока полученная при очередном делении подсистема не перестает выполнять функции управления. С этой точки зрения системой управления низшего иерархического уровня являются такие подсистемы, которые осуществляют непосредственное управление конкретными орудиями труда, механизмами, устройствами или технологическими процессами. Система управления любого другого уровня, кроме низшего, всегда осуществляет управление технологическими процессами не непосредственно, а через подсистемы промежуточных, более низких уровней.

Важным принципом построения системы управления предприятием является рассмотрение предприятия как системы с многоуровневой (иерархической) структурой (рис. 1.2). От звеньев, расположенных на более высоком уровне, идет поток управляющих воздействий, а информация о текущем состоянии объекта управления более низкого уровня поступает звеньям более высокого уровня. Рассматривая своеобразное «дерево» управления, можно отметить, что преимущество иерархической структуры управления состоит в том, что решение задач управления возможно на базе локальных решений, принимаемых на соответствующих уровнях иерархии управления.

Рис. 1.2. Иерархические системы управления предприятия

Нижний уровень управления является источником информации для принятия управленческих решений на более высоком уровне. Если рассматривать поток информации от уровня к уровню, то количество информации, выраженное в числе символов, уменьшается с повышением уровня, но при этом увеличивается ее смысловое (семантическое) содержание.

На современном уровне развития общества научно-технический прогресс в области материального производства и систем управления обеспечивает возможность концентрации и централизации значительных финансовых, материальных и других ресурсов. Эти возможности реализуются в индустриально развитых странах в виде создания межнациональных объединений (например, Европейский союз, объединяющий ряд европейских стран; дочерние фирмы, филиалы и предприятия крупных концернов во многих странах мира и т. д.). Преимуществом централизации является возможность направлять на реализацию решений крупные ресурсы, что позволяет решать сложные проблемы, требующие больших капиталовложений. В централизованной системе сравнительно легко обеспечить скоординированную, согласованную деятельность подсистем, направленную на достижение единых целей. Потери в отдельных частях системы компенсируются результатами работы других ее частей. Многоуровневая централизованная система обладает большой живучестью за счет оперативного перераспределения функций и ресурсов. Не случайно в армиях всех времен и народов строго соблюдается принцип централизации.

Вместе с тем централизация в системах большой размерности имеет свои недостатки. Многоуровневость и связанная с этим многократная передача информации с уровня на уровень вызывает задержки, снижающие оперативность оценки обстановки и реализации управленческих решений, приводит к искажениям как в процессе передачи информации, так и при ее обработке на промежуточных уровнях. В ряде случаев стремление подсистем к самостоятельности входит в противоречие с принципом централизации. В многоуровневых централизованных организационно-административных системах управления, как правило, присутствуют элементы децентрализации.

При рациональном сочетании элементов централизации и децентрализации информационные потоки в системе должны быть организованы таким образом, чтобы информация использовалась в основном на том уровне, где она возникает, т. е. надо стремиться к минимальной передаче данных между уровнями системы. В децентрализованных одноуровневых системах всегда выше уровень оперативности как при сборе информации о состоянии управляемой системы, оценке ситуации, так и при реализации принятых решений. Благодаря оперативному контролю за реакцией на управляющие воздействия снижаются отклонения от выбранной траектории движения к цели.

Степень централизации системы, которая определяется на основе установления соотношения взвешенных объемов задач, решаемых на смежных уровнях, служит в известном смысле мерой разделения полномочий между уровнями. Смещение основной массы решений в сторону вышестоящего уровня, т. е. повышение степени централизации, отождествляют обычно с повышением управляемости подсистем. Оно требует, как правило, улучшения переработки информации на верхних уровнях иерархии управления. Повышение степени децентрализации соответствует увеличению самостоятельности подсистем и уменьшению объема информации, перерабатываемой верхними уровнями.

Обычно высшие менеджеры многоуровневых систем разрабатывают стратегические решения, например, сколько моделей автомобилей должен производить каждый из заводов компании. Они не должны решать вопроса о типоразмерах и количестве каждой выпускаемой модели на каждом из заводов. Это относится к уровню тактических решении, которые принимаются заводскими менеджерами среднего звена управления. Заводской менеджер должен решить вопрос, сколько произвести и продать, сколько сохранить на складе готовой продукции (сезонный спрос) и сколько рабочих нанять или уволить. Операционное принятие решений осуществляется на производственном уровне начальниками цехов, которые определяют детальное планирование и производство. Этот иерархический подход, который должен включать и обратную связь, может и не обеспечить оптимальное решение, но он позволяет лучше и более своевременно управлять производственным процессом.

Структура систем управления в народном хозяйстве строится по отраслевому или территориальному принципу. Отраслевой принцип применяется в тех случаях, когда речь идет о сложных, специфических видах производства, проектирования и строительства, о развитии и внедрении научных исследований в производство определенного типа. По территориальному принципу построены органы государственного административного управления.

Управляющие системы

Любой процесс в природе (физический, химический, социальный, мыслительный и т. п.) развивается и протекает по некоторым присущим ему закономерностям, Однако в силу всеобщей связи между явлениями в природе на него воздействуют другие процессы и он сам воздействует на эти процессы. В результате таких воздействий происходят различные отклонения от первоначального развития процесса, т. е. он протекает по более сложным закономерностям. Внешние воздействия на процесс можно разделить на случайные и управляющие. Случайные воздействия не преднамерены. Управляющие воздействия специально предназначены для изменения хода того процесса, на который они направлены.

Совокупность управляющих воздействий, направленных на то, чтобы действительный ход процесса соответствовал желаемому, называют управлением . Таким образом, управление предполагает, что существует некоторый орган, систематически или по мере необходимости вырабатывающий управляющие воздействия. Такой управляющий орган принято называть системой управления. Управление обычно осуществляется через исполнительные органы, которые и изменяют действительный ход процесса. Управление должно быть целенаправленным. Управляющие воздействия должны быть скоординированы между собой, а не носить случайного характера, при котором не исключена возможность воздействий, прямо противоположных друг другу.

Управление предполагает наличие управляемого объекта или группы объектов (живой организм или его часть, отдельный механизм или технологическая установка, предприятие или отрасль народного хозяйства и т. д.). Кроме управляемого объекта должен существовать некоторый управляющий орган, вырабатывающий управляющие воздействия, направленные на поддержание или улучшение функционирования управляемого объекта в соответствии с имеющейся программой или целью управления. Процесс управления - это целенаправленное воздействие управляющей системы на управляемую, ориентированное на достижение определенной цели и использующее главным образом информационный поток. Оптимальное управление заключается в выборе наилучших управляющих воздействий из множества возможных с учетом ограничений и на основе информации о состоянии управляемого объекта и внешней среды.

В системах административного или организационного управления управляющее воздействие заключается в принятии решений в процессах планирования и оперативного управления, реализуемых на более низших уровнях управления, а также в контроле за реализацией принятых решений. Людей, выполняющих эти функции, называют администраторами или руководителями. (За рубежом применяют термины manager - руководитель, управляющий и management - административное управление в отличие от control -управление в производственных системах.)

В производственных системах человек с помощью технических средств, которыми он манипулирует, непосредственно управляет технологическим или производственным процессом. Человека, осуществляющего такое управление, называют оператором, а систему, составным элементом которой является оператор, называют эргатической (эргатив - действующее лицо, деятель).

Администратор получает и передает информацию в виде различных документов, в ходе переговоров с другими людьми, через системы ЭВМ и т. д. Оператор, как правило, получает сведения о состоянии управляемой системы в форме, представленной различными техническими средствами отображения информации - цифровыми и графическими табло, пультами со стрелочными, цифровыми и индикаторными приборами, средствами звуковой сигнализации. Принятые решения оператор реализует, воздействуя на производственный процесс, используя технические средства управления. Процесс принятия решений оператором гораздо легче формализуем, чем для администратора. Наборы возможных ситуаций и применяемых решений для оператора обычно четко очерчены; во всяком случае, они значительно же, чем у администратора.

При синтезе эргатических систем в единую систему управления используют сочетания аналитических и неформальных методов. Аналитическими методами определяют функциональную структуру синтезируемой системы, постановку задач и методы их решения. Неформальные методы используют при распределении функций между человеком и техническими средствами, определении роли и функциональных обязанностей человека. Задачи эти взаимосвязаны, поэтому их решают параллельно или путем последовательных приближений.

В деятельности крупных фирм (в особенности транснациональных корпораций, представляющих собой комплексы большого числа взаимосвязанных и взаимодействующих предприятий, расположенных в разных странах) передача информации является непременным и первостепенным фактором нормального функционирования фирмы. При этом особое значение приобретает обеспечение оперативности и достоверности сведений. Для многих компаний внутрифирменная система информации решает задачи организации технологического процесса и носит производственный характер. Это касается, прежде всего, процессов обеспечения предприятий продукцией, поступающей по кооперации со специализированных предприятий по внутрифирменным каналам. Здесь информация играет важную роль в предоставлении сведений для принятия управленческих решений и является одним из факторов, обеспечивающих снижение издержек производства и повышение его эффективности. Особое значение имеет прогнозирование рыночных процессов.

Потребность в управлении возникает в том случае, когда необходима координация действий членов некоторого коллектива, объединенных для достижения общих целей: обеспечение устойчивости функционирования или выживания объекта управления в конкурентной борьбе, получение максимальной прибыли, выход на международный рынок и т. п. Цели сначала носят обобщенный характер, а затем в процессе уточнения они формализуются управленческим аппаратом в виде целевых функций.


Похожая информация.


Лекция 2: Системные свойства. Классификация систем

Свойства систем.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика — то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge — возникать, появляться).

  1. Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  2. Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность — интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае — системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития — это блуждание в потемках.

Кто не знает, в какую гавань он плывет, для того нет попутного ветра

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность — свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть — как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость — свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Рис. — Классификация систем

Основание (критерий) классификации Классы систем
По взаимодействию с внешней средой Открытые
Закрытые
Комбинированные
По структуре Простые
Сложные
Большие
По характеру функций Специализированные
Многофункциональные (универсальные)
По характеру развития Стабильные
Развивающиеся
По степени организованности Хорошо организованные
Плохо организованные (диффузные)
По сложности поведения Автоматические
Решающие
Самоорганизующиеся
Предвидящие
Превращающиеся
По характеру связи между элементами Детерминированные
Стохастические
По характеру структуры управления Централизованные
Децентрализованные
По назначению Производящие
Управляющие
Обслуживающие

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

Искусственные делятся на технические (технико-экономические) и социальные (общественные).

Техническая система спроектирована и изготовлена человеком в определенных целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей — организационно-технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

Примеры человеко-машинных систем: автомобиль — водитель; самолет — летчик; ЭВМ — пользователь и т.д.

Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата.

Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

Абстрактные системы разделяют на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям ее можно считать закрытой. В противном случае — открытой.

Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем. Если вычленить из этого образования собственно рассматриваемую систему, то оставшаяся часть — ее среда.

Открытая система связана со средой определенными коммуникациями, то есть сетью внешних связей системы. Выделение внешних связей и описание механизмов взаимодействия «система-среда» является центральной задачей теории открытых систем. Рассмотрение открытых систем позволяет расширить понятие структуры системы. Для открытых систем оно включает не только внутренние связи между элементами, но и внешние связи со средой. При описании структуры внешние коммуникационные каналы стараются разделить на входные (по которым среда воздействует на систему) и выходные (наоборот). Совокупность элементов этих каналов, принадлежащих собственной системе называются входными и выходными полюсами системы. У открытых систем, по крайней мере, один элемент имеет связь с внешней средой, по меньшей мере, один входной полюс и один выходной, которыми она связана с внешней средой.

Для каждой системы связи со всеми подчиненными ей подсистемами и между последним, являются внутренними, а все остальные — внешними. Связи между системами и внешней средой также, как и между элементами системы, носят, как правило, направленный характер.

Важно подчеркнуть, что в любой реальной системе в силу законов диалектики о всеобщей связи явлений число всех взаимосвязей огромно, так что учесть и исследования абсолютно все связи невозможно, поэтому их число искусственно ограничивают. Вместе с тем, учитывать все возможные связи нецелесообразно, так как среди них есть много несущественных, практически не влияющих на функционирование системы и количество полученных решений (с точки зрения решаемых задач). Если изменение характеристик связи, ее исключение (полный разрыв) приводят к значительному ухудшению работы системы, снижению эффективности, то такая связь — существенна. Одна из важнейших задач исследователя — выделить существенные для рассмотрения системы в условиях решаемой задачи связи и отделить их от несущественных. В связи с тем, что входные и выходные полюса системы не всегда удается четко выделить, приходится прибегать к определенной идеализации действий. Наибольшая идеализация имеет место при рассмотрении закрытой системы.

Закрытой называется система, которая не взаимодействует со средой или взаимодействует со средой строго определенным образом. В первом случае предполагается, что система не имеет входных полюсов, а во втором, что входные полюса есть, но воздействие среды носит неизменный характер и полностью (заранее) известно. Очевидно, что при последнем предположении указанные воздействия могут быть отнесены собственно к системе, и ее можно рассматривать, как закрытую. Для закрытой системы, любой ее элемент имеет связи только с элементами самой системы.

Разумеется, закрытые системы представляют собой некоторую абстракцию реальной ситуации, так как, строго говоря, изолированных систем не существует. Однако, очевидно, что упрощение описания системы, заключаются в отказе от внешних связей, может привести к полезным результатам, упростить исследование системы. Все реальные системы тесно или слабо связаны с внешней средой — открытые. Если временный разрыв или изменение характерных внешних связей не вызывает отклонения в функционировании системы сверх установленных заранее пределов, то система связана с внешней средой слабо. В противном случае — тесно.

Комбинированные системы содержат открытые и закрытые подсистемы. Наличие комбинированных систем свидетельствует о сложной комбинации открытой и закрытой подсистем.

В зависимости от структуры и пространственно-временных свойств системы делятся на простые, сложные и большие.

Простые — системы, не имеющие разветвленных структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так и со средой.

Сложные — характеризуются большим числом элементов и внутренних связей, их неоднородностью и разнокачественностью, структурным разнообразием, выполняют сложную функцию или ряд функций. Компоненты сложных систем могут рассматриваться как подсистемы, каждая из которых может быть детализирована еще более простыми подсистемами и т.д. до тех пор, пока не будет получен элемент.

Определение N1: система называется сложной (с гносеологических позиций), если ее познание требует совместного привлечения многих моделей теорий, а в некоторых случаях многих научных дисциплин, а также учета неопределенности вероятностного и невероятностного характера. Наиболее характерным проявлением этого определения является многомодельность.

Модель — некоторая система, исследование которой служит средством для получения информации о другой системе. Это описание систем (математическое, вербальное и т.д.) отображающее определенную группу ее свойств.

Определение N2: систему называют сложной если в реальной действительности рельефно (существенно) проявляются признаки ее сложности. А именно:

  1. структурная сложность — определяется по числу элементов системы, числу и разнообразию типов связей между ними, количеству иерархических уровней и общему числу подсистем системы. Основными типами считаются следующие виды связей: структурные (в том числе, иерархические), функциональные, каузальные (причинно-следственные), информационные, пространственно-временные;
  2. сложность функционирования (поведения) — определяется характеристиками множества состояний, правилами перехода из состояния в состояние, воздействие системы на среду и среды на систему, степенью неопределенности перечисленных характеристик и правил;
  3. сложность выбора поведения — в многоальтернативных ситуациях, когда выбор поведения определяется целью системы, гибкостью реакций на заранее неизвестные воздействия среды;
  4. сложность развития — определяемая характеристиками эволюционных или скачкообразных процессов.

Естественно, что все признаки рассматриваются во взаимосвязи. Иерархическое построение — характерный признак сложных систем, при этом уровни иерархии могут быть как однородные, так и неоднородные. Для сложных систем присущи такие факторы, как невозможность предсказать их поведение, то есть слабо предсказуемость, их скрытность, разнообразные состояния.

Сложные системы можно подразделить на следующие факторные подсистемы:

  1. решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания между всеми другим подсистемами;
  2. информационную, которая обеспечивает сбор, переработку и передачу информации, необходимой для принятия глобальных решений и выполнения локальны задач;
  3. управляющую для реализации глобальных решений;
  4. гомеостазную, поддерживающую динамическое равновесие внутри систем и регулирующую потоки энергии и вещества в подсистемах;
  5. адаптивную, накапливающую опыт в процессе обучения для улучшения структуры и функций системы.

Большой системой называют систему, ненаблюдаемую одновременно с позиции одного наблюдателя во времени или в пространстве, для которой существенен пространственный фактор, число подсистем которой очень велико, а состав разнороден.

Система может быть и большой и сложной. Сложные системы объединяет более обширную группу систем, то есть большие — подкласс сложных систем.

Основополагающими при анализе и синтезе больших и сложных систем являются процедуры декомпозиции и агрегирования.

Декомпозиция — разделение систем на части, с последующим самостоятельным рассмотрением отдельных частей.

Очевидно, что декомпозиция представляют собой понятие, связанное с моделью, так как сама система не может быть расчленена без нарушений свойств. На уровне моделирования, разрозненные связи заменятся соответственно эквивалентами, либо модели систем строится так, что разложение ее на отдельные части при этом оказывается естественным.

Применительно к большим и сложным системам декомпозиция является мощным инструментом исследования.

Агрегирование является понятием, противоположным декомпозиции. В процессе исследования возникает необходимость объединения элементов системы с целью рассмотреть ее с более общих позиций.

Декомпозиция и агрегирование представляют собой две противоположные стороны подхода к рассмотрению больших и сложных систем, применяемые в диалектическом единстве.

Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого последующего момента времени, называются детерминированными.

Стохастические системы — системы, изменения в которых носят случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

По степени организованности: хорошо организованные, плохо организованные (диффузные).

Представить анализируемый объект или процесс в виде хорошо организованной системы означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты. Проблемная ситуация может быть описана в виде математического выражения. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

С точки зрения характера функций различаются специальные, многофункциональные, и универсальные системы.

Для специальных систем характерна единственность назначения и узкая профессиональная специализация обслуживающего персонала (сравнительно несложная).

Многофункциональные системы позволяют реализовать на одной и той же структуре несколько функций. Пример: производственная система, обеспечивающая выпуск различной продукции в пределах определенной номенклатуры.

Для универсальных систем: реализуется множество действий на одной и той же структуре, однако состав функций по виду и количеству менее однороден (менее определен). Например, комбайн.

По характеру развития 2 класса систем: стабильные и развивающиеся.

У стабильной системы структура и функции практически не изменяются в течение всего периода ее существования и, как правило, качество функционирования стабильных систем по мере изнашивания их элементов только ухудшается. Восстановительные мероприятия обычно могут лишь снизить темп ухудшения.

Отличной особенностью развивающихся систем является то, что с течением времени их структура и функции приобретают существенные изменения. Функции системы более постоянны, хотя часто и они видоизменяются. Практически неизменными остается лишь их назначение. Развивающиеся системы имеют более высокую сложность.

В порядке усложнения поведения: автоматические, решающие, самоорганизующиеся, предвидящие, превращающиеся.

Автоматические: однозначно реагируют на ограниченный набор внешних воздействий, внутренняя их организация приспособлена к переходу в равновесное состояние при выводе из него (гомеостаз).

Решающие: имеют постоянные критерии различения их постоянной реакции на широкие классы внешних воздействий. Постоянство внутренней структуры поддерживается заменой вышедших из строя элементов.

Самоорганизующиеся: имеют гибкие критерии различения и гибкие реакции на внешние воздействия, приспосабливающиеся к различным типам воздействия. Устойчивость внутренней структуры высших форм таких систем обеспечивается постоянным самовоспроизводством.

Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

Если устойчивость по своей сложности начинает превосходить сложные воздействия внешнего мира — это предвидящие системы: она может предвидеть дальнейший ход взаимодействия.

Превращающиеся — это воображаемые сложные системы на высшем уровне сложности, не связанные постоянством существующих носителей. Они могут менять вещественные носители, сохраняя свою индивидуальность. Науке примеры таких систем пока не известны.

Систему можно разделить на виды по признакам структуры их построения и значимости той роли, которую играют в них отдельные составные части в сравнение с ролями других частей.

В некоторых системах одной из частей может принадлежать доминирующая роль (ее значимость >> (символ отношения «значительного превосходства») значимость других частей). Такой компонент — будет выступать как центральный, определяющий функционирование всей системы. Такие системы называют централизованными.

В других системах все составляющие их компоненты примерно одинаково значимы. Структурно они расположены не вокруг некоторого централизованного компонента, а взаимосвязаны последовательно или параллельно и имеют примерно одинаковые значения для функционирования системы. Это децентрализованные системы.

Системы можно классифицировать по назначению. Среди технических и организационных систем выделяют: производящие, управляющие, обслуживающие.

В производящих системах реализуются процессы получения некоторых продуктов или услуг. Они в свою очередь делятся на вещественно-энергетические, в которых осуществляется преобразование природной среды или сырья в конечный продукт вещественной или энергетической природы, либо транспортирование такого рода продуктов; и информационные — для сбора, передачи и преобразования информации и предоставление информационных услуг.

Назначение управляющих систем — организация и управление вещественно-энергетическими и информационными процессами.

Обслуживающие системы занимаются поддержкой заданных пределов работоспособности производящих и управляющих систем.

В основе теории организаций лежит теория систем.

Система – это 1) целое, созданное из частей и элементов целенаправленной деятельности и обладающее новыми свойствами, отсутствующими у элементов и частей, его образующих; 2) объективная часть мироздания, включающая схожие и совместимые элементы, образующие особое целое, которое взаимодействует с внешней средой. Допустимы и многие другие определения. Общим в них является то, что система есть некоторое правильное сочетание наиболее важных, существенных свойств изучаемого объекта.

Признаками системы являются множество составляющих ее элементов, единство главной цели для всех элементов, наличие связей между ними, целостность и единство элементов, наличие структуры и иерархичности, относительная самостоятельность и наличие управления этими элементами. Термин «организация» в одном из своих лексических значений означает также «систему», но не любую систему, а в определенной мере упорядоченную, организованную.

Система может включать большой перечень элементов и ее целесообразно разделить на ряд подсистем.

Подсистема – набор элементов, представляющих автономную внутри системы область (экономическая, организационная, техническая подсистемы).

Большие системы (БС) – системы, представляемые совокупностью подсистем постоянно уменьшающегося уровня сложности вплоть до элементарных подсистем, выполняющих в рамках данной большой системы базовые элементарные функции.

Система обладает рядом свойств.

Свойства системы – это качества элементов, дающие возможность количественного описания системы, выражения ее в определенных величинах.

Базовые свойства систем сводятся к следующему:

  • – система стремится сохранить свою структуру (это свойство основано на объективном законе организации – законе самосохранения);
  • – система имеет потребность в управлении (существует набор потребностей человека, животного, общества, стада животных и большого социума);
  • – в системе формируется сложная зависимость от свойств входящих в нее элементов и подсистем (система может обладать свойствами, не присущими ее элементам, и может не иметь свойств своих элементов). Например, при коллективной работе у людей может возникнуть идея, которая бы не пришла в голову при индивидуальной работе; коллектив, созданный педагогом Макаренко из беспризорных детей, не воспринял воровства, матерщины, беспорядка, свойственных почти всем его членам.

Помимо перечисленных свойств большие системы обладают свойствами эмерджентности, синергичности и мультипликативности.

Свойство эмерджентности – это 1) одно из первично-фундаментальных свойств больших систем, означающее, что целевые функции отдельных подсистем, как правило, не совпадают с целевой функцией самой БС; 2) появление качественно новых свойств у организованной системы, отсутствующих у ее элементов и не характерных для них.

Свойство синергичности – одно из первично-фундаментальных свойств больших систем, означающее однонаправленность действий в системе, которое приводит к усилению (умножению) конечного результата.

Свойство мультипликативности – одно из первично-фундаментальных свойств больших систем, означающее, что эффекты, как положительные, так и отрицательные, в БС обладают свойством умножения.

Каждая система имеет входное воздействие, систему обработки, конечные результаты и обратную связь

Классификация систем может быть проведена по различным признакам, однако основной является группировка их в трех подсистемах: технической, биологической и социальной.

Техническая подсистема включает станки, оборудование, компьютеры и другие работоспособные изделия, имеющие инструкции для пользователя. Набор решений в технической системе ограничен и последствия решений обычно предопределены. Например, порядок включения и работы с компьютером, порядок управления автомобилем, методика расчета мачтовых опор для ЛЭП, решение задач по математике и др. Такие решения носят формализованный характер и выполняются в строго определенном порядке. Профессионализм специалиста, принимающего решения в технической системе, определяет качество принятого и выполненного решения. Например, хороший программист может эффективно использовать ресурсы компьютера и создавать качественный программный продукт, а неквалифицированный может испортить информационную и техническую базу компьютера.

Биологическая подсистема включает флору и фауну планеты, в том числе относительно замкнутые биологические подсистемы, например муравейник, человеческий организм и др. Эта подсистема обладает большим разнообразием функционирования, чем техническая. Набор решений в биологической системе также ограничен из-за медленного эволюционного развития животного и растительного мира. Тем не менее последствия решений в биологических подсистемах часто оказываются непредсказуемыми. Например, решения врача, связанные с методами и средствами лечения пациентов, решения агронома о применении тех или иных химикатов в качестве удобрений. Решения в таких подсистемах предполагают разработку нескольких альтернативных вариантов и выбор лучшего из них по каким-либо признакам. Профессионализм специалиста определяется его способностью находить лучшее из альтернативных решений, т.е. он должен правильно ответить на вопрос: что будет, если..?

Социальная (общественная) подсистема характеризуется наличием человека в совокупности взаимосвязанных элементов. В качестве характерных примеров социальных подсистем можно привести семью, производственный коллектив, неформальную организацию, водителя, управляющего автомобилем, и даже одного отдельного человека (самого по себе). Эти подсистемы существенно опережают биологические по разнообразию функционирования. Набор решений в социальной подсистеме характеризуется большим динамизмом, как в количестве, так и в средствах и методах реализации. Это объясняется высоким темпом изменения сознания человека, а также нюансов в его реакциях на одинаковые однотипные ситуации.

Перечисленные виды подсистем обладают различным уровнем неопределенности (непредсказуемости) в результатах реализации решений


Соотношение неопределенностей в деятельности различных подсистем

Не случайно в мировой практике легче получить статус профессионала в технической подсистеме, значительно труднее – в биологической и чрезвычайно трудно – в социальной!

Можно привести очень большой список выдающихся конструкторов, изобретателей, рабочих, физиков и других специалистов-техников; значительно меньше – выдающихся врачей, ветеринаров, биологов и т.д.; на пальцах можно перечислить выдающихся руководителей государств, организаций, глав семей и т.д.

Среди выдающихся личностей, работавших с технической подсистемой, достойное место занимают: И. Кеплер (1571–1630) – немецкий астроном; И. Ньютон (1643–1727) – английский математик, механик, астроном и физик; М.В. Ломоносов (1711–1765) – российский естествоиспытатель; П.С. Лаплас (1749–1827) – французский математик, астроном, физик; А. Эйнштейн (1879–1955) – физик-теоретик, один из основателей современной физики; С.П. Королев (1906/07–1966) – советский конструктор и др.

Среди выдающихся ученых, работавших с биологической подсистемой, можно назвать следующих: Гиппократ (ок. 460 – ок. 370 до н. э.) – древнегреческий врач, материалист; К. Линней (1707–1778) – шведский естествоиспытатель; Ч. Дарвин (1809–1882) – английский естествоиспытатель; В.И. Вернадский (1863–1945) – естествоиспытатель, гео- и биохимик и др.

Среди персоналий, работавших в социальной подсистеме, нет общепризнанных лидеров. Хотя по ряду признаков к ним относят российского императора Петра I, американского бизнесмена Г . Форда и других личностей.

Социальная система может включать биологическую и техническую подсистемы, а биологическая – техническую


Социальные, биологические и технические системы могут быть: искусственными и естественными, открытыми и закрытыми, полностью и частично предсказуемыми (детерминированные и стохастические), жесткими и мягкими. В дальнейшем классификация систем будет рассматриваться на примере социальных систем.

Искусственные системы создаются по желанию человека или какого-либо общества для реализации намеченных программ или целей. Например, семья, конструкторское бюро, студенческий профсоюз, предвыборное объединение.

Естественные системы создаются природой или обществом. Например, система мироздания, циклическая система землепользования, стратегия устойчивого развития мировой экономики.

Открытые системы характеризуются широким набором связей с внешней средой, сильной зависимостью от нее. Например, коммерческие фирмы, средства массовой информации, органы местной власти.

Закрытые системы характеризуются главным образом внутренними связями и создаются людьми или компаниями для удовлетворения потребностей и интересов преимущественно своего персонала, компании или учредителей. Например, профсоюзы, политические партии, масонские общества, семья на Востоке.

Детерминированные (предсказуемые) системы функционируют по заранее заданным правилам, с заранее определенным результатом. Например, обучение студентов в институте, производство типовой продукции.

Стохастические (вероятностные) системы характеризуются трудно предсказуемыми входными воздействиями внешней и (или) внутренней среды и выходными результатами. Например, исследовательские подразделения, предпринимательские компании, игра в русское лото.

Мягкие системы характеризуются высокой чувствительностью к внешним воздействиям, а вследствие этого – слабой устойчивостью. Например, система котировок ценных бумаг, новые организации, человек при отсутствии твердых жизненных целей.

Жесткие системы – это обычно авторитарные, основанные на высоком профессионализме небольшой группы руководителей организации. Такие системы обладают большой устойчивостью к внешним воздействиям, слабо реагируют на небольшие воздействия. Например, церковь, авторитарные государственные режимы.

Кроме того, системы могут быть простыми и сложными, активными и пассивными.

Каждая организация должна обладать всеми признаками системы. Выпадение хотя бы одного из них неизбежно приводит организацию к ликвидации. Таким образом, системный характер организации – это необходимое условие ее деятельности.


Системные признаки, свойства, характеристики. Основные положения системного анализа. Особенности анализа редких событий Системное мышление и управление. Эффективность функционирования и развития систем. Основные принципы системного управления. Энтропийные закономерности.

СИСТЕМНЫЕ ПРИЗНАКИ, СВОЙСТВА, ХАРАКТЕРИСТИКИ

Общесистемные закономерности - это закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем.

Поскольку не существует достаточно корректного определения системы, анализ различных системных понятий показывает, что существует несколько основных признаков, свойств и характеристик, которыми должен обладать объект или явление, чтобы их можно было считать системой .

Прежде всего, это признаки целостности и членимости. Основным здесь является признак целостности, так как система рассматривается как единое целое, состоящее из взаимодействующих и (или) взаимосвязанных элементов.

Целостность - первичность целого по отношению к частям, появление у системы новой функции, нового качества, органично вытекающих из составляющих ее элементов, но не присущих ни одному из них, взятому изолированно. Под целостностью понимают внутреннее единство и принципиальную несводи- мость свойств системы к сумме свойств составляющих ее элементов. Целостная система определяется как множество элементов R с фиксированным свойством R

S - предикат «...быть системой*.

Наличие це,юстности подразумевает, что изменение состояния любого элемента системы оказывает воздействие на другие элементы и может вести к изменению состояния всей системы. Поэтому часто невозможно провести декомпозицию системы так, чтобы не потерять ее интегративных свойств.

  • Ко второй группе относятся признаки наличия устойчивых связей (отношений) между элементами системы, превосходящих по своей силе (мощности) связи этих элементов с элементами, не входящими в данную систему. Следует учитывать, что среди любых связей главные - системообразующие. Их формирование определяет интегративные свойства системы, ее специфику. При этом отдельные свойства ряда элементов могут усиливаться, а другие подавляться. Однако степень подавления, как правило, никогда не бывает полной, в связи с чем при формировании системы возникают не только «полезные» функции, обеспечивающие эффективность большинства состояний и сохранение качественных особенностей, но и дисфункции, негативно влияющие на функционирование системы. Но с системных позиций определяющими являются лишь существенные связи, определяющие интегративные свойства.
  • Третья группа признаков определяет наличие интегративных свойств (качеств), присущих системе в целом, но отсутствующих у элементов. Интегративные свойства обусловливает тот факт, что свойства ее, несмотря на зависимость от свойств элементов, не определяются ими полностью. Интегративное свойство - это то новое, что формируется при согласованном взаимодействии объединенных в структуру элементов и чем элементы до этого не обладали.

Возникновение новых качеств (связей, свойств) при объединении элементов в подсистемы, а подсистем в систему носит название эмерджентности.

Эмерджентность - степень несводимое™ свойств системы к свойствам элементов, из которых она состоит. Это свойство, обусловливающее появление новых качеств, не присущих элементам, входящих в состав системы. Сущность эмерджентности заключается в накоплении и усилении одних свойств компонентов одновременно с нивелированием, ослаблением и скрытием других свойств за счет их взаимодействия. Поэтому оказывается невозможным предсказать свойства системы в целом, разбирая и анализируя ее по частям.

Каждый элемент системы к , как правило, обладает совокупностью собственных свойств (состояний , режимов функционирования , поведенческих возможностей и т.п.) О Однако количество свойств системы N всегда больше, чем сумма свойств отдельно взятых элементов 0 этой системы. При этом у системы появляется

новых, особых системных свойств, обеспечивающих ее целостность (интегра - тивность) - внутреннее единство и несводимое™ свойств системы к сумме свойств, составляющих се элементов. Хотя свойства сложных систем не сводятся к сумме свойств элементов, они имеют важную особенность своего развития: элементы их с течением времени приобретают все более специализированные функции при одновременном возрастании целостности и устойчивости исходной системы. Этим тоже определяется наличие интегративных свойств (качеств), присущих системе в целом.

Одним из системных признаков является неаддитивность , поскольку свойства изучаемого объекта невозможно свести к свойствам его частей, а также вывести только на их основании.

Неаддитивность - принципиальная несводимое™ свойств системы к сумме свойств состаатяющих её компонентов. Поэтому попытка оценить эффективность системы Э с в виде суммы взвешенных частных эффективностей ее компонентов Эi является грубым приближением и справедлива только для вырожденной системы, распавшейся на отдельные элементы. Только тогда становится справедливым равенство, определяющее физическую аддитивность".

к(- нормированные коэффициенты, учитывающие «вклад» каждого /-го компонента в эффективность системы -

Четвертая группа - это признаки, характеризующие наличие в системе определенной организации , что проявляется в снижении неопределенности (энтропии), охватывая только те свойства элементов, которые связаны с процессами сохранения и развития целостности, т.е. существования системы. Организация возникает в том случае, когда между элементами (объектами, явлениями) возникают закономерные устойчивые связи или (и) отношения, актуализирующие одни свойства элементов и ограничивающие другие. Организация проявляется в структурных особенностях системы, сложности, способности развития и сохранения системы. Организованность системы является более высокой ступенью ее упорядоченности. Для повышения организованности и самоорганизации необходимо извне или изнутри (из подсистем) получить дополнительную энергию и негэнтропию.

Свойство системы определяет ее отличие или сходство ее с другими системами, проявляющееся при их взаимодействии.

Характеристика - то, что отражает некоторое свойство системы.

Свойства системы порождаются ее структурными закономерностями. В зависимости от вида организации из комбинации элементов и их связей можно образовать различные структуры.

В хорошо организованной системе взаимодействия структурных элементов /ь h> > tm системы S взаимосогласованы, целенаправленны и синхронизированы на достижение общей цели. Потенциал 0(5) такой системы больше суммы потенциалов всех составляющих элементов (подсистем)

Таким образом, структурные закономерности это наиболее общие закономерности, которые порождают свойства системы как целого.

Одним из основных системных свойств является иерархическое строение системы. Ото связано с потенциальной членимостью системы и наличием для каждой системы многообразия связей и отношений. Иерархическое строение может быть присуще и отношениям (связям), так как они тоже могут быть разложены на элементарные, и на этой основе сформирована система более низкого уровня. В результате система выступает как сложное иерархическое образование, в котором выделяются различные уровни и типы взаимосвязей.

Иерархия - принцип структурной организации многоуровневых систем, состоящий в упорядочении взаимодействий между уровнями и предусматривающий подчиненность системы надсистеме (гиперсистеме) и подсистемы - системе. При этом каждый компонент системы может рассматриваться как система (подсистема) более широкой глобальной системы. Цель каждого элемента нижнего уровня - подчинение цели более высокого уровня. Только тогда сложная иерархическая система может функционировать как единое целое. На рис. 3.1 схематично представлена иерархическая система, в которой подлежащие детальному исследованию системы A t А 2 , А$ входят в надсистсму (гиперсистему) D. Система А состоит из трех подсистем В { , В 2 , By Если исследователя заинтересуют характеристики одной из подсистем, например, В } то уже В будет исследуемой системой, y-fi - ее надсистемой (гиперсистемой), a Q, С2, С3 - подсистемами.


Рис. 3.1.

В результате иерархического строения появляется возможность последовательного включения систем более низкого уровня в системы более высокого уровня. Иерархия систем хорошо иллюстрируется древовидными структурами теории графов. Понятие уровень употребляется в нескольких значениях.

Во-первых, уровень трактуется в организационном плане.

Например, уровень организации работ Системного оператора (ЦДУ) по типам решаемых задач существенно отличается от задач, решаемых на уровне РДУ и уровне диспетчерских служб потребителей.

Во-вторых, уровнем фиксируется определенная общность законов функционирования, единство пространственно-временной топологии построения компонентов системы. С этих позиций любой производственный объект может рассматриваться на технологическом, информационно-управленческом, экономическом, социальном или иных уровнях. Уровни такого типа принято называть стратами. Стратифицированное представление можно использовать как средство последовательного углубления представлений о системе, ее детализации. Идея стратификации и Si с заданными на них отношениями R и /?2 считаются изоморфными, если:

а) их элементы попарно взаимооднозначно соответствуют друг другу;

б ) если некоторое подмножество элементов первой системы связано отношением /?!, то подмножество соответствующих элементов второй системы связано отношением Ri и наоборот.

Например. между элементами Х, *2 и у у, У 2 первой системы Si существуют отношения R. Аналогично во второй системе Si соотносятся Rj соответствующие им элементы (рис. 3.4, а).


Рис. 3.4.

Наличие изоморфизма двух анализируемых систем и Si означает, что если система S является изоморфной системе Si, то S может рассматриваться как

модель M(S) системы Si и наоборот. Тогда изучение свойств системы 5*2 сводится к изучению свойств модели системы S - M(S{) или к использованию ее известных свойств.

Например, изоморфной является структура радиальной электрической сети, обеспечивающая питание группы разнородных потребителей.

Практика показывает выполняется некоторое отношение R t то для соответствующих элементов второй системы выполняется соответствующее отношение Ri (рис. 3.4, б).

При гомоморфизме аналогия между двумя системами меньше, чем при изоморфизме, сходство с оригиналом неполное, а реальная система может иметь различные гомоморфные ей модели. Таким образом изоморфизм является частным случаем гомоморфизма.

Такие показатели, как количество элементов (объем оборудования), составляющих систему; структура связей между ними; квалификация персонала, осуществляющего создание системы, ее монтаж, наладку, эксплуатацию; удобство эксплуатации и т.п. уже дают интуитивное представление о сложности системы , которая является одной из основных системных характеристик. Объективная характеристика сложности системы зависит от качественных и количественных различий компонентов и связей системы (ее разнообразия).

Сложность:

  • 1) относительное понятие, зависящее от уровня исследования (анализа) системы;
  • 2) характеристика системы, нелинейно зависящая от множества составляющих ее элементов (подсистем), качественных различий между ними, количества, вида и формы связей;
  • 3) свойство, обусловленное внутренней закономерностью системы, которое определяет ряд наиболее существенных ее параметров, включая пространственную структуру и свойства протекающих в этой структуре процессов.

Сложные системы нельзя описать на языке простых законов. Сложность в большей степени зависит от разнообразия элементов и связей, чем от их количества. Число элементов, сила межэлсментных связей, их локализация могут неконтролируемо меняться, что делает поведение сложных систем плохо предсказуемым. Опыт наблюдения за реальными объектами показывает, что они функционируют в условиях действия большого количества случайных факторов. Поэтому предсказание поведения сложной системы может иметь смысл только в рамках вероятностных категорий. Для ожидаемых событий могут быть указаны лишь вероятности их наступления, а относительно целого ряда величин приходится анализировать законы распределения, средние значения, дисперсии и другие вероятностные характеристики.

Для изучения процесса функционирования каждой конкретной сложной системы с учетом случайных факторов необходимо иметь достаточно четкое представление об источниках случайных воздействий и надежные данные об их количественных характеристиках. Поэтому расчету или теоретическому анализу, связанному с исследованием сложной системы, предшествует накопление статистического материала, характеризующего поведение отдельных элементов и системы в целом в реальных условиях эксплуатации.

В большинстве исследований различают:

  • - структурную, или статическую сложность, определяемую структурой и связностью элементов и подсистем;
  • - динамическую сложность (сложность поведения) системы во времени;
  • - эволюционную сложность (сложность развития), включающую качественно различные состояния, стадии, фазы, этапы и уровни развития системы.

Сложность системы определяет и нелинейность се переменных параметров, структуры, связей. Нелинейность приводит к тому, что многие переменные зависят не только от времени, но и являются функциями других переменных, влияют друг на друга. Поэтому одна из задач оптимизации системы - достижение максимальной организованности при той же сложности или уменьшение сложности при данном уровне организованности. В процессе познания любой системы необходимо ставить вопросы, яатяющиеся критериальными парами, взаимосвязи которых представлены на рис. 3.5.


Рис. 3.5.

Система, состоящая даже из относительно небольшого количества элементов способна обладать большой динамической сложностью. Следует учитывать, что появление даже одного дополнительного элемента может привести к созданию множества дополнительных связей. Причём добавление каждого последующего элемента увеличивает количество связей в большей степени, чем при добавлении предыдущего.

Например, имеется два элемента А и В. Здесь возможны только две связи и два направления (рис. 3.6, а).

Добавление ещё одного элемента С увеличивает число возможных связей до 6 (рис. 3.6, 6 ). Если два элемента А и В вступают в коалицию, и она начинает влиять на С, то число связей увеличивается до 8 (рис. 3.6, в). А если таких коалиций может быть 3 (АВ, АС, ВС), то число связей достигнет 12.

Формальное понятие сложности можно представить следующим образом.

Пусть имеется п типов элементов и к - число элементов каждого типа. Для каждого типа элементов методом экспертных оценок или интуитивно (с учетом накопленного опыта) устанавливается величина сложности элемента, измеряемая некоторым числом sy. Тогда сложностью s системы, состоящей из элементов со сложностью Sj (/" = 1, 2, я), будем называть величину

kj (j - [, 2, m) - число элементов /-го типа, входящих в систему.


Рис. 3.6.

Так как при наличии пк = L элементов в системе максимальное число связей между ними N = L(L -1), то при достаточно большом L число фактических

связей - N При этом относительное число реализованных связей а = .

Тогда сложность системы оценивается как

где

v - коэффициент, учитывающий сложность связей по сравнению со сложностью элементов системы.

Есть немало предложений по представлению большой технической системы в виде «черного ящика». Однако еще С. Лем 1 в «Сумме технологии» отмечал: черный ящик нельзя запрограммировать с помощью алгоритма.

Алгоритм:

  • 1) раз и навсегда составленная программа действий, в которой все заранее предусмотрено;
  • 2) точное, воспроизводимое, поддающееся исполнению предписание, определяющее - шаг за шагом, - каким путем надлежит решать поставленную задачу.

Имея алгоритм некоторого процесса, можно исследовать - в заданных границах - все последовательные фазы, все этапы этого процесса.

Применительно к очень сложным системам подобное исследование невозможно. Черный ящик, как очень сложная система, не поддается описанию; алгоритм его никому неизвестен и не может быть известен, его действия имеют вероятностный характер, и, значит, поставленный дважды в одну и ту же ситуацию, он вовсе нс обязан поступать одинаково. Кроме того - и это, наверное, самое важное, - черный ящик есть машина, которая учится на собственных ошибках в процессе предпринимаемых ею конкретных действий.

1 Лем С. Сумма технологии. М.: Изд-во ACT; СПб.: Terra Fantastica, 2002. 668 с.

Реальная сложность проблемы не позволяет замкнуться и в вероятностных схемах. Даже там, где имеются системы с высокой степенью организации, весьма малые структурные изменения могут вызвать значительные перемены, далеко не всегда сопровождающиеся положительными последствиями. Поэтому можно отметить, что простых систем в действительности не существует. Однако на практике этой сложностью можно пренебречь, если она не влияет на то, что нас интересует. В современной теории систем эта процедура называется - выделение уровня исследования : исследователь переходит от исходной системы, имеющей бесконечно сложную структуру, к модели , структура которой содержит ограниченное число связей и переменных. Все исследование сводится к выявлению существенных перемешцдх и одновременному (научно обоснованному) отбрасыванию несущественных.

Одной из характеристик сложности может быть способность системы к самоорганизации.

Самоорганизация - свойство системы изменять свою внутреннюю структуру и функцию для адаптации к воздействию окружающей среды. Самоорганизация связана с образованием новой структуры и снижением энтропии системы. Порядок в системе может поддерживаться не только управлением из единого центра, а и с помощью самоорганизации.

Самоорганизующиеся системы делают возможной адаптацию к окружающей среде, и именно такие системы гибки и устойчивы к возмущениям внешних условий. Самоорганизация выражается в возможности прогнозировать изменения структуры и функций системы при выборе цели с адаптацией к окружающей среде и выполнять управление с определенной целью. В самоорганизующихся системах фиксируется опыт о прошлом, настоящем и возможном будущем, как системы, так и окружающей среды. На основании этих знаний формируются прогнозы будущего, которые определяют стратегические цели и траектории движения к ним. Самоорганизующиеся системы наследуют «родовые признаки» и приобретают новые свойства, адекватные изменениям внешней среды, в том числе путем мутации, что свидетельствует о творческой сущности природы в се эволюции.

Основоположниками современной теории самоорганизации систем считаются лауреат Нобелевской премии И. Пригожий и Ю А. Урманцев, которыми показано, что только в диссипативных системах возможно возникновение новых структур и, следовательно, самоорганизация. Основным признаком диссипатив- ности системы и ее самоорганизации является необратимость процесса, происходящего в системе.

Если система физическая, то благодаря диссипации (рассеянию энергии или переходу энергии движения в тепловую) процессы, происходящие в ней, необратимы.

Если система социальная, экономическая и т.п., в ней не вводится классическое понятие энергии. Необратимость происходящего в таких системах процесса - условна. Диссипативность в них понимается в более широком смысле, чем простое рассеяние энергии, а именно как свойство, отвечающее за необратимость происходящих процессов. С этой точки зрения рассеяние энергии (диссипация) - частное проявление данного свойства в физических системах.

Необратимость процесса является главным свойством самоорганизации системы, так как только при необратимых процессах, происходящих в системе, возможна ее самоорганизация и снижение энтропии. В обратимых процессах, характерных для консервативных систем, самоорганизация невозможна, и энтропия всегда постоянна или растет.

Рассмотрим систему А , взаимодействующую с внешней средой и выполняющую возложенную на ее функцию. Другая система - В контролирует качество работы системы А, путем оценки тех воздействий, которые внешняя среда оказывает на систему А. Если воздействия внешней среды на систему А находятся в допустимых пределах, зафиксированных в памяти системы В, она выдает подтверждающий сигнал. В противном случае система В вырабатывает команды, способные изменять значения параметров некоторых элементов и (или) структуру за счет разрыва некоторых связей или включения новых, отключения ненужных в данный момент или включения резервных элементов системы А. Процесс последовательного изменения свойств системы А заканчивается попаданием воздействий внешней среды уже в допустимые пределы параметров функционирования системы А. Это означает, что качество работы системы А удовлетворяет заданным требованиям, и свойства ее не подлежат дальнейшему изменению до тех пор, пока условия внешней среды вновь не выйдут за допустимые пределы, тогда процесс управления продолжится.

Такой подход позволяет объединить системы А и В в единую систему. Если в этой новой системе процессы последовательного изменения свойств, параметров, показателей за конечное время приводят к тому, что воздействия внешней среды попадают в допустимые пределы, то эта система называется самоорганизующейся. Другими словами, самоорганизующимися называют такие системы, которые за счет изменения своих свойств обладают способностью устойчиво сохранять характер взаимодействия с внешней средой, несмотря на возможные изменения внешних и внутренних факторов.

Одним из условий существования любой системы является ее устойчивость к возмущающим воздействиям, которым она постоянно подвергается. Термин устойчивость, как и многие другие термины теории систем многозначен и представляется в нескольких редакциях в зависимости от вида системы и ее состояния, цели исследования и других факторов и параметров.

Устойчивость:

  • 1) способность системы сохранять динамическое равновесие со средой как способность к изменению и адаптации;
  • 2) способность системы реагировать на возмущения внутренних и внешних параметров, сохраняя одно и то же, или близкое к нему состояние (поведение), на протяжении определенного периода времени;
  • 3) способность системы самостоятельно поддерживать свой гомеостазис.

Увеличение устойчивости иногда прямо связано с увеличением сложности

системы (общего числа элементов и их резервированием), усложнением реакции на возмущения. Для ясности изложения вводятся понятия классической (по A.M. Ляпунову !) и структурной устойчивости. Первое используется в задачах исследования результатов внешних воздействий на фиксированные системы, второе - для выявления качественных изменений в траекториях движения (поведении) системы при изменениях ее структуры.

В функционировании и трансформации нелинейных систем с неустойчивым равновесием (или в области неустойчивого равновесия) важную роль играют случайные события. При этом даже ничтожное по своему значению и величине событие из-за положительной нелинейной обратной связи может вызвать существенные и неожиданные по своей эффективности воздействия (часто отрицательные) на систему. В точках бифуркации начинается процесс ветвления возможных

1 Александр Михайлович Ляпунов (1857-1918) - русский математик и механик, академик Петербургской АН, в фундаментальной работе «Общая задача об устойчивости движения» он всесторонне рассмотрел проблему устойчивости движения систем с конечным числом степеней свободы.

путей развития системы, прогноз хода которого с достаточной точностью невозможен. Эти вопросы находят отражение в «теории хаоса».

Часть параметров системы являются системными (основными, жизненно важными). Они могут быть не только количественными, но и качественного характера. От их значения зависит ответ на вопрос: возможно ли длительное, устойчивое существование системы, ее живучесть , сохранение ее гомеостаза.

Гомеостаз - функциональное состояние системы, при котором обеспечивается поддержание динамического постоянства в допустимых пределах жизненно важных функций и параметров системы при изменениях внутренней и внешней среды. Он сохраняет жизненно важные функции и параметры, поддерживая тем самым существование самой системы с интегративными свойствами. Предполагается, что гомеостаз достигается за счет действия систем управления. В более широком смысле можно говорить о наличии гомеостаза при резервировании элементов системы.

Влияние изменения жизненно важных параметров на систему неодинаково и зависит от множества факторов внешнего (состояние среды, связи с другими системами) и внутреннего (диапазон изменений параметров) характера. Как уже отмечалось (раздел 2), последовательная смена состояний системы, связанная с изменением параметров режима и (или) параметров системы во времени, определяет ее поведение.

Пример. Определим (рис. 3.7) область допустимого изменения общесистемного параметра X как {а, 0}.


Рис. 3. 7.

Пока его значение не выходит за пределы а X

При выходе X за пределы области системного гомеостаза (пунктир на рис. 3.7) система утрачивает свое интегративное качество, и по определению при / > *5 перестает существовать. Однако критические значения частных компонент общесистемного параметра X могут принимать значения {у > а, 6 частичного гомеостаза у X X или 5 X 0 система обычно переходит в новое качественное состояние, но не прекращает существовать как целое. Это происходит в диапазонах времен {/,/ 2 } и {/ 3 ,/ 4 }.

Приближение системных параметров к предельно допустимым значениям (области А и В на рис. 3.7) может порождать ситуацию системного кризиса - стадии жизни системы, когда длительное дальнейшее функционирование системы оказывается под вопросом.

Системный кризис может привести к распаду, разрушению и даже прекращению существования системы, если вовремя не принять соответствующие меры. Здесь система вступает в зону бифуркации и будущее ее состояние становится непредсказуемым. Под влиянием малейших флуктуаций даже какого-либо одного фактора, внутреннего или внешнего, она может начать процесс случайного движения в нескольких альтернативных направлениях, крайние из которых - возврат в нормальное состояние или прекращение существования.

В качестве иллюстрации на рис. 3.8 приведены траектории движения системы с точками возможной бифуркации .


Рис. 3.8.

Под действием ряда факторов в некоторой точке р, происходит разветвление траектории движения системы. В этой точке система сама принимает решение и случайным образом выбирает новое направление своего дальнейшего движения до следующей точки бифуркации pj+. Там снова происходит выбор и процесс повторяется. Точно предсказать моменты бифуркаций и результаты выбора направления движения невозможно ни при каком сколь угодно глубоком и полном знании системы, ни при каком сколь угодно длительном наблюдении за ее поведением.

Особый вид кризисов представляют собой внезапные, резкие, лавинообразные изменения параметров систем из-за дезорганизующих внешний воздействий или внутренних противоречий. Сущность любого скачкообразного преобразования заключается в таких резких изменениях отдельных структурных элементов системы (или системы в целом), которые приводят к внезапному изменению путей ее дальнейшего развития. Некоторые формы таких скачков рассматриваются как катастрофы (штрих-пунктир на рис. 3.7).

Лавинообразный процесс (рис. 3.9) обусловлен накоплением факторов (энергии) деградации еще до возникновения «взрыва*. Постоянно накапливаемая энергия деградации образует негативный фон Э Н ф. После превышения энергией деградации значения Э Н фл при / л происходит интенсивное, лавинообразное развитие процесса, которое в момент / в достижения величины Э Н ф„ приводит к катастрофе («взрыву*). Частным случаем развитием лавинообразного процесса является экспоненциальный рост , который обладает характерным свойством, называемым «время удвоения *. Время удвоения - интервал, за который происходит удвоение значения соответствующей переменной величины системы.


Катастрофа, «взрыв»

Пороговое значение энергии деградации

Рис. 3.9. Развитие лавинообразного процесса за счет накопления негативного фона деградации

Пример. Экспоненциальный рост нагляден при сравнении его с некоторым пределом. Предположим, что один из системных параметров, начиная со значения Я - 0,1. удваивается каждый год (табл. 3.1).

Таблица 3.1

Кризисный уровень этого системного параметра примем П кр = 10,0. Быше его конфликтные взаимодействия между его ростом и принятым ограничением становятся существенными. Для более наглядной иллюстрации при построении зависимости Я(/) масштаб следует выбирать так, чтобы кризисный уровень находился примерно на середине вертикальной оси, поскольку при этом наглядно видно крутизну кривой и «взрывной* характер процесса.

Если внутри системы наблюдается напряженное состояние, то достаточно появления спускового (три герного) механизма , способного перевести систему в другое состояние. В зависимости от величины напряженности требуется разный уровень спускового механизма для освобождения внутренней энергии системы и ее преобразования.

Примерами развития аварийных лавинообразных процессов в электроэнергетике, приводящих к нарушению ее устойчивости, являются «лавина напряжения» и «лавина частоты*.

Чтобы остановить любой лавинообразно развивающийся процесс необходимо выполнить четыре основных условия:

  • 1) уменьшить рост (снижение) определяющего системного параметра;
  • 2) уменьшить время нахождения определяющего параметра в критических областях А и В (см. рис. 3.7);
  • 3) повысить вероятность результативного воздействия на определяющий параметр при приближении к области системного гомеостаза а р (см. рис. 3.7);
  • 4) эффективно прогнозировать поведение определяющего параметра.

В эволюции развития сложных систем существенную роль играет системная интеграция. Она основана на механизме отбора, сохраняющем, координирующем и усиливающем те связи и отношения, которые увеличивают структурное и функциональное соответствие элементов системы, разрушая и ослабляя неустойчивые соотношения. При этом наблюдается совершенствование организации системы и ее структуры, что, как правило, сопровождается изменением (часто увеличением) количества элементов и разнообразия связей с окружающей средой. Такое явление представляется как системный прогресс.

Системный прогресс характеризуется возникновением структурных и функциональных изменений, ведущих к совершенствованию организации системы. Он состоит в увеличении количества полезной информации, заключенной в ее структуре и может сопровождаться усложнением организации, хотя процесс развития социальных структур, научных теорий часто приводит к их упрощению. Однако в целом продвинутые системы в виде современных технологий, экономики, общественных структур обычно становятся сложнее.

Резюмируя приведенные рассуждения, отметим, что изучаемый объект представлен в данном исследовании как система, если он идентифицируется по признакам членимости, целостности, связанности и неаддитивности, а само исследование относится к классу системных, если оно процедурно строится без нарушения положений этих признаков.

Понятие системы. Признаки системности

Конспект лекций по дисциплине

Теоретические основы информационных процессов

Глава 1
Основные понятия теории информационных систем

Основные понятия и определения

Понятие системы. Признаки системности

Потребность в использовании понятия «система» возникала для объектов различной физической природы с древних времен: еще Аристотель обратил внимание на то, что целое (т. е. система) несводимо к сумме частей, его образующих. Сейчас ученые, изучающие общую теорию систем, провозгласили «принцип эмерджентности».

Принцип эмерджентности заключается в том, что свойства целого не сводятся к простой сумме свойств составляющих его частей, а при объединении частей в целое образуется новое качество, не присущее отдельным частям.

Термин «система» и связанные с ним понятия комплексного, системного подхода исследуются и подвергаются осмыслению философами, биологами, психологами, кибернетиками, физиками, математиками, экономистами, инженерами различных специальностей. Потребность в использовании этого термина возникает в тех случаях, когда невозможно что-то продемонстрировать, изобразить, представить одним выражением и нужно подчеркнуть, что это будет большим, сложным, не полностью сразу понятным (с неопределенностью) и целым, единым. Например – «солнечная система», «система управления станком», «система организационного управления предприятием (городом, регионом и т. п.)», «экономическая система», «система кровообращения» и т.д.

В математике термин система используется для отображения совокупности математических выражений или правил – «система уравнений», «система счисления», «система мер» и т. п. Казалось бы, в этих случаях можно было бы воспользоваться терминами «множество» или «совокупность». Однако понятие системы подчеркивает упорядоченность, целостность, наличие определенных закономерностей.

Если попытаться дать общее определение для любых систем, то оно будет очень абстрактным и не удобным для практических целей, однако у всех систем, независимо от их физической природы, есть некоторые общие признаки.

Система – множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целостность, единство.

Признаки системности:

§ структурированность, то есть возможность расчленения системы на составляющие компоненты; С одной стороны, система это целостное образование и представляет целостную совокупность элементов, а, с другой стороны, в системе четко можно выделить ее элементы (целостные объекты).

§ взаимосвязанность отдельных частей, то есть наличие более или менее устойчивых связей (отношений) между элементами системы, превосходящих по своей силе (мощности) связи (отношения) этих элементов с элементами, не входя­щими в данную систему. В системах любой природы между элементами существуют те или иные связи (отношения). При этом с системных позиций определяющими являются не любые связи, а только лишь существенные связи (отноше­ния), которые определяют интегративные свойства системы.

§ интегративность системы, то есть наличие единых целей, свойств, качеств, присущих системе в целом, но не присущих ее элементам в отдельности. Интегративные свойства системы обуславливает тот факт, что свойство системы, несмотря на зависимость от свойств элементов, не определяется ими полностью. Из этого следует, что простая совокупность элементов и связей между ними еще не система, и поэтому, расчленяя систему на от­дельные части (элементы) и изучая каждую из них в отдельности, нельзя познать все свойства нормально (хорошо) организованной системы в це­лом.