Чьи свойства определяет электрон. Фундаментальные и квантовые свойства электрона. Виды электронной эмиссии

Все вокруг нас на планете состоит из маленьких, неуловимых для зрения частиц. Электроны - это одни из них. Их открытие произошло относительно недавно. И оно открыло новые представления о механизмах передачи электричества и устройства мира в целом.

Как делили неделимое

В современном понимании электроны - это элементарные частицы. Они являются целостными и не раскалываются на более мелкие структуры. Но такое представление существовало не всегда. До 1897 года об электронах не имели никакого понятия.

Ещё мыслители Древней Греции догадывались о том, что каждая вещь на свете, подобно зданию, состоит из множества микроскопических «кирпичиков». Наименьшей единицей вещества тогда считался атом, и это убеждение сохранялось веками.

Представление об атоме изменились только в конце XIX века. После исследований Дж. Томсона, Э. Резерфорда, Х. Лоренца, П. Зеемана, мельчайшими неделимыми частицами были признаны атомные ядра и электроны. Со временем были открыты протоны, нейтроны, а ещё позже - нейтрино, каоны, пи-мезоны и т. д.

Сейчас науке известно огромное количество элементарных частиц, свое место среди которых неизменно занимают и электроны.

Открытие новой частицы

  • n - главное число, определяющее запас энергии электрона (соответствует номеру периода химического элемента);
  • l - орбитальное число, которое описывает форму электронного облака (s - сферическая, p - форма восьмерки, d - форма клевера или двойной восьмерки, f - сложная геометрическая форма);
  • m - магнитное число, определяющее ориентацию облака в магнитном поле;
  • ms - спиновое число, характеризующее обращение электронов вокруг своей оси.

Заключение

Итак, электроны - это стабильные отрицательно заряженные частицы. Они элементарные и не могут распадаться на другие элементы. Их относят к фундаментальным частицам, то есть таким, которые входят в структуру вещества.

Электроны движутся вокруг атомных ядер и составляют их электронную оболочку. Они влияют на химические, оптические, механические и магнитные свойства различных веществ. Эти частицы участвуют в электромагнитном и гравитационном взаимодействии. Их направленное движение создает электрический ток и магнитное поле.

Электрон - отрицательно заряженная элементарная частица, принадлежащая к классу лептонов (см. Элементарные частицы), носитель наименьшей известной сейчас массы и наименьшего электрического заряда в природе. Открыт в 1897 г. английским ученым Дж. Дж. Томсоном.

Электрон - составная часть атома, число электронов в нейтральном атоме равно атомному номеру, т. е. числу протонов в ядре.

Первые точные измерения электрического заряда электрона провел в 1909-1913 гг. американский фиаик Р. Милликен. Современное значение абсолютной величины элементарного заряда составляет единиц СГСЭ или примерно Кл. Считается, что этот заряд действительно «элементарен», т. е. он не может быть разделен на части, а заряды любых объектов являются его целыми кратными.

Вы, возможно, слышали о кварках с электрическими зарядами и но, по-видимому, они прочно заперты внутри адронов и в свободном состоянии не существуют. Вместе с постоянной Планка h и скоростью света с элементарный заряд образует безразмерную постоянную = 1/137. Постоянная тонкой структуры - один из важнейших параметров квантовой электродинамики, она определяет интенсивность электромагнитных взаимодействий (наиболее точное современное значение = 0,000015).

Масса электрона г (в энергетических единицах ). Если справедливы законы сохранения энергии и электрического заряда, то запрещены любые распады электрона, такие, как и т. п. Поэтому электрон стабилен; экспериментально получено, что время его жизни не менее лет.

В 1925 г. американские физики С. Гаудсмит и Дж. Уленбек для объяснения особенностей атомных спектров ввели внутренний момент количества движения электрона - спин (s). Спин электрона равен половине постоянной Планка , но физики обычно говорят просто, что спин электрона равен = 1/2. Со спином электрона связан его собственный магнитный момент . Величина эрг/Гс называется магнетоном Бора МБ (это принятая в атомной и ядерной физике единица измерения магнитного момента; здесь h - постоянная Планка, и m - абсолютная величина заряда и масса электрона, с - скорость света); числовой коэффициент - это -фактор электрона. Из квантовомеханического релятивистского уравнения Дирака (1928) следовало значение т. е. магнитный момент электрона должен был равняться в точности одному магнетону Бора.

Однако в 1947 г. в опытах было обнаружено, что магнитный момент примерно на 0,1% больше магнетона Бора. Объяснение этого факта было дано с учетом поляризации вакуума в квантовой электродинамике. Весьма трудоемкие вычисления дали теоретическое значение (0,000000000148), которое можно сравнить с современными (1981) экспериментальными данными: для электрона и позитрона (0,000000000050).

Величины вычислены и измерены с точностью до двенадцати знаков после запятой, причем точность экспериментальных работ выше точности теоретических расчетов. Это самые точные измерения в физике элементарных частиц.

Особенностями движения электронов в атомах, подчиняющегося уравнениям квантовой механики, определяются оптические, электрические, магнитные, химические и механические свойства веществ.

Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях (см. Единство сил природы). Так, вследствие электромагнитного процесса происходит аннигиляция электрона и позитрона с образованием двух -квантов: . Электроны и позитроны высоких энергий могут участвовать и в других процессах электромагнитной аннигиляции с образованием адронов: адроны. Сейчас такие реакции усиленно изучаются на многочисленных ускорителях на встречных -пучках (см. Ускорители заряженных частиц).

Слабые взаимодействия электронов проявляются, например, в процессах с несохранением четности (см. Четность) в атомных спектрах или в реакциях между электронами и нейтрино .

Не имеется никаких данных о внутренней структуре электрона. Современные теории исходят из представлений о лептонах как о точечных частицах. В настоящее время это проверено экспериментально до расстояний см. Новые данные могут появиться лишь с повышением энергии столкновения частиц в будущих ускорителях.

Электроном является элементарная частица, являющаяся одной из главных единиц в структуре вещества. Заряд электрона отрицательный. Самый точные измерения были сделаны в начале двадцатого века Милликеном и Иоффе.

Заряд электрона равен минус 1,602176487 (40)*10 -1 9 Кл.

Через эту величину измеряется электрический заряд других мельчайших частиц.

Общее понятие об электроне

В физике элементарных частиц говорится, что электрон — неделимый и не обладающий структурой. Он задействован в электромагнитных и гравитационных процессах, принадлежит к лептоновой группе, так же как и его античастица — позитрон. Среди других лептонов обладает самым легким весом. Если электроны и позитроны сталкиваются, это приводит к их аннигиляции. Подобная пара может возникнуть из гамма-кванта частиц.

До того как измерили нейтрино, именно электрон считался самой легкой частицей. В квантовой механике его относят к фермионам. Также электрон имеет магнитный момент. Если к нему относят и позитрон, то разделяют позитрон как положительно заряженную частицу, а электрон называют негатроном, как частицу с отрицательным зарядом.

Отдельные свойства электронов

Электроны относят к первому поколению лептонов, со свойствами частиц и волн. Каждый из них наделен состоянием кванта, которое определяют в результате измерения энергии, спиновой ориентации и других параметров. Принадлежность к фермионам у него раскрывается через невозможность нахождения в одном состоянии кванта одновременно двух электронов (по принципу Паули).

Его изучают так же, как квазичастицу в периодическом кристаллическом потенциале, у которой эффективная масса способна существенно отличаться от массы в состоянии покоя.

Посредством движения электронов происходит электрический ток, магнетизм и термо ЭДС. Заряд электрона в движении образует магнитное поле. Однако внешнее магнитное поле отклоняет частицу от прямого направления. При ускорении электрон приобретает способность поглощения или излучения энергии в качестве фотона. Из его множества состоят электронные атомические оболочки, число и положение которых определяют химические свойства.

Атомическая масса в основном состоит из ядерных протонов и нейтронов, в то время как масса электронов состовляет порядка 0,06 % от всего атомного веса. Электрическая сила Кулона является одной из главных сил, способных удерживать электрон рядом с ядром. Но когда из атомов создаются молекулы и возникают химические связи, электроны перераспределяются в новом образованном пространстве.

В появлении электронов участвуют нуклоны и адроны. Изотопы с радиоактивными свойствами способны излучать электроны. В условиях лабораторий эти частицы могут изучаться в специальных приборах, а например, телескопы могут детектировать от них излучения в плазменных облаках.

Открытие

Электрон открыли немецкие физики в девятнадцатом веке, когда изучали катодные свойства лучей. Затем другие ученые стали более детально изучать его, выводя в ранг отдельной частицы. Изучалось излучение и другие связанные физические явления.

К примеру, группа во главе с Томсоном оценила заряд электрона и массу катодных лучей, отношения которых, как она выяснили, не зависят от материального источника.
А Беккерель выяснил, что минералы излучают радиацию сами по себе, а их бета-лучи способны отклоняться посредством воздействия электрического поля, причем у массы и заряда сохранялось то же отношение, что и у катодных лучей.

Атомная теория

Согласно этой теории, атом состоит из ядра и электронов вокруг него, расположенных в виде облака. Они находятся в неких квантованных состояниях энергии, изменение которых сопровождается процессом поглощения или излучения фотонов.

Квантовая механика

В начале двадцатого века была сформулирована гипотеза, согласно которой материальные частицы имеют свойства как собственно частиц, так и волн. Также и свет способен проявляться в виде волны (ее называют волной де Бройля) и частиц (фотонов).

В результате было сформулировано знаменитое уравнение Шредингера, где описывалось распространение электронных волн. Этот подход и назвали квантовой механикой. При помощи него вычисляли электронные состояния энергии в атоме водорода.

Фундаментальные и квантовые свойства электрона

Частица проявляет фундаментальные и квантовые свойства.

К фундаментальным относятся масса (9,109*10 -31 килограмм), элементарный электрический заряд (то есть минимальная порция заряда). Согласно тем измерениям, что проведены до настоящего времени, у электрона не обнаруживается никаких элементов, способных выявить его субструктуру. Но некоторые ученые придерживаются мнения, что он является точечной заряженной частицей. Как указано в начале статьи, электронный электрический заряд - это -1,602*10 -19 Кл.

Являясь частицей, электрон одновременно может быть волной. Эксперимент с двумя щелями подтверждает возможность его одновременного прохождения через обе из них. Это вступает в противоречие со свойствами частицы, где каждый раз возможно прохождение только через одну щель.

Считается, что электроны имеют одинаковые физические свойства. Поэтому их перестановка, с точки зрения квантовой механики, не ведет к изменению системного состояния. Волновая функция электронов является антисимметричной. Поэтому ее решения обращаются в нуль тогда, когда одинаковые электроны попадают в одно квантовое состояние (принцип Паули).

Электрон. Образование и строение электрона. Магнитный монополь электрона.

(продолжение)


Часть 4. Строение электрона.

4.1. Электрон является двухкомпонентной частицей, которая состоит только из двух сверхуплотнённых (сгущенных, сконцентрированных) полей - электрического поля-минус и магнитного поля-N. При этом:

а) плотность электрона - максимально возможная в Природе;

б) размеры электрона (D = 10 -17 см и менее) - минимальные в Природе;

в) в соответствии с требованием минимизации энергии, все частицы - электроны, позитроны, частицы с дробным зарядом, протоны, нейтроны и пр. обязаны иметь (и имеют) сферическую форму;

г) по неизвестным пока причинам, независимо от величины энергии «родительского» фотона, абсолютно все электроны (и позитроны) рождаются абсолютно идентичными по своим параметрам (например - масса абсолютно всех электронов и позитронов составляет 0,511МэВ).

4.2. «Достоверно установлено, что магнитное поле электрона является таким же неотъемлемым свойством, как его масса и заряд. Магнитные поля у всех электронов одинаковы, как одинаковы их массы и заряды».(с) Это автоматически позволяет сделать однозначный вывод об эквивалентности массы и заряда электрона, то есть: масса электрона является эквивалентом заряда, и наоборот - заряд электрона является эквивалентом массы (для позитрона - аналогично).

4.3. Указанное свойство эквивалентности распространяется также и на частицы с дробными зарядами (+2/3) и (-1/3), которые являются основой кварков. То есть: масса позитрона, электрона и всех дробных частиц является эквивалентом их заряда, и наоборот - заряды этих частиц являются эквивалентом массы. Поэтому удельный заряд электрона, позитрона и всех дробных частиц одинаковый (const) и равен1,76*10 11 Кл/кг.

4.4. Поскольку элементарный квант энергии автоматически является элементарным квантом массы, то масса электрона (с учётом наличия дробных частиц 1/3 и 2/3) должна иметь значения, кратные массам трех отрицательных полуквантов. (См. также «Фотон. Строение фотона. Принцип перемещения. пункт 3.4.)

4.5. Определить внутреннее строение электрона весьма затруднительно по многим причинам, тем не менее, представляет значительный интерес хотя бы в первом приближении рассмотреть влияние двух компонент (электрической и магнитной) на внутреннее строение электрона. См. рис. 7.

Рис.7. Внутреннее строение электрона, варианты:

Вариант №1. Каждая пара лепестков отрицательного полукванта образует «микроэлектроны», которые затем формируют электрон. При этом количество «микроэлектронов» должно быть кратным трём.

Вариант №2. Электрон является двухкомпонентной частицей, которая состоит из двух состыкованных самостоятельных полусферических монополей - электрического(-) и магнитного(N).

Вариант №3. Электрон является двухкомпонентной частицей, которая состоит из двух монополей - электрического и магнитного. При этом магнитный монополь сферической формы расположен в центре электрона.

Вариант №4. Другие варианты.

По-видимому, может быть рассмотрен вариант когда электрические (-) и магнитные поля (N) могут существовать внутри электрона не только в виде компактных монополей, но и в виде однородной субстанции, то есть образуют практически бесструктурную? кристаллическую? гомогенную? частицу. Однако это весьма сомнительно.

4.6. Каждый из предложенных на рассмотрение вариантов имеет свои достоинства и недостатки, например:

а) Варианты №1. Электроны такой конструкции дают возможность спокойно образовывать дробные частицы с массой и зарядом кратным 1/3, но в то же время делают затруднительным объяснение собственного магнитного поля электрона.

б) Вариант №2. Этот электрон при движении вокруг ядра атома постоянно ориентирован на ядро своим электрическим монополем и поэтому может иметь только два варианта вращения вокруг своей оси - по часовой стрелке или против (запрет Паули?) и т.д.

4.7. При рассмотрении указанных (или вновь предложенных) вариантов в обязательном порядке необходимо учитывать реально существующие свойства и характеристики электрона, а также учитывать ряд обязательных требований, например:

Наличие электрического поля (заряда);

Наличие магнитного поля;

Эквивалентность некоторых параметров, например: масса электрона эквивалентна его заряду и наоборот;

Возможность образовывать дробные частицы массой и зарядом кратным 1/3;

Наличие набора квантовых чисел, спина и др.

4.8. Электрон появился как двухкомпонентная частица, у которой одна половина (1/2) является уплотнённым электрическим полем-минус (электрическим монополем-минус), а вторая половина (1/2) является уплотнённым магнитным полем (магнитным монополем-N). Однако при этом следует иметь в виду, что:

Электрические и магнитные поля при определённых условиях могут порождать друг друга (превращаться друг в друга);

Электрон не может быть однокомпонентной частицей и состоять на 100% из поля-минус, поскольку однозарядное поле-минус будет распадаться из-за сил отталкивания. Именно поэтому внутри электрона необходимо наличие магнитной компоненты.

4.9. К сожалению, провести полный анализ всех достоинств и недостатков предложенных вариантов и выбрать единственно правильный вариант внутреннего строения электрона в данной работе не представляется возможным.

Часть 5. «Волновые свойства электрона».

5.1. «К концу 1924г. точка зрения, согласно которой электромагнитное излучение ведет себя отчасти подобно волнам, а отчасти подобно частицам, стала общепринятой...И именно в это время француза Луи де Бройля, который в то время был аспирантом, осенила гениальная мысль: почему то же самое не может быть для вещества? Луи де Бройль проделал по отношению к частицам работу, обратную той, которую Эйнштейн провел для волн света. Эйнштейн связал электромагнитные волны с частицами света; де Бройль связал движение частиц с распространением волн, которые он назвал волнами материи. Гипотеза де Бройля основывалась на сходстве уравнений, описывающих поведение лучей света и частиц вещества, и носила исключительно теоретический характер. Для ее подтверждения или опровержения требовались экспериментальные факты».(с)

5.2. «В 1927 году американские физики К.Дэвиссон и К.Джермер обнаружили, что при «отражении» электронов от поверхности кристалла никеля при определённых углах отражения возникают максимумы. Аналогичные данные (возникновение максимумов) уже имелись по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому появление этих максимумов у отражённых пучков электронов не могло быть объяснено никаким другим путём, кроме как на основе представлений о волнах и их дифракции.Таким образом, волновые свойства частиц — электронов (и гипотеза де Бройля) были доказаны экспериментом».(с)

5.3. Однако рассмотрение изложенного в данной работе процесса появления корпускулярных свойств у фотона (см. рис.5.) позволяет сделать вполне однозначные выводы:

а) по мере уменьшения длины волны с 10 -4 до 10 -10 {C}{C}{C}{C}{C}см электрические и магнитные поля фотона уплотняются

{C}{C}{C}{C}{C}{C}{C}{C}{C}{C}б) при уплотнении электрического и магнитного полей у «линии раздела» начинается стремительное увеличение «плотности» полей и уже в рентгеновском диапазоне плотность полей соизмерима с плотностью «обычной» частицы.

в) поэтому рентгеновский фотон при взаимодействии с препятствием уже не отражается от препятствия как волна, а начинает отскакивать от него как частица.

5.4. То есть:

а) уже в диапазоне мягкого рентгена электромагнитные поля фотонов настолько уплотнились, что обнаружить у них волновые свойства весьма затруднительно. Цитата: «Чем меньше длина волны фотона, тем труднее обнаружить у него свойства волны и тем сильнее у него проявляются свойства частицы».

б) в жестком рентгеновском и гамма-диапазоне фотоны ведут себя как стопроцентные частицы, и обнаружить у них волновые свойства уже практически невозможно. То есть: рентгеновский и гамма-фотон полностью теряет свойства волны и превращается в стопроцентную частицу. Цитата: «Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц» (с).

в) поэтому в опытах по рассеиванию рентгеновского фотона от поверхности кристалла наблюдалась уже не волна, а обыкновенная частица, которая отскакивала от поверхности кристалла и повторяла строение кристаллической решётки.

5.5. До опытов К.Дэвиссона и К.Джермера уже имелись экспериментальные данные по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому получив схожие результаты в опытах при рассеивании электронов на кристалле никеля, они автоматически приписали электрону волновые свойства. Однако электрон это «твердая» частица, которая имеет реальную массу покоя, габариты и пр. Не электрон-частица ведет себя как фотон-волна, а рентгеновский фотон имеет (и проявляет) все свойства частицы. Не электрон отражается от препятствия как фотон, а рентгеновский фотон отражается от препятствия как частица.

5.6. Поэтому: никаких «волновых свойств» у электрона (и других частиц) не было, нет и быть не может. И не существует никаких предпосылок и тем более возможностей для изменения данной ситуации.

Часть 6. Выводы.

6.1.Электрон и позитрон являются первыми и основообразующими частицами, наличие которых определило появление кварков, протонов, водорода и всех остальных элементов таблицы Менделеева.

6.2. Исторически, одну частицу назвали электроном и присвоили ей знак минус (материя), а другую назвали позитроном и присвоили ей знак плюс (антиматерия). «Электрический заряд электрона условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря» (с).

6.3. Электрон может появиться (появиться = родится) только в паре с позитроном (электрон позитронная пара). Появление в Природе хотя бы одного «непарного» (одиночного) электрона или позитрона является нарушением закона сохранения заряда, общей электронейтральности материи и технически невозможно.

6.4. Образование электрон-позитронной пары в кулоновском поле заряженной частицы происходит после разделения элементарных квантов фотона в продольном направлении на две составляющие части: отрицательную - из которой формируется частица-минус (электрон) и положительную - из которой формируется частица-плюс (позитрон). Разделение электронейтрального фотона в продольном направлении на две абсолютно равные по массе, но разные по зарядам (и магнитным полям) части - это естественное свойство фотона, вытекающее из законов сохранения заряда и др. Наличие «внутри» электрона даже ничтожных количеств «частичек-плюс», а «внутри» позитрона - «частичек-минус» - исключается. Также исключается наличие внутри электрона и протона электронейтральных «частичек» (обрезков, кусочков, обрывков и т.д.) материнского фотона.

6.5. По неизвестным причинам абсолютно все электроны и позитроны рождаются эталонными «максимально-минимальными» частицами (т.е. они не могут быть больше и не может быть меньше по массе, заряду, габаритам и другим характеристикам). Образование из электромагнитных фотонов каких-либо более мелких или более крупных частиц-плюс (позитронов) и частиц-минус (электронов) - исключается.

6.6. Внутреннее строение электрона однозначно предопределено последовательностью его появления: электрон формируется как двухкомпонентная частица, которая на 50% является уплотнённым электрическим полем-минус (электрическим монополем-минус), и на 50% - уплотнённым магнитным полем (магнитным монополем- N). Эти два монополя могут рассматриваться как разнозарядные частицы, между которыми возникают силы взаимного притяжения (сцепления).

6.7. Магнитные монополи существуют, но не в свободном виде, а только как составные части электрона и позитрона. При этом магнитный монополь-(N) является неотъемлемой частью электрона, а магнитный монополь-(S) является неотъемлемой частью позитрона. Наличие магнитной составляющей «внутри» электрона обязательно, поскольку только магнитный монополь-(N) может образовать с однозарядным электрическим монополем-минус прочнейшую (и невиданную по силе) связь.

6.8. Электроны и позитроны обладают наибольшей стабильностью и являются частицами, распад которыхтеоретически и практически невозможен. Они являются неделимыми (по заряду и массе), то есть: самопроизвольное (или принудительное) разделение электрона или позитрона на несколько калиброванных или «разнокалиберных» частей - исключается.

6.9. Электрон вечен и он не может «исчезнуть» до тех пор, пока не встретится с другой частицей, имеющей равные по величине, но противоположные по знаку электрический и магнитный заряды (позитрон).

6.10. Поскольку из электромагнитных волн могут появиться только две эталонные (калиброванные) частицы: электрон и позитрон, то на их основе могут появиться только эталонные кварки, протоны и нейтроны. Поэтому вся видимая (барионная) материя нашей и всех других вселенных состоит из одинаковых химических элементов (таблица Менделеева) и везде действуют единые физические константы и фундаментальные законы, аналогичные «нашим» законам. Появление в любой точке бесконечного пространства «других» элементарных частиц и «других» химических элементов - исключается.

6.11. Вся видимая материя нашей Вселенной образовалась из фотонов (предположительно СВЧ-диапазона) по единственно возможной схеме: фотон → электрон-позитронная пара → дробные частицы → кварки, глюон → протон (водород). Поэтому вся «твёрдая» материя нашей Вселенной (включая Homo sapiens’ов) является уплотнёнными электрическими и магнитными полями фотонов. Других «материй» для её образования в Космосе не было, нет и быть не может.

P.S. Электрон неисчерпаем?

У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель … Википедия

Электрон - (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок … Каталог отелей

ЭЛЕКТРОН - (символ е, е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… … Физическая энциклопедия

Электрон - (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 … Каталог отелей

Электрон - (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… … Иллюстрированный энциклопедический словарь

ЭЛЕКТРОН - (е е), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… …

ЭЛЕКТРОН - (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… … Научно-технический энциклопедический словарь

электрон - сущ., кол во синонимов: 12 дельта электрон (1) лептон (7) минерал (5627) … Словарь синонимов

ЭЛЕКТРОН - искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов … Большой Энциклопедический словарь

ЭЛЕКТРОН - ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… … Толковый словарь Ушакова

ЭЛЕКТРОН - ЭЛЕКТРОН, а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Книги

  • Электрон. Энергия Космоса , Ландау Лев Давидович, Китайгородский Александр Исаакович. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского - тексты, переворачивающие обывательское представление об окружающем мире. Большинство из нас, постоянно сталкиваясь… Купить за 491 руб
  • Электрон. Энергия космоса , Ландау Л., Китайгородский А.. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского тексты, переворачивающие обывательское представление об окружающем мире. Большинствоиз нас, постоянно сталкиваясь с…