Что такое свч излучение. Влияние на организм сверхвысокочастотного электромагнитного (СВЧ-ЭМ) поля. Физические характеристики функционирования

СВЧ - излучение – вид неионизирующих излучений, характеризующийся частотой электромагнитных колебаний от 3×10 8 до 3×10 11 Гц и длиной волны от 1 метра до 1 миллиметра.

Классификация волн СВЧ диапазона

Вокруг любого источника электромагнитного излучения формируется электромагнитное поле (ЭМП), которое состоит из переменных электрического и магнитного полей.

Различают 2 зоны этого поля:

1-я зона - зона несформировавшейся волны (ближняя зона, или поле индукции, или поле стоячей волны);

2-я зона - зона сформировавшейся волны (дальняя зона, или поле излучения, или поле бегущей волны).

Наибольший интерес представляет зона сформировавшейся волны, так как ближняя зона ограничивается лишь расстоянием в две длины волны . Интенсивность ЭМИ в этой зоне оценивается количеством энергии, падающей на единицу поверхности, т. е. плотностью потока энергии (ППЭ). Единица измерения ППЭ – Вт/см 2 , в медицине – мВт/см 2 (милливатт на квадратный сантиметр).

Глубиной проникновения ЭМИ называется расстояние, на котором интенсивность волны убывает в 2,7 раза.

От величины волны зависит ее проникающая способность, которая составляет ориентировочно 1/10 длины, следовательно, дециметровые волны способны проникать на глубину 10 – 15 сантиметров и в зоне их воздействия оказываются большинство внутренних органов человека. В целом можно говорить о том, что глубина проникновения ЭМИ в ткани тем меньше, чем короче длина волны, а поглощение энергии тканями, наоборот, увеличивается с уменьшением длины волны . Из общего количества энергии ЭМИ, падающей на поверхность человека, приблизительно 50% поглощается, остальная отражается.

Биологическое действие электромагнитных излучений СВЧ-диапазона на организм человека.

Механизм биологического действия ЭМИ СВЧ-диапазона отличается значительной сложностью, так как полностью не выяснена физическая природа первичных процессов взаимодействия с биомолекулами и последующие звенья возникающих изменений.

В отличие от ионизирующего излучения, непосредственно создающего электрические заряды, ЭМИ не обладают ионизирующей способностью и воздействуют только на уже имеющиеся свободные заряды или диполи. Существует ряд гипотез, большинство из которых основываются на положениях, изложенных в курсе биофизики. Из теории электромагнитного поля известно, что если на движущийся под влиянием магнитного поля заряд одновременно воздействует электрическое поле, направленное по движению заряда, то достигается значительное ускорение заряженных частиц. Можно представить, что подобные процессы происходят и в живой системе при воздействии на организм электромагнитного поля.

Второе положение заключается в том, что при воздействии электромагнитного поля на организм человека меняются проводимость и диэлектрическая проницаемость тканей, что увеличивает количество поглощенной энергии, особенно в тканях с большим содержанием воды.

В настоящее время принято различать так называемое термическое воздействие (нагревание облучаемых тканей) при потоке энергии превышающем 10 – 15 мВт/см 2 и атермическое действие при интенсивности облучения ниже порога теплового действия (величина ППЭ >10 мВт/см 2 ).

Тепловой эффект вызывается увеличением кинетической энергии биомолекул, которая привносится внешним электромагнитным полем. Молекулярные диполи, особенно диполи воды, изменяют скорость и направление своего движения, получают определенное ускорение, благодаря инерционности часть молекулярных диполей не успевают ориентироваться в направлении быстропеременного поля, что вызывает столкновение движущихся диполей друг с другом и, в конечном счете, приводит к повышению температуры.

При поглощении ЭМИ СВЧ-диапазона кроме интегрального нагрева из-за химической неоднородности и структурных особенностей тканей в них возникают локусы более интенсивного поглощения энергии («горячие пятна»). В случае расположения их в жизненно важных регуляторных центрах или поблизости от них возможны необратимые изменения.

Образующееся тепло может приводить к нагреванию, перегреванию и даже ожогам отдельных участков тела. Естественно, что ткани с большим содержанием воды нагреваются больше и процесс этот осуществляется быстрее, циркуляция крови до поры до времени снижает температуру тканей, особенно тех, где она осуществляется интенсивно. Там же, где циркуляция крови замедлена или обмен происходит при помощи диффузии, нагревание происходит быстро, значительно ускоряются обменные процессы в тканях.

Очевидно, что такое изменение обменных процессов, особенно в тех органах и тканях, где обычный оптимальный процесс обмена веществ происходит при пониженных температурах, может привести к выраженным патологическим изменениям. Установлена следующая шкала чувствительности к ЭМИ СВЧ-диапазона : хрусталик , стекловидное тело , печень , кишечник , семенники .

Природу атермического (специфического) действия микроволн на ткани живых организмов полностью расшифровать не удалось.

Предложен ряд теорий, объясняющих специфическое действие СВЧ ЭМП:

1. Теория «точечного» нагревания – некоторые микроструктуры, например, липидные оболочки клеток, могут нагреваться значительно быстрее, чем рядом расположенные.

2. Теория «жемчужных цепей» – выстраивание в цепочки и ориентация вдоль силовых линий электромагнитного поля твердых частиц или капелек жидкости, взвешенных в другой жидкости, вследствие индуцирования зарядов в этих частицах.

3. Теория нетермической денатурации белка – разрывы белковых цепей, углеводных связей вследствие перехода молекул в возбужденное состояние.

4. Теория резонансного поглощения энергии белками в соответствии с частотой СВЧ ЭМП, что отражается на функции органелл, ферментов и др.

5. Теория изменения возбудимости рецепторов, содержания биологически активных веществ, гормонов и витаминов, изменение процессов синаптической передачи импульсов.

В механизме специфического действия СВЧ ЭМП на живой организм важную роль играют:

1. Изменения калий-натриевого градиента клетки вследствие различного влияния микроволн на степень гидратации ионов натрия и калия, а также на эффективность работы Na-K-нacoca.

2. Изменение проницаемости клеточных мембран.

3. Нарушения нервнорефлекторной и гуморальной регуляции функций внутренних органов.

4. Нарушения в информационно-управленческой деятельности организма вследствие взаимодействия ЭМП с электрическими и магнитными полями биотоков и перестройки частоты генератора биотоков на частоты внешнего ЭМП (явление «затягивания»).

5. Изменения колебаний молекул (диполей) воды под действием ЭМИ с нарушением обменных процессов в клетке, протекающих в водной среде.

Как при тепловом, так и при атермическом действии отмечено усиление перекисного окисления липопротеидов низкой плотности сыворотки крови человека. Липопротеиды высокой плотности снижают уровень перекисного окисления липидов, что может быть использовано для научно обоснованной профилактики ЭМИ-поражений.

Решающее значение при воздействии ЭМИ сверхвысокочастотного диапазона имеет характер и интенсивность облучения, его продолжительность, площадь облучаемой поверхности тела, длина волны, индивидуальные особенности живой системы, в частности конституционные параметры, тип нервной системы, возраст, наследственность, вредные привычки, состояние иммунитета, биологический ритм, наличие в диапазоне резонансных частот для различных частей тела (шея, голова, нижние и верхние конечности).

Патогенез радиоволновой болезни.

В общем патогенезе поражений ЭМИ СВЧ-диапазона выделяют три этапа (по Е.В. Гембицкому):

1 – функциональные (функционально-морфологические) изменения в клетках, прежде всего в клетках ЦНС, развивающиеся в результате непосредственного воздействия ЭМИ;

2 – изменение рефлекторно-гуморальной регуляции функций внутренних органов и обмена веществ;

3 – преимущественно опосредованное, вторичное изменение функций (возможны и органические изменения) внутренних органов.

Этапы формирования поражений СВЧ ЭМИ.

Приспособительные реакции организма при воздействии СВЧ ЭМП условно подразделяются на специфические и неспецифические . Приспособительные специфические реакции направлены на борьбу с перегреванием. Это расширение сосудов, тахикардия, тахипноэ, усиление потоотделения и др.

Неспецифические приспособительные реакции связаны с рефлекторным ответом ЦНС и желез внутренней секреции. В начале воздействия СВЧ-поля или под влиянием малых интенсивностей его наступает стимуляция рефлекторной деятельности ЦНС, желез внутренней секреции и обмена веществ, а при дальнейшем воздействии – их угнетение. Патологические реакции проявляются в виде очагов кровоизлияния, катаракты, дегенеративных изменений семенников, язвы желудка, неврозов, нейро-циркуляторной астении, гипертермии и др.

Классификация поражений сверхвысокочастотными электромагнитными излучениями.

I. Период формирования радиоволновой болезни .

1. Острые поражения:

а) I степень (легкая);

б) II степень (средней тяжести);

в) III степень (тяжелая).

2. Хронические поражения:

а) начальные (инициальные) проявления;

б) I степень (легкая);

в) II степень (средней тяжести);

г) III степень (тяжелая).

II. Период восстановления.

III. Последствия и исходы поражений ЭМИ сверхвысокочастотного диапазона.

Патогенез влияния СВЧ-поля на организм человека.

Клиника острых и хронических поражений сверхвысокочастотными электромагнитными излучениями.

Острые поражения встречаются сравнительно редко, чаще всего в аварийных ситуациях, когда происходит облучение микроволнами высокой термической интенсивности. Поэтому первыми клиническими проявлениями выступают симптомы перегревания организма и поражения нервной системы, особенно при облучении области головы. Различают 3 степени тяжести острых поражения ЭМИ : I (легкую), II (среднюю) и III (тяжелую).

При поражениях I (легкой) степени тяжести на первый план выступают расстройства теплорегуляции, сопровождаемые тепловым утомлением, астеническими реакциями, головной болью, вегетативными нарушениями с кратковременными обмороками, выраженной брадикардией или тахикардией. Реакция крови ограничивается незначительным лейкоцитозом.

Для поражений II (средней) степени тяжести характерны более выраженные нарушения теплорегуляции, приводящие к изменению потоотделения, окислительных процессов и сдвигам водно-электролитного баланса. Клинически это проявляется гипертермией (общая температура тела повышается до 39 – 40°), расстройствами функции ЦНС в виде двигательного возбуждения, заторможенного сознания, иногда галлюцинаций и бредовых состояний. Появляется тенденция к нестабильности артериального давления, возможны нарушения ритма сердца (пароксизмальная тахикардия, частые политопные экстрасистолы, нарушение атриовентрикулярной проводимости), могут возникать носовые кровотечения, ожоги открытых частей тела (эритематозные дерматиты). Спустя некоторое время после поражения выявляется катаракта. При исследовании периферической крови кроме выраженного лейкоцитоза выявляются признаки сгущения крови и гиперкоагуляции.

При поражения III (тяжелой) степени отмечается быстрое развитие процесса с преобладанием общемозговых явлений, проявляющихся спутанностью и потерей сознания и возникновением гипоталамических расстройств с ангиоспастическими проявлениями (диэнцефальный криз). Пораженные отмечают жар во всем теле, самочувствие быстро ухудшается, появляется резкая головная боль, иногда головокружение и снижение остроты зрения, тошнота, реже рвота. Определяется выраженная артериальная гипертензия. Лечение таких поражений всегда требует проведения целого комплекса неотложных мероприятий интенсивной терапии.

У перенесших острое поражение впоследствии могут наблюдаться нестабильность артериального давления, явления длительной астенизации и десинхроноза (неустойчивость настроения, резко сниженная работоспособность, мышечная слабость, тремор конечностей, бессонница или сонливость, извращение сна, ломящие боли в руках и ногах). При поражениях миллиметровыми и сантиметровыми волнами возможны ожоги открытых частей тела и повреждение глаз (катаракта, развитие так называемых «сухих десквамативных» конъюнктивитов).

Хронические поражения ЭМИ встречаются значительно чаще острых и возникают в результате длительного многократного облучения в дозах, превышающих предельно допустимые уровни. Хронические поражения ЭМИ СВЧ-диапазона не имеют ярко очерченных (специфических) признаков и могут проявляться функциональными нарушениями, прежде всего нервной, сердечно-сосудистой и эндокринной систем в результате изменения рефлекторно-гуморальной регуляции внутренних органов и обмена веществ. В далеко зашедших стадиях заболевания возможны и органические изменения внутренних органов. В отдельных случаях присоединяются местные изменения, преимущественно кожи и ее придатков, органа зрения (поражения хрусталика глаза, возникновение хронического конъюнктивита).

При хроническом воздействии ЭМИ различают начальные (инициальные) проявления и поражения трех степеней тяжести : I (легкая), II (средняя) и III (тяжелая). Для начальных проявлений поражения основу клинической картины составляет астенический (астеноневротический) синдром; при легких поражениях дебютирует астеновегетативный (вегетативный) синдром, а при поражениях средней степени тяжести возникают ангионевротический и диэнцефальный синдром (гипоталамический). При тяжелых поражениях к ним присоединяются симптомы, свидетельствующие о нарушении других органов и систем.

Первые признаки астенического (астеноневротического) синдрома проявляются, как правило, через 2 –3 года постоянной (непрерывной) работы в условиях воздействия ЭМИ СВЧ-диапазона. Больные жалуются на частые головные боли тупого характера, возникающие к концу рабочего дня, общую слабость, быструю утомляемость, раздражительность, чувство разбитости, сонливость днем и бессонницу ночью (десинхроноз), ослабление памяти, невозможность сосредоточиться и заниматься творческой умственной работой, постепенно возникают половые расстройства различного типа, наблюдаются преходящие парестезии, боли в дистальных отделах конечностей. В целом объективно выявляются признаки преобладания тормозных процессов в ЦНС, изредка – вегетативные нарушения.

Могут отмечаться повышение порогов возбудимости обонятельного и зрительного анализаторов и порога чувствительности в дистальных отделах конечностей, возрастание нервно-мышечной возбудимости, увеличение времени сенсомоторных реакций, ухудшение световой и темновой адаптации, устойчивости ясного видения, различительной чувствительности глаз. Временное отстранение от работы в условиях воздействия генераторов ЭМИ СВЧ-диапазона и адекватное лечение на этом этапе заболевания приводят, как правило, к полному исчезновению вышеуказанных расстройств.

Стойкий астеновегетативный синдром чаще всего возникает у лиц, подвергающихся воздействию сравнительно больших интенсивностей (до нескольких мВт/см 2). Вегетативные нарушения проявляются гипергидрозом, снижением тактильной чувствительности и температуры кожи кистей рук, бледностью кожных покровов, цианозом дистальных отделов конечностей, мышечной гипотензией, стойким красным разлитым дермографизмом, изменением кожно-гальванических рефлексов, ослаблением кожно-сосудистых и сердечно-сосудистых рефлексов, вялой сосудистой реакцией на внутрикожное введение гистамина, асимметрией тонуса сосудов, изменением рефлексов положения – орто- и клиностатического.

Вегетативные дисфункции наиболее заметно отражаются на реакциях сердечно-сосудистой системы. Характерны преобладание тонуса блуждающего нерва, сочетание артериальной гипотонии с тенденцией к брадикардии, выраженные ваготонические реакции при пробе Ашнера. На ЭКГ регистрируются синусовая аритмия и брадикардия, предсердные и желудочковые экстрасистолы, умеренно выраженное нарушение атриовентрикулярной проводимости. Вегетативные нарушения создают определенные условия для формирования дистрофических изменений миокарда, которые вначале компенсированы и выявляются только после физической нагрузки и при проведении фармакологических проб. В части случаев признаки дистрофии миокарда прогрессируют (выявляются увеличение размеров сердца, глухой I тон, маятникообразный ритм).

Для поражения средней степени тяжести характерно наличие диэнцефального синдрома. При дальнейшем нарастании сосудисто-вегетативных нарушений появляются и становятся преобладающими ангиоспастические реакции, повышается артериальное давление, обнаруживается спазм сосудов глазного дна и капилляров кожи. Изменения в миокарде становятся более постоянными и выраженными, появляются признаки нарушения коронарного кровообращения со сжимающими болями в области сердца. Если явления гипотензии и брадикардии можно охарактеризовать как нейроциркуляторную дистонию по гипотоническому типу, то наличие ангиоспастических реакций с болями в сердце, повышением артериального давления можно определить как проявление диэнцефальных нарушений, которые периодически достигают уровня сосудистых кризов. Последние появляются внезапно или после небольшого продромального периода и проявляются резким возникновением головной боли, иногда с обморочными состояниями или кратковременным нарушением сознания. Вскоре присоединяются боли в области сердца сжимающего характера, сопровождающиеся резкой слабостью, потливостью, чувством страха. Во время приступа отмечается бледность кожных покровов, озноб, артериальное давление повышается до весьма значительных цифр (180/110 - 210/130 мм рт. ст.). При часто повторяющихся кризах может отмечаться резкое падение артериального давления с возникновением коллапса.

У больных с периодически проявляющимся диэнцефальным синдромом данные электроэнцефалографии свидетельствуют о диффузных изменениях биоэлектрической активности мозга с явлениями раздражения лимбико-ретикулярного комплекса. По данным большинства исследователей, по мере увеличения стажа работы в условиях воздействия ЭМИ СВЧ-диапазона нарастает периферическое сопротивление сосудов, имеется тенденция к повышению артериального давления, особенно диастолического, уменьшается систолический и минутный объем сердца.

На этом фоне нейроциркуляторная дистония по гипертоническому типу впоследствии трансформируется в артериальную гипертензию, развивается ишемическая болезнь сердца высокого функционального класса. Все эти состояния могут развиваться спустя много лет после прекращения работы с генераторами ЭМИ.

При средней тяжести хронических поражений на фоне перечисленных синдромов нередко появляются эндокринные нарушения: активация функции щитовидной железы с увеличением ее массы (иногда с клиникой тиреотоксикоза I – II степени), расстройства половой функции (импотенция, нарушение менструального цикла). Этому способствует и возникновение хронического гастрита, как правило, атрофического с кишечной дисплазией слизистой оболочки желудка; постепенно возникают признаки поражения других органов и систем. Возможны трофические нарушения – ломкость ногтей, выпадение волос, похудание.

Как при легкой, так и при средней степени тяжести хронических поражений показатели крови неустойчивы. Чаще отмечают умеренный лейкоцитоз с тенденцией к нейтропении и лимфоцитозу, иногда – структурные изменения в нейтрофилах (патологическая зернистость, вакуолизация цитоплазмы, фрагментация и гиперсегментация ядер), часто обнаруживают ретикулоцитоз, снижение кислотной стойкости эритроцитов, незначительный сфероцитоз. При выраженных формах поражения возможна тенденция к лейкопении с лимфопенией и моноцитозом, тромбоцитопения, признаки замедленного созревания гранулоцитов и клеток эритроидного ряда в костном мозге. Могут быть изменены некоторые биохимические показатели – небольшое снижение активности холинэстеразы, нарушение выделения катехоламинов, гипопротеинемия, повышение уровня гистамина, некоторое снижение толерантности к глюкозе.

При различных вариантах воздействия ЭМИ СВЧ-диапазона с длиной волны от 1 мм до 10 см развивается помутнение хрусталика (катаракта). Она может возникнуть как после однократного интенсивного облучения, так и при хроническом воздействии ЭМИ нетепловой интенсивности, особенно при прямом попадании излучения в глаза (чаще возникает у техников, которые непосредственно связаны с ремонтом и наладкой аппаратуры генераторов ЭМИ СВЧ-диапазона). Наибольшим повреждающим действием обладает импульсное излучение.

При тяжелой степени тяжести картина расстройств электромагнитной природы прогрессирует. Усугубляются жалобы больных, возникают явления навязчивых страхов и вязкости мышления. Часто диагностируются органические поражения головного мозга, проявляющиеся нарушением функции черепно-мозговых нервов, симптомами орального автоматизма, повышением сухожильных рефлексов, парастезиями. Становятся выраженными нарушения гемодинамики в виде часто рецидивирующих и трудно купируемых диэнцефальных кризов. Состояние усугубляется присоединением ишемической болезни сердца, язвенной болезни двенадцатиперстной кишки. Выявляется дисбаланс в эндокринной системе (угнетается половая функция, нарушается функция щитовидной железы). Снижаются показатели клеточного и гуморального иммунитета, возрастают аутоиммунные процессы. Однако в настоящее время тяжелая степень хронического поражения ЭМИ из-за адекватных санитарно-гигиенических требований, надлежащего медицинского контроля и диспансерного наблюдения не встречается.

Диагностика острых и хронических поражений СВЧ-полем

Диагностика острых поражений СВЧ ЭМИ, как правило, больших трудностей не представляет

Диагностика острых поражений ЭМИ

Алгоритм диагностики хронического поражения СВЧ ЭМИ

Характеристика условий труда работающего с СВЧ ЭМИ

Примеры формулировок диагноза:

– острое поражение ЭМИ СВЧ-диапазона средней степени тяжести. Острое перегревание организма средней степени (гипертермическая форма). Острое психомоторное возбуждение. Приступ пароксизмальной тахикардии (желудочная форма). Носовое кровотечение;

– хроническое поражение ЭМИ СВЧ-диапазона II степени тяжести. Нейроциркуляторная дистония гипертонического типа (затяжное течение). Хронический гастрит с понижением кислотообразующей функции, атрофический;

– хроническое поражение ЭМИ СВЧ-диапазона II степени тяжести. Затянувшийся астено-вегетативный синдром. Сухой десквамативный конъюнктивит, затухающее обострение.

Профилактика острых и хронических поражений сверхвысокочастотными электромагнитными излучениями.

Профилактика неблагоприятного действия ЭМИ на лиц, работающих с источниками СВЧ, представляет собой комплекс технических, санитарно-гигиенических и медицинских мер, определенный в Республике Беларусь Санитарными правилами и нормами 2.2.4/2.1.8.9-36-2002 «Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ)»

Комплекс мер по профилактике поражений СВЧ ЭМИ

К техническим мерам профилактики относят:

    Размещение PJIC, радиотехнических систем (РТС) на безопасных расстояниях от казарм, служебных и жилых зданий, установление санитарно -защитной зоны и зоны ограничения. Интенсивность ЭМИPJIC, РТС на территории населенных мест, расположенных в ближней зоне диаграммы излучения, не должна превышать 10 мкВт/см 2 и на территории населенных мест, расположенных в дальней зоне диаграммы излучения, – 100 мкВт/см 2 .

    Экранирование всех элементов, способных излучать ЭМИ, экранирование рабочих мест, заземление экранов.

    Специальную металлизированную одежду и защитные очки при ППЭ выше 1,0 мВт/см 2 .

    При работе внутри экранированных помещений стены, пол и потолок этих помещений должны быть экранированы радиопоглощающими материалами.

Способы защиты определяются индивидуально в каждом конкретном случае (при аттестации рабочих мест).

К санитарно-гигиеническим мерам профилактики относят:

      Контроль уровня облучения на рабочих местах и окружающей территории. Данные периодических измерений заносятся в санитарный паспорт объекта и используются при аттестации рабочих мест, контроле за условиями труда и состоянием здоровья работающих, при разработке мер безопасности и / профилактики.

      Санитарное просвещение, обучение обслуживающего СВЧ- генераторы персонала правилам техники безопасности.

      Установление льгот (дополнительный отпуск и сокращение продолжительности рабочего дня).

4 Регламентация времени контакта с источником ЭМИ и уменьшение продолжительности работ в зоне облучения при невозможности снизить ППЭ ЭМИ до предельно допустимых уровней.

В настоящее время в Республике Беларусь допустимые уровни непрерывного облучения микроволнами для работающих с излучающей аппаратурой рассчитываются согласно принятого документа «Санитарные правила и нормы 2.2.4/2.1.8.9-36-2002 «Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ)».

Предельно допустимое значение энергетической экспозиции (ЭЭ ПД) за рабочую смену не должно превышать 200 (мкВТ/см 2) х ч. Далее рассчитывается предельно допустимая плотность потока энергии (ППЭ пду) по формуле:

ППЭ пду =ЭЭ пд /Т,

где Т – продолжительность рабочей смены в часах.

Предельно допустимые уровни плотности потока энергии СВЧ-диапазона в зависимости от продолжительности воздействия

Продолжительность воздействия, Т, ч

ППЭ ПДУ , мкВт/см 2

8,0 и более

0,2 и менее

Принципы лечения поражений сверхвысокочастотными электромагнитными излучениями .

Патогенетически обоснованной схемы лечения поражений СВЧ- полем пока не существует. Лечение проводится симптоматически с соблюдением принципа индивидуализации.

Объем медицинской помощи при острых поражениях СВЧ ЭМП

Первая помощь

1. Удалить пострадавшего из зоны действия поражающего фактора.

2. Уложить на спину с приподнятыми ногами.

3. Провести наружное охлаждение (поместить в прохладное место; наложить холодный компресс на голову, обтереть тело мокрым полотенцем; обтереть кожу лба, височных областей 70 % спиртом (водкой), нашатырным спиртом; при сохраненном сознании напоить холодной водой.

4. При нарушении дыхания, деятельности сердечно-сосудистой системы провести сердечно-легочную реанимацию.

Доврачебная помощь

1. Продолжить проведение наружного охлаждения.

2. При нарушении дыхания – восстановить проходимость дыхательных путей, кислородотерапия.

3. При явлениях сердечно-сосудистой недостаточности вводить кордиамин (1 мл подкожно), кофеин-бензоат натрия (1 мл 2 % раствора внутримышечно).

4. При психомоторном возбуждении и реакции страха дать внутрь 1-2 таблетки феназепама или диазепама.

Первая врачебная помощь

1. Дополнить местное охлаждение следующими мероприятиями:

– наложить пузыри со льдом на паховые области, вдоль туловища;

– обернуть мокрыми простынями на короткое время;

– наложить холодный компресс на голову, применить электрические вентиляторы (по одному с каждой стороны туловища),

Внутривенное введение охлажденных растворов: 100 мл 40 % раствора глюкозы с 10 ЕД инсулина, 100 – 200 мл 0,9 % раствора NaCl.

Раствор аминазина 2,5% – 1 – 2 мл внутримышечно.

Преднизолон 60 – 120 мг внутривенно.

При болевом синдроме вводят раствор анальгина 50% 2 – 4 мл внутривенно на 10 мл 0,9 % раствора натрия хлорида.

При развитии судорожного синдрома: 0,5% раствор диазепама 2 – 4 мл внутривенно.

Контроль состояния сердечно -сосудистой и дыхательной систем, коррекция их функции при необходимости.

При оказании помощи больным с гипертермией необходимо избегать назначения холинолитических препаратов. Также ограничить использование нестероидных противовоспалительных средств.

Квалифицированная помощь

В квалифицированной помощи нуждаются пораженные только II и III степени тяжести . Продолжаются мероприятия, направленные на купирование синдрома перегревания организма, артериальной гипертонзии, болевого синдрома.

При развитии острой дыхательной недостаточности проводится искусственная вентиляция легких и кислородотерапия. Синдром острой сердечно-сосудистой недостаточности, в том числе с нарушением ритма сердца, устраняют с помощью инотропных препаратов, антиаритмических средств, инфузионной терапии.

При синдроме поражения ЦНС в зависимости от степени и вида нарушений могут быть использованы седативные средства, нейролептики, транквилизаторы, снотворные, средства, влияющие на тонус сосудов ЦНС, ноотропные препараты. Заслуживает внимания применение оксибутирата натрия, обладающего седативным действием и снижающим чувствительность мозга к гипоксии.

В случае возникновения носового кровотечения производится тампонада с гемостатической губкой, внутривенное введение эпсилон-аминокапроновой кислоты, аскорбиновой кислоты, дицинона. Необходимо приложить холод на область носа.

При остром нарушении зрения (затуманивание зрения, двоение в глазах, внезапное понижение зрения) показаны противосудорожные и спазмолитические средства – 2,4 % раствор эуфиллина 10 – 20 мл внутривенно, раствор папаверина 2 % – 2 мл, дибазола 1 % – 1 мл внутримышечно.

Специализированная помощь

В рамках оказания специализированной помощи необходимо продолжать комплекс лечебных мероприятий, направленных на окончательное и полное купирование угрожающих жизни состояний (гипертермия, нарушение дыхания, сердечно-сосудистая недостаточность), раннюю диагностику осложнений и последствий поражений СВЧ-полем, проведение специализированного лечения в полном объеме с полной реабилитацией пораженных. В общем комплексе мероприятий важное значение приобретают диетическое питание, витаминотерапия, применение адаптогенов, физиотерапевтическое, психотерапевтическое лечение.

Лечение хронических форм поражения СВЧ-полем неспецифическое и требует комплексного подхода . Оно складывается из диеты, режима, лечебной физкультуры, психотерапии, а при необходимости физио и фармакотерапии. Большое значение имеют методы психотерапии.

Организация и проведение диспансеризации лиц, работающих с источниками сверхвысокочастотных электромагнитных излучений. Военно-врачебная экспертиза.

Диспансеризация лиц, работающих с источниками СВЧ ЭМИ, организовывается в соответствии с требованиями «Инструкции о порядке медицинского обеспечения Вооруженных Сил Республики Беларусь» № 10 от 15.03.2004 г.

Военнослужащих, гражданский персонал Вооруженных Сил, постоянно или временно работающих с источниками электромагнитных полей, берут на диспансерный медицинский учет в медицинском пункте воинской части (организации Министерства обороны)

Медицинский контроль за лицами, работающими с СВЧ ЭМИ

Углубленные медицинские обследования (УМО) проводятся в целях своевременного выявления заболеваний, препятствующих работе с источниками электромагнитных полей, а также контроля за проведением лечебно-оздоровительных мероприятий и их эффективностью. УМО проводят гарнизонные и госпитальные военно-врачебные комиссии с участием следующих врачей-специалистов: терапевта, хирурга, невролога, дерматолога, офтальмолога, отоларинголога, стоматолога (для женщин – гинеколога).

Организация проведения УМО лиц, имеющих профессиональный контакт с СВЧ ЭМИ.

На основании данных УМО и сопоставления их с результатами предыдущих обследований военно-врачебная комиссия выносит постановление о степени годности обследованного к работе с источниками ЭМП. В тех случаях, когда амбулаторно комиссия затрудняется определить состояние здоровья обследуемого, его направляют в стационар с последующим освидетельствованием военно-врачебной комиссией.

Военно-врачебная экспертиза лиц, работающих с источниками ЭМП, либо назначаемых на указанные должности.

Медицинское освидетельствование военнослужащих, лиц гражданского персонала ВС РБ, назначаемых (принимаемых) на работу и работающих с источниками ЭМП, производится гарнизонными, госпитальными ВВК, а также ВВК специального назначения с обязательным участием врача воинской части и представителя командования. При этом комиссии руководствуются соответствующими графами Постановления Министерства обороны и Министерства здравоохранения Республики Беларусь № 61/122 от

21.07.2008 г. «Об утверждении Инструкции об определении требований к состоянию здоровья граждан при приписке к призывным участкам, призыве на срочную военную службу, службу в резерве, военную службу офицеров запаса, военные и специальные сборы, поступлении на военную службу по контракту, в учреждение образования «Минское суворовское военное училище» и военные учебные заведения, военнослужащих, граждан, состоящих в запасе Вооруженных Сил Республики Беларусь»

Проведение ВВЭ лиц, имеющих профессиональный контакт с СВЧ ЭМИ.

Противопоказания для допуска к работе с источниками ЭМП следующие:

– болезни крови;

– органические заболевания ЦНС;

– эндокринные заболевания;

– эпилепсия;

– выраженные астенические состояния;

– неврозы;

– стойкая сосудистая гипотония;

– органические поражения сердечно-сосудистой системы в стадии суб- и декомпенсации (артериальная гипертония, атеросклероз, ишемическая болезнь сердца и др.);

– нейроциркуляторная астения;

– язвенная болезнь желудка и двенадцатиперстной кишки с частыми обострениями;

– хронические гепатиты, панкреатиты;

– резко выраженный хронический конъюнктивит и язвенный блефарит;

– трахома, осложненные заболевания роговицы;

– рецидивирующие кератоконъюяктивитм;

– катаракта любой этиологии;

– афакия;

– болезни зрительного нерва, сетчатки и сосудистой оболочки;

– глаукома развитая;

– хронические заболевания кожи.

ЛИТЕРАТУРА:

Основная:

          Военно-полевая терапия: учебник / А.А. Бова [и др.]; под ред. А.А. Бова. 2-е изд. Минск: БГМУ,2008. 448 с.

          Военно-полевая терапия. Практикум: учеб. пособие /А.А. Бова [и др.]; под ред. А.А. Бова. Минск: БГМУ,2009. 176 с.

Дополнительная :

          Бова, А.А. Боевая терапевтическая патология: организация терапевтической помощи в современных условиях: учебное пособие /А.А. Бова, С.С. Горохов. Минск: БГМУ, 2006. 44с.

Нормативные правовые акты :

4. Об утверждении Инструкции о порядке организации и проведения военно-врачебной экспертизы в Вооруженных Силах Республики Беларусь и транспортных войсках Республики Беларусь и признании утратившими силу некоторых постановлений Министерства обороны Республики Беларусь: постановление М-ва обороны Респ. Беларусь от 2 ноября 2010 г., № 44. Минск, 2010. 130 с.

5. Об утверждении Инструкции об определении требований к состоянию здоровья граждан при приписке к призывным участкам, призыве на срочную военную службу, службу в резерве, военную службу офицеров запаса, военные и специальные сборы, поступлении на военную службу по контракту, в учреждение образования «Минское суворовское военное училище» и военныеучебные заведения военнослужащих, граждан, состоящих в запасе Вооруженных Сил Республики Беларусь: постановление М-ва обороны и М-ва здравоохранения Респ. Беларусь, 20 декабря 2010 г., № 51/170. Минск, 2011. 170 с.

В. КОЛЯДА. Материал подготовлен редакцией "Покупаем от А до Я" по просьбе журнала "Наука и жизнь".

Наука и жизнь // Иллюстрации

Рис. 1. Шкала электромагнитного излучения.

Рис. 2. Дипольные молекулы: а - в отсутствие электрического поля; б - в постоянном электрическом поле; в - в переменном электрическом поле.

Рис. 3. Проникновение микроволн в глубь куска мяса.

Рис. 4. Маркировка посуды.

Рис. 5. Ослабление энергии СВЧ-излучения в атмосфере: на каждой следующей линии по мере удаления от печи мощность излучения в 10 раз меньше, чем на предыдущей.

Рис. 6. Основные элементы микроволновой печи.

Рис. 7. Дверца микроволновой печи.

Рис. 8. Печь с диссектором (а) и поворотным столом (б).

Во второй половине ХХ века в наш обиход вошли печи, нагрев пищи в которых производится невидимыми лучами - микроволнами.

Подобно многим другим открытиям, существенно повлиявшим на повседневную жизнь людей, открытие теплового воздействия микроволн произошло случайно. В 1942 году американский физик Перси Спенсер работал в лаборатории компании "Райтеон" с устройством, излучавшим сверхвысокочастотные волны. Разные источники по-разному описывают события, случившиеся в тот день в лаборатории. По одной версии, Спенсер положил на устройство свой бутерброд, а сняв его через несколько минут, обнаружил, что бутерброд прогрелся до середины. По другой версии, разогрелся и растаял шоколад, который был у Спенсера в кармане, когда он работал возле своей установки, и, осененный счастливой догадкой, изобретатель кинулся в буфет за сырыми кукурузными зернами. Поднесенный к установке попкорн вскоре с треском начал лопаться…

Так или иначе эффект был обнаружен. В 1945 году Спенсер получил патент на использование микроволн для приготовления пищи, а в 1947-м на кухнях госпиталей и военных столовых, где требования к качеству пищи были не столь высоки, появились первые приборы для приготовления пищи с помощью микроволн. Эти изделия фирмы "Райтеон" высотой в человеческий рост весили 340 кг и стоили 3000 долларов за штуку.

Понадобилось полтора десятилетия, чтобы "довести до ума" печь, в которой пища готовится с помощью невидимых волн. В 1962 году японская фирма "Sharp" выпустила в продажу первую серийную микроволновую печь, которая, впрочем, поначалу не вызвала потребительского ажиотажа. Этой же фирмой в 1966 году был разработан вращающийся стол, в 1979-м впервые применена микропроцессорная система управления печью, а в 1999-м разработана первая микроволновая печь с выходом в Интернет.

Сегодня десятки фирм выпускают бытовые микроволновки. Только в США в 2000 году продали 12,6 млн микроволновых печей, не считая комбинированных духовок со встроенным источником микроволн.

Опыт применения миллионов микроволновых печей во многих странах в течение последних десятилетий доказал неоспоримые удобства этого способа приготовления пищи - быстроту, экономичность, простоту пользования. Сам механизм приготовления пищи с помощью микроволн, с которым мы познакомим вас ниже, предопределяет сохранение молекулярной структуры, а значит, и вкусовых качеств продуктов.

Что такое микроволны

Микроволновое, или сверхвысокочастотное (СВЧ), излучение - это электромагнитные волны длиной от одного миллиметра до одного метра, которые используются не только в микроволновых печах, но и в радиолокации, радионавигации, системах спутникового телевидения, сотовой телефонии и т.д. Микроволны существуют в природе, их испускает Солнце.

Место микроволн на шкале электромагнитного излучения показано на рис. 1.

В бытовых микроволновых печах используются микроволны, частота f которых составляет 2450 МГц. Такая частота установлена для микроволновых печей специальными международными соглашениями, чтобы не создавать помех работе радаров и иных устройств, использующих микроволны.

Зная, что электромагнитные волны распространяются со скоростью света с , равной 300 000 км/с, нетрудно подсчитать, чему равна длина волны L микроволнового излучения данной частоты:

L = c /f = 12,25 см.

Чтобы понять принцип работы микроволновой печи, нужно вспомнить еще один факт из школьного курса физики: волна представляет собой сочетание переменных полей - электрического и магнитного. Продукты, употребляемые нами в пищу, магнитными свойствами не обладают, поэтому о магнитном поле мы можем забыть. А вот изменения электрического поля, которые несет с собой волна, для нас очень кстати...

Как микроволны нагревают пищу?

В состав продуктов питания входят многие вещества: минеральные соли, жиры, сахар, вода. Чтобы нагреть пищу с помощью микроволн, необходимо присутствие в ней дипольных молекул, то есть таких, на одном конце которых имеется положительный электрический заряд, а на другом - отрицательный. К счастью, подобных молекул в пище предостаточно - это молекулы и жиров и сахаров, но главное, что диполем является молекула воды - самого распространенного в природе вещества.

Каждый кусочек овощей, мяса, рыбы, фруктов содержит миллионы дипольных молекул.

В отсутствие электрического поля молекулы расположены хаотически (рис. 2,а).

В электрическом поле они выстраиваются строго по направлению силовых линий поля, "плюсом" в одну сторону, "минусом" в другую. Стоит полю поменять направление на противоположное, как молекулы тут же переворачиваются на 180 о (рис. 2,б).

А теперь вспомним, что частота микроволн 2450 Мгц. Один герц - это одно колебание в секунду, мегагерц - один миллион колебаний в секунду. За один период волны поле меняет свое направление дважды: был "плюс", стал "минус", и снова вернулся исходный "плюс". Значит, поле, в котором находятся наши молекулы, меняет полярность 4 900 000 000 раз в секунду! Под действием микроволнового излучения молекулы кувыркаются с бешеной частотой и в буквальном смысле трутся одна о другую при переворотах (рис. 2,в). Выделяющееся при этом тепло и служит причиной разогрева пищи.

Продукты нагреваются под действием микроволн примерно так же, как нагреваются наши ладони, когда мы быстро трем их друг о друга. Сходство состоит и еще в одном: когда мы трем кожу одной руки о кожу другой, тепло проникает в глубь мышечной ткани. Так и микроволны: они работают только в относительно небольшом поверхностном слое пищи, не проникая внутрь глубже, чем на 1-3 см (рис. 3). Поэтому нагрев продуктов происходит за счет двух физических механизмов - прогрева микроволнами поверхностного слоя и последующего проникновения тепла в глубину продукта за счет теплопроводности.

Отсюда сразу следует рекомендация: если нужно приготовить в микроволновке, например, большой кусок мяса, лучше не включать печь на полную мощность, а работать на средней мощности, но зато увеличить время пребывания куска в печи. Тогда тепло из наружного слоя успеет проникнуть в глубь мяса и хорошо пропечет внутреннюю часть куска, а снаружи кусок не подгорит.

Из тех же соображений жидкие продукты, например супы, лучше периодически помешивать, вынимая время от времени кастрюльку из печи. Этим вы поможете проникновению тепла в глубь емкости с супом.

Посуда для микроволновки

Разные материалы по-разному ведут себя по отношению к микроволнам, и для СВЧ-печи годится не всякая посуда. Металл отражает микроволновое излучение, поэтому внутренние стенки полости печи делают из металла, чтобы он отражал волны к пище. Соответственно, металлическая посуда для микроволновок не годится.

Исключением является низкая открытая металлическая посуда (например, алюминиевые лотки для продуктов). Такую посуду можно помещать в микроволновую печь, но, во-первых, только вниз, на самое дно, а не на второй по высоте уровень (некоторые микроволновки допускают "двухэтажное" размещение лотков); во-вторых, нужно, чтобы печь работала не на максимальной мощности (лучше увеличить время работы), а края лотка отстояли от стенок камеры не менее, чем на 2 см, чтобы не образовался электрический разряд.

Стекло, фарфор, сухие картон и бумага пропускают микроволны сквозь себя (влажный картон начнет разогреваться и не пропустит микроволны, пока не высохнет). Посуду из стекла можно применять в микроволновке, но только при условии, что она выдержит высокую температуру нагрева. Для СВЧ-печей выпускается посуда из специального стекла (например, Pyrex) с низким коэффициентом теплового расширения, стойкая к нагреву.

В последнее время многие производители снабжают посуду маркировкой, указывающей на допустимость применения в микроволновой печи (рис. 4). Прежде чем пользоваться посудой, обратите внимание на ее маркировку.

Учтите, что, например, пластиковые термостойкие контейнеры для пищи прекрасно пропускают микроволны, но и они могут не выдержать высокой температуры, если дополнительно к микроволнам включить еще и гриль.

Продукты питания поглощают микроволны. Так же ведут себя глина и пористая керамика, применять которые в микроволновках не рекомендуется. Посуда из пористых материалов задерживает влагу и нагревается сама вместо того, чтобы пропускать микроволны к продуктам. В результате продуктам достается меньше микроволновой энергии, а вы рискуете обжечься, вынимая посуду из печи.

Приведем три главных правила на тему: что нельзя помещать в микроволновку.

1. Нельзя помещать в микроволновку посуду с золотыми или иными металлическими ободками. Дело в том, что переменное электрическое поле микроволнового излучения приводит к появлению в металлических предметах наведенных токов. Сами по себе эти токи ничего страшного не представляют, но в тонком проводящем слое, каким является слой декоративного металлического покрытия на посуде, плотность наведенных токов может оказаться столь высокой, что ободок, а с ним и посуда, перегреется и разрушится.

Вообще в микроволновке не место металлическим предметам с острыми кромками, заостренны ми концами (например, вилкам): высокая плотность наведенного тока на острых кромках проводника может стать причиной оплавления металла или появления электрического разряда.

2. Ни в коем случае не следует ставить в микроволновку плотно закрытые емкости: бутылки, консервные банки, контейнеры с продуктами и т.д., а также яйца (неважно, сырые или вареные). Все перечисленные предметы при нагреве могут разорваться и привести печь в негодность.

К предметам, которые могут разорваться при нагреве, относятся и продукты питания, имеющие кожицу или оболочку, например помидоры, сосиски, сардельки, колбаски и т.д. Чтобы избежать взрывного расширения подобных продуктов, проколите оболочку или кожицу вилкой перед тем, как помещать их в печь. Тогда пар, образующийся внутри при нагреве, сможет спокойно выйти наружу и не разорвет помидор или сосиску.

3. И последнее: нельзя, чтобы в микроволновк е была… пустота. Иными словами, нельзя включать пустую печь , без единого предмета, который поглощал бы микроволны. В качестве минимальной загрузки печи при любом ее включении (например, при проверке работоспособности) принята простая и всем понятная единица: стакан воды (200 мл).

Включение пустой микроволновой печи чревато ее серьезным повреждением. Не встречая на своем пути никаких препятствий, микроволны будут многократно отражаться от внутренних стенок полости печи, а сконцентрированная энергия излучения может вывести печь из строя.

Кстати, если вы хотите довести воду в стакане или ином высоком узком сосуде до кипения, не забудьте опустить в него чайную ложечку перед тем, как поставить стакан в печь. Дело в том, что закипание воды под действием микроволн происходит не так, как, например, в чайнике, где тепло подводится к воде только снизу, со стороны дна. Микроволновый нагрев идет со всех сторон, а если стакан узкий - практически по всему объему воды. В чайнике вода при закипании бурлит, поскольку со дна поднимаются пузырьки растворенного в воде воздуха. В микроволновке вода дойдет до температуры кипения, но пузырьков не будет - это называется эффектом задержки кипения. Зато когда вы достанете стакан из печи, всколыхнув его при этом, - вода в стакане запоздало забурлит, и кипяток может ошпарить вам руки.

Если вы не знаете, из какого материала изготовлена посуда, проделайте простой опыт, который позволит вам определить, годится она для этой цели или нет. Понятное дело, речь не идет о металле: опознать его несложно. Поставьте порожнюю посуду в печь рядом со стаканом, наполненным водой (не забудьте про ложечку!). Включите печь и дайте ей поработать в течение одной минуты на максимальной мощности. Если после этого посуда осталась холодной, значит, она изготовлена из прозрачного для микроволн материала и ею можно пользоваться. Если же посуда нагрелась, значит, она изготовлена из поглощающего микроволны материала и вам вряд ли удастся приготовить в ней пищу.

Опасны ли микроволны?

С микроволновыми печами связан ряд заблуждений, которые объясняются непониманием характера этого вида электромагнитных волн и механизма микроволнового нагрева. Надеемся, что наш рассказ поможет преодолеть такие предубеждения.

Микроволны радиоактивны или делают продукты радиоактивными. Это неверно: микроволны относятся к категории неионизирующих излучений. Они не оказывают никакого радиоактивного воздействия на вещества, биологические ткани и продукты питания.

Микроволны изменяют молекулярную структуру продуктов питания или делают продукты канцерогенными.

Это тоже неверно. Принцип действия микроволн иной, чем у рентгеновских лучей или у ионизирующих излучений, и сделать продукты канцерогенными они не могут. Напротив, поскольку приготовление пищи при помощи микроволн требует очень небольшого количества жиров, готовое блюдо содержит меньше перегоревшего жира с измененной при тепловой обработке молекулярной структурой. Поэтому приготовление пищи с помощью микроволн полезнее для здоровья и не представляет для человека никакой опасности.

Микроволновые печи испускают опасное излучение.

Это не соответствует действительности. Хотя непосредственное воздействие микроволн может вызвать тепловое поражение тканей, риск при пользовании исправной микроволновой печью полностью отсутствует. Конструкцией печи предусмотрены жесткие меры для предотвращения выхода излучения наружу: имеются продублированные устройства блокировки источника микроволн при открывании дверцы печи, а сама дверца исключает выход микроволн за пределы полости. Ни корпус, ни любая иная часть печи, ни помещенные в печь продукты питания не накапливают электромагнитное излучение микроволнового диапазона. Как только печь выключается, излучение микроволн прекращается.

Тем, кто опасается даже близко подходить к микроволновой печи, нужно знать, что микроволны очень быстро затухают в атмосфере. Для иллюстрации приведем такой пример: допустимая западными стандартами мощность СВЧ-излучения на расстоянии 5 см от новой, только что купленной печи составляет 5 милливатт на квадратный сантиметр. Уже на расстоянии полуметра от микроволновки излучение становится в 100 раз слабее (см. рис. 5).

Как следствие столь сильного затухания, вклад микроволн в общий фон окружающего нас электромагнитного излучения не выше, чем, скажем, от телевизора, перед которым мы готовы сидеть часами без всякого опасения, или мобильного телефона, который мы так часто держим у виска. Просто не стоит опираться локтем на работающую микроволновую печь или прислоняться лицом к дверце, пытаясь разглядеть, что происходит в полости. Достаточно отойти от печи на расстояние вытянутой руки, и можно чувствовать себя в полной безопасности.

Откуда берутся микроволны

Источником микроволнового излучения является высоковольтный вакуумный прибор - магнетрон . Чтобы антенна магнетрона излучала микроволны, к нити накала магнетрона необходимо подать высокое напряжение (порядка 3-4 КВт). Поэтому сетевого напряжения питания (220 В) магнетрону недостаточно, и питается он через специальный высоковольтный трансформатор (рис. 6).

Мощность магнетрона современных микроволновых печей составляет 700-850 Вт. Этого достаточно, чтобы за несколько минут довести до кипения воду в 200-граммовом стакане. Для охлаждения магнетрона рядом с ним имеется вентилятор, непрерывно обдувающий его воздухом.

Порожденные магнетроном микроволны поступают в полость печи по волноводу - каналу с металлическими стенками, отражающими СВЧ-излучение. В одних микроволновках волны входят в полость только через одно отверстие (как правило, под "потолком" полости), в других - через два отверстия: у "потолка" и у "дна". Если заглянуть в полость печи, то можно увидеть слюдяные пластинки, которые закрывают отверстия для ввода микроволн. Пластинки не позволяют попадать в волновод брызгам жира, а проходу микроволн они совершенно не мешают, поскольку слюда прозрачна для излучения. Слюдяные пластинки со временем пропитываются жиром, становятся рыхлыми, и их нужно менять на новые. Можно вырезать новую пластинку из листка слюды самому по форме старой, но лучше купить новую пластинку в сервисном центре, который обслуживает технику данной торговой марки, благо стоит она недорого.

Полость микроволновки изготавливается из металла, который может иметь то или иное покрытие. В самых дешевых моделях СВЧ-печей внутренняя поверхность стенок полости покрыта краской "под эмаль". Такое покрытие не отличается стойкостью к воздействию высоких температур, поэтому не применяется в моделях, где дополнительно к микроволнам пища подогревается грилем.

Более стойким является покрытие стенок полости эмалью или специальной керамикой. Стенки с таким покрытием легко моются и выдерживают высокие температуры. Недостатком эмали и керамики является их хрупкость по отношению к ударам. Ставя посуду в полость микроволновки, нетрудно случайно задеть стенку, а это может повредить нанесенное на нее покрытие. Поэтому, если вы приобрели СВЧ-печь с эмалевым или керамическим покрытием стенок, обращайтесь с ней осторожно.

Наиболее прочными и стойкими в отношении ударов являются стенки из нержавеющей стали. Плюс этого материала - прекрасное отражение микроволн. Минус - то, что если хозяйка уделяет не слишком много внимания очистке внутренней полости СВЧ-печи, то не удаленные вовремя брызги жира и пищи могут оставить следы на нержавеющей поверхности.

Объем полости микроволновой печи служит одной из важных потребительских характеристик. Компактные печи с объемом полости 8,5-15 л служат для размораживания или приготовления малых порций пищи. Они идеально подходят для одиноких людей либо для выполнения специальных задач, например для разогрева бутылочки с детским питанием. Печи с полостью объемом 16-19 л годятся для семейной пары. В такую печь можно поместить небольшую курицу. Печи средних габаритов имеют объем полости 20-35 л и подходят для семьи из трех-четырех человек. Наконец, для большой семьи (пять-шесть человек) нужна СВ-печь с полостью объемом 36-45 л, позволяющая испечь гуся, индейку или большой пирог.

Очень важным элементом микроволновой печи является дверца. Она должна дать возможность видеть, что происходит в полости, и при этом исключить выход микроволн наружу. Дверца представляет собой многослойный пирог из стеклянных или пластмассовых пластин (рис. 7).

Кроме того, между пластинами обязательно есть сетка из перфорированного металлического листа. Металл отражает микроволны назад, в полость печи, а отверстия перфорации, которые делают его прозрачным для обзора, имеют диаметр не более 3 мм. Вспомним, что длина волны СВЧ-излучения равна 12,25 см. Ясно, что через трехмиллиметровые отверстия такой волне не пройти.

Чтобы излучение не нашло лазейки там, где дверца прилегает к срезу полости, по периметру дверцы вмонтирован уплотнитель из диэлектрического материала. Он плотно прилегает к переднему торцу корпуса СВЧ-печи при закрытии дверцы. Толщина уплотнителя составляет порядка четверти длины волны СВЧ-излучения. Здесь используется расчет, основанный на физике волн: как известно, волны в противофазе гасят друг друга. Благодаря точно подобранной толщине уплотнителя обеспечивается так называемая отрицательная интерференция волны, проникшей внутрь материала уплотнителя, и отраженной волны, выходящей из уплотнителя наружу. Благодаря этому уплотнитель служит ловушкой, надежно гасящей излучение.

Чтобы полностью исключить возможность генерации микроволн при открытой дверце камеры, используется набор нескольких дублирующих друг друга независимых выключателей. Эти выключатели замыкаются контактными штырями на дверце печи и разрывают цепь питания магнетрона даже при небольшой неплотности закрытия дверцы.

Присмотревшись к микроволновым печам, выставленным в торговом зале крупного магазина бытовой техники, вы сможете заметить, что они различаются по направлению открытия дверцы: у одних печей дверца открывается в сторону (обычно влево), а у других откидывается к вам, образуя небольшую полочку. Последний вариант хоть и встречается реже, но дает дополнительное удобство при пользовании печью: горизонтальная плоскость открытой дверцы служит опорой при загрузке посуды в полость печи или при извлечении готового блюда. Нужно только не перегружать дверцу излишним грузом и не опираться на нее.

Как "перемешать" микроволны

Микроволны, вошедшие по волноводу в полость печи, хаотично отражаются от стенок и рано или поздно попадают на помещенные в печь продукты. При этом на каждую точку, скажем, куриной тушки, которую мы хотим разморозить либо поджарить, приходят волны с самых разных направлений. Неприятность состоит в том, что уже упомянутая нами интерференция может сработать как в "плюс", так и в "минус": пришедшие в фазе волны усилят одна другую и прогреют участок, на который они попали, а пришедшие в противофазе - погасят друг друга, и проку от них не будет никакого.

Чтобы волны проникали в продукты равномерно, их надо как бы "перемешать" в полости печи. Самим же продуктам лучше в буквальном смысле повертеться в полости, подставляя под поток излучения разные бока. Так в микроволновых печах появился поворотный стол - блюдо, опирающееся на небольшие ролики и приводимое в движение электромотором (рис. 8,б).

"Перемешивать" микроволны можно разными способами. Наиболее простое и прямолинейное решение - подвесить под "потолком" полости мешалку: вращающуюся крыльчатку с металлическими лопастями, которые отражают микроволны. Такая мешалка называется диссектор(рис. 8,а). Он хорош своей простотой и, как следствие, низкой стоимостью. Но, к сожалению, высокой равномерностью волнового поля СВЧ-печи с механическим отражателем микроволн не отличаются.

Сочетание вращающегося диссектора и поворотного стола для продуктов иногда носит специальное название. Так, в микроволновых печах Mielе это называется системой Duplomatic.

В некоторых микроволновках (например, модели Y82, Y87, ET6 от "Moulinex") сделаны два поворотных стола, расположенных один над другим. Такая система называется DUO и позволяет готовить два блюда одновременно. Каждый стол имеет отдельный привод через гнездо на задней стенке полости печи.

Более тонким, но зато и эффективным способом достижения равномерного волнового поля является тщательная работа над геометрией внутренней полости печи и создание оптимальных условий для отражения волн от ее стенок. Такие "продвинутые" системы распределения микроволн у каждого производителя печей имеют свое "фирменное" название.

Расписание работы магнетрона

Любая микроволновая печь позволяет владельцу задать мощность, необходимую для выполнения той или иной функции: от минимальной мощности, достаточной для поддержания пищи подогретой, до полной мощности, которая нужна для приготовления пищи в загруженной продуктами печи.

Особенностью магнетронов, применяемых в большинстве микроволновых печей, является то, что они не могут "гореть вполнакала". Поэтому, чтобы печь работала не на полной, а на уменьшенной мощности, можно лишь периодически выключать магнетрон, прекращая на какое-то время генерацию микроволн.

Когда печь работает на минимальной мощности (пусть это будет 90 Вт, при этом пища в полости печи поддерживается в подогретом состоянии), магнетрон включается на 4 с, затем отключается на 17 с, и эти циклы включения-выключения все время чередуются.

Увеличим мощность, скажем, до 160 Вт, если нам нужно разморозить продукты. Теперь магнетрон включается на 6 с, а отключается на 15 с. Прибавим мощность: при 360 Вт длительность циклов включения и выключения почти сравнялась - это 10 с и 11 с соответственно.

Заметим, что суммарная длительность циклов включения и выключения магнетрона остается постоянной (4 + 17, 6 + 15, 10 + 11) и составляет 21 с.

Наконец, если печь включена на полную мощность (в нашем примере это 1000 Вт), магнетрон работает постоянно, не отключаясь.

В последние годы на отечественном рынке появились модели микроволновых печей, в которых питание магнетрона осуществляется через устройство под названием "инвертор". Производители этих печей ("Panasonic", "Siemens") подчеркивают такие преимущества инверторной схемы, как компактность узла излучения микроволн, позволяющего увеличить объем полости при неизменных внешних габаритах печи и более эффективное преобразование потребляемой электроэнергии в энергию микроволн.

Инверторные системы питания широко применяются, например, в кондиционерах воздуха и позволяют плавно менять их мощность. В СВЧ-печах инверторные системы питания дают возможность плавно менять мощность источника излучения, вместо того чтобы отключать его каждые несколько секунд.

Благодаря плавному изменению мощности излучателя микроволн в печах с инвертором температура также меняется плавно, в отличие от традиционных печей, где из-за периодического выключения магнетрона время от времени прекращается подвод излучения. Впрочем, будем справедливы к традиционным печам: эти колебания температуры не столь уж сильны и вряд ли сказываются на качестве приготовленной пищи.

Так же, как в случае кондиционеров, микроволновки с инверторной системой питания стоят дороже, чем с традиционной.

Знаете ли вы …

что в микроволновой печи можно разогревать любое молоко без всякого ущерба для его питательных свойств? Единственное исключение - свежесцеженное грудное молоко: под воздействием микроволн оно утрачивает содержащиеся в нем компоненты, жизненно необходимые младенцу.

что иногда вращение стола лучше отменить. Это позволит готовить большие по объему блюда (лосось, индейку и т. д.), которым просто не повернуться в полости, не задев ее стенок. Воспользуйтесь функцией отмена вращения, если она имеется в вашей микроволновке.

Развитие техники микроволн в последние два десятилетия способствовало внедрению их в физиотерапевтическую практику. Микроволны обладают рядом физических свойств, которые могут быть использованы для лечения некоторых заболеваний (например, псориаза , ревматизма и других аутоиммунных болезней). Свойства этих волн следующие: а) энергию их можно сконцентрировать на отдельных участках тела; б) они отражаются от плотных поверхностей; в) частота их близка к частоте релаксационных колебаний воды; г) они более термогенны, чем ультракороткие волны.

Под действием микроволн в тканях живого организма возникают колебания ионов и содержащихся в них дипольных молекул воды . Поглощение в тканях энергии волн за счет колебания ионов практически не зависит от частоты, поглощение же за счет колебаний дипольных молекул воды увеличивается с увеличением частоты. Однако это увеличение происходит до определенной для каждого тела молекул частоты (так называемая релаксационная частота). При более высоких частотах молекулы вследствие инертности не успевают уже реагировать на слишком частые изменения полей волны, а потому поглощение энергии волн резко уменьшается. Для молекул воды эта предельная частота релаксации около 2-10 гц (длина волны около 1,5 см). В силу этих особенностей по мере укорочения длины волны повышается роль молекул в общем поглощении энергии волн в тканях. В 10-сантиметровом диапазоне волн за счет колебаний молекул воды поглощается примерно половина общей энергии, а в 3-сантиметровом - уже 98%. Так как организм больше чем на половину состоит из воды, то понятно значение этого факта для действия микроволн, особенно для ткани с высоким содержанием воды (кровь, лимфа, мышцы, нервная система).

Микроволны обладают как термическим, так и экстратермическим действием. Впервые экстратермическое действие их на человека установил С. Я. Турлыгин, наблюдавший появление сонливости после воздействия сантиметровыми волнами очень малой интенсивности. В дальнейшем это было подтверждено многочисленными наблюдениями. У человека при систематическом воздействии микроволнами большой мощности на лицо наблюдается помутнение хрусталика, функциональные изменения нервной системы, нарушение функции зрительного и обонятельного анализаторов и т. д., что привело к необходимости установить в промышленности предельно допустимые дозы воздействия на человека в течение рабочего времени - не более 0,01 мвт/см2.

Общее воздействие на животных интенсивным полем СВЧ при ППМ (плотности потока мощности) 0,2-0,3 вт/см21 вызывает изменение дыхания, частоты сердечных сокращений и артериального давления, местные же воздействия при тех же условиях сопровождаются быстро проходящими изменениями гемодинамики и дыхания, очевидно рефлекторного происхождения. Регулирующее значение нервной системы при воздействии поля СВЧ выступает при перерезке блуждающих нервов у животных; при этом отмечают меньшее учащение дыхания, но более тяжелое гемодинамическое нарушение в результате выключения регулирующего влияния блуждающего нерва.

У лягушки поле СВЧ при 0,3 вт/см2 вызывает изменения сердечной деятельности, сходные с двухфазным эффектом электрического поля УВЧ. В первую фазу, иногда кратковременную, наблюдается учащение и усиление сердечных сокращений, за которой следует замедление и остановка сердечной деятельности в диастоле. После прекращения воздействия сокращения восстанавливаются; иногда наблюдают аритмии. Эти эффекты рассматривают как термические ввиду применявшейся в опытах высокой ППМ поля СВЧ.

Большое физиологическое значение имеет применение небольшой интенсивности поля СВЧ (ППМ 0,05 вт/см2, продолжительность 30 минут), когда у собак обычно отмечается небольшое учащение сердечного ритма и исчезновение дыхательной аритмии, у некоторых животных появляется урежение ритма. По данным электрокардиографии, при длительных многократных воздействиях полем СВЧ можно судить о включении компенсаторных механизмов и развития адаптации, которая может быть сорвана у собак более сильными воздействиями. Установленные изменения указывают на развитие временных дистрофических процессов в миокарде и их рассматривают как рефлекторные; в течение первого часа после воздействия эти изменения исчезают. У собак с искусственно вызванным инфарктом миокарда применение поля СВЧ вызывает учащение сердечного ритма, снижение всех зубцов электрокардиограммы в каждом отведении, интервал же S-Т приподнимается еще больше над изоэлектрической линией. Поле СВЧ ухудшает функции больного сердца.

При нормализации показателей функций сердца после перенесенного экспериментального инфаркта миокарда применение поля СВЧ слабой интенсивности вызывает у животных фазовые изменения сердечной деятельности, которые можно рассматривать как дистрофические. Эти изменения наблюдаются как при общем воздействии, так и при местном на область головы. Мышечная нагрузка в сочетании со слабым полем СВЧ ведет к более стойким изменениям.

На основании электрокардиографических данных можно сделать вывод, что под влиянием поля СВЧ изменяются биохимические процессы в тканях сердца, выраженность которых зависит от интенсивности воздействия микроволнами.

Определение электролитического состава периферической крови животных методом электрофореза после воздействия интенсивным полем СВЧ (ППМ 0,1-0,2 вт/см2) свидетельствует о фазных изменениях в содержании калия и натрия. Вначале коэффициент K/Na в плазме повышается, а потом снижается. При сопоставлении с электрокардиографическими данными видно, что после воздействия при высоком содержании калия в крови во всех отведениях появляются заостренные высокие зубцы Т, а при пониженном его содержании низкие уплощенные. По изменению соотношения калия и натрия в крови можно считать, что под влиянием микроволн происходит изменение проницаемости клеточных мембран к внутри- и внеклеточным катионам.

Большой интерес для механизма действия поля СВЧ на организм представляют биохимические исследования. Изучение окислительно-восстановительных процессов в тканях (печени, почках, сердечной мышце) путем определения в них активности ферментов (цитохромоксидазы, дегидразы и аденозинтрифосфатазы) выявляет действие на организм поля СВЧ. Применение интенсивного поля СВЧ (ППМ 0,1-0,3 вт/см2) приводит к резкому снижению окислительно-восстановительных процессов в тканях кролика; при этом проявляется тепловое действие поля СВЧ. Слабое поле СВЧ (ППМ 0,005-0,01 вт/см2) вызывает заметное повышение окислительно-восстановительных процессов в тканях. Многократное воздействие на кроликов поля СВЧ приводит к меньшим сдвигам окислительно-восстановительных процессов по сравнению с однократным. Это можно объяснить тем, что повторное воздействие стимулирует компенсаторно-приспособительные механизмы, обусловливает меньшие сдвиги окислительно-восстановительных процессов в тканях животных. Влияние компенсаторных механизмов было выражено больше в центральной нервной системе, чем в сердце.

Исследование белкового обмена животных как при местном, так и при общем воздействии поля СВЧ выявило некоторые особенности. Воздействие на область сердца ежедневно в течение 10 дней (ППМ 0,02 вт/см2 при площади излучателя 10 см2) не вызывало каких-либо существенных изменений белкового обмена сердечной мышцы, при более же интенсивном воздействии (ППМ 0,1 вт/см2) наблюдали увеличение содержания белков, обладающих фосфорилазной активностью при одновременном уменьшении фракции миогена.

В мышце сердца животных отмечены значительные изменения содержания отдельных белковых фракций, которые зависели от интенсивности воздействия.

Реакцией преципитации в агаре по Ухтерлони исследовали антигенный состав сыворотки крови животных, подвергнутых общему воздействию микроволн в виде курса из 20 процедур по 10 минут ежедневно (ППМ 0,006 и 0,04 вт/см2). Сыворотку крови исследовали на 24-25-й день после последнего воздействия. Реакция преципитации в агаре показала, что общее действие микроволн (ППМ 0,006 вт/см2) не приводит к изменению антигенного состава сыворотки крови животных. Антисыворотка к сыворотке подопытных животных одинаково реагировала с сывороткой как подопытных, так и здоровых животных.

При иммунологических исследованиях сыворотки крови животных, подвергнутых общему воздействию микроволн с ППМ 0,04 вт/см2, в реакции преципитации в агаре было обнаружено меньшее количество линий преципитации, что свидетельствовало об упрощении антигенного состава сыворотки крови и укреплении иммунитета . Сыворотки против сыворотки здоровых животных по-разному реагировали с сывороткой здоровых и подопытных животных; в то же время сыворотки против сыворотки подопытных реагировали с сывороткой здоровых и подопытных животных одинаково. Полученные данные, по-видимому, свидетельствуют о том, что в сыворотке здоровых животных имеются антигены, которых нет в сыворотке животных, подвергнутых воздействию микроволн.

Упрощение антигенного состава сыворотки крови при воздействии тепловых доз микроволн свидетельствует о глубоком сдвиге в обмене веществ организма. При действии нетепловых доз микроволн подобного явления не наблюдали.

Исследование высшей нервной деятельности собак методом условных рефлексов показывает, что воздействие полем СВЧ вызывает значительные изменения, которые зависят от плотности потока мощности, продолжительности воздействия и типологических особенностей животного. Изменение функционального состояния коры больших полушарий головного мозга у собак наблюдали уже при однократном воздействии слабым полем СВЧ (ППМ 0,005-0,01 вт/см2). Поскольку такая мощность поля не вызывала повышения температуры тела, наблюдаемый эффект не был связан с перегреванием. Слабое поле СВЧ усиливало процесс возбуждения, а сильное, при котором наблюдали одышку, перегрев, вело к развитию торможения в центральной нервной системе.

Усиление как условных, так и безусловных рефлексов указывает, что поле СВЧ действует как на кору головного мозга, так и на подкорковые образования. При длительном воздействии слабого поля СВЧ наблюдаются фазные изменения высшей нервной деятельности: сначала усиление процесса возбуждения, а затем ослабление его до исходного уровня с усилением торможения.

Изучение злектроэнцефалографических показателей у животных при общем воздействии выявило зависимость между характером биоэлектрической активности головного мозга и интенсивностью воздействия поля СВЧ. Интенсивные и длительные воздействия вызывали изменения основных ритмов электрической активности, а также амплитуды. При воздействии на голову животного эти изменения выступали при слабых воздействиях поля СВЧ.

В настоящее время ученые пытаются лечить микроволновыми волнами злокачественные образования, что, возможно, наконец позволит создать уникальное средство лечение рака груди . Однако, пока все находится в стадии экспериментов над животными.

> Микроволны

Изучите мощность и влияние микроволн . Читайте про диапазоны микроволн, частота и длина излучения, какие есть источники микроволн, работа духового шкафа.

Микроволны – электромагнитные волны с длиной в 1 м – 1 мм).

Задача обучения

  • Разобраться в трех диапазонах микроволн.

Основные пункты

  • Микроволновая область перекрывается наиболее высокими частотными волнами.
  • Префикс «микро» в микроволновой печи не указывает на длину волн.
  • Микроволны делятся на три диапазона: крайне высокая частота (30-300 ГГц), сверхвысокая (3-30 ГГц) и ультрасверхвысокая (300 МГц-3 ГГц).
  • В список источников входят искусственные устройства вроде передающих башен, радаров, мазеров, а также природные – Солнце и реликтовое излучение.
  • Микроволны можно добыть из атомов и молекул. Они поглощают и излучают лучи, если температура поднимается выше абсолютного нуля.

Термины

  • Радиолокационный – метод поиска удаленных объектов и указание их позиции, скорости и прочих характеристик через анализ отправляемых радиоволн, отраженных от поверхности.
  • Тепловое волнение – тепловое перемещение атомов и молекул, если температура в объекте выше абсолютного нуля.
  • Терагерцовое излучение – электромагнитные волны, чьи частоты приближаются к терагерцу.

Микроволны

Микроволны – электромагнитные волны, чья длина волны существует в диапазоне 1м – 1мм (300 МГц – 300 ГГц). Микроволновая область обычно перекрывается наиболее высокими частотными волнами. Они способны перемещаться в условиях вакуума со световой скоростью.

Префикс «микро» в «микроволновой печи» не указывает на длину волны в диапазоне микрометров. Это лишь говорит о том, что микроволны выступают маленькими, потому что обладают меньшими длинами волн, если сравнивать с радиовещанием. Разделение между различными типами лучей чаще всего произвольно.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличаются, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Подкатегории микроволн

Микроволны делятся на три диапазона:

  • крайне высокая частота (30-300 Гц). Если показатели выше, то мы сталкиваемся с дальним ИК-светом, именуемым еще терагерцовым излучением. Эту полосу чаще всего задействуют в радиоастрономии и дистанционном зондировании.
  • сверхвысокая частота (3-30 ГГц). Ее именуют сантиметровой полосой, потому что частота колеблется между 10-1 см. Диапазон применим в радиолокационных передатчиках, микроволновках, спутниках связи и коротких наземных каналах для транспортировки данных.
  • Ультрасверхвысокая частота (300МГц – 3ГГц) – дециметровый диапазон, так как длина волн колеблется от 10 см к 1 м. Они присутствуют в телевизионном вещании, беспроводной телефонной связи, рациях, спутниках и т.д.

Источники микроволн

Это высокочастотные электромагнитные волны, создающиеся токами в макроскопических схемах и устройствах. Их также можно получить из атомов и молекул, если те выступают в составе электромагнитных лучей, сформированных при термическом перемешивании.

Важно запомнить, что больше информации передается на высоких частотах, поэтому микроволны прекрасно подходят для коммуникационных приборов. Из-за коротких длин волн между передатчиком и приемником должна установиться четкая линия зрения.

Солнце также производит микроволновые лучи, хотя большая часть блокируется планетарной атмосферой. Реликтовое излучение пронизывает все пространство. Его нахождение подтверждает теорию Большого Взрыва.

Реликтовое излучение Большого Взрыва с увеличенным расширением

Устройства с микроволнами

В микроволновых источниках с большой мощностью используют специальные вакуумные трубки, чтобы генерировать микроволны. Устройства функционируют по различным принципам при помощи баллистического движения электронов в условиях вакуума. На них влияют электрические или магнитные поля.


Полость магнетрона, задействованная в микроволновой печи

Микроволновые печи используют микроволны, чтобы подогреть пищу. Необходимые частоты в 2.45 ГГц создаются благодаря ускорению электронов. После чего в духовке формируется переменное электрическое поле.

Вода и некоторые компоненты пищи обладают отрицательным зарядом на одном конце и положительным на другом. Диапазон микроволновых частот выбирается таким образом, чтобы полярные молекулы в попытке сберечь свои позиции, поглощали энергии и увеличивали температурные показатели (диэлектрический нагрев).

Радар во времена Второй мировой волны использовал микроволны. Нахождение и синхронизация микроволновых эхо-сигналов способны вычислить дистанцию к объектам, вроде облаков или летательных аппаратов. Доплеровский сдвиг в радиолокационном эхо может указать скорость перемещения машины или даже интенсивность ливня. Более сложные системы отображают нашу и чужие планеты. Мазер – прибор, напоминающий лазер, которые увеличивает световую энергию, стимулируя фотоны.

Среди огромного разнообразия электромагнитных волн, существующих в природе, весьма скромное место занимает микроволновое или сверхвысокочастотное излучение (СВЧ). Отыскать этот частотный диапазон можно между радиоволнами и инфракрасной частью спектра. Протяжённость его не особенно велика. Это волны длиной от 30 см до 1 мм.

Поговорим о его происхождении, свойствах и роли в сфере обитания человека, о том, как влияет этот «молчаливый невидимка» на человеческий организм.

Источники СВЧ-излучения

Существуют природные источники микроволнового излучения - Солнце и другие космические объекты. На фоне их излучения и происходило формирование и развитие человеческой цивилизации.

Но в наш, насыщенный всевозможными техническими достижениями век, к естественному фону присовокупились ещё и рукотворные источники:

  • радиолокационные и радионавигационные установки;
  • системы спутникового телевидения;
  • сотовые телефоны и микроволновые печи.

Как микроволновое излучение влияет на здоровье человека

Результаты исследования влияния микроволнового излучения на человека позволили установить, что СВЧ лучи не обладают ионизирующим действием. Ионизированные молекулы - это дефектные частички вещества, приводящие к мутации хромосом. В результате живые клетки могут приобрести новые (дефектные) признаки. Этот вывод не означает, что микроволновое излучение не оказывает вред на человека.

Изучение влияния СВЧ-лучей на человека, позволило установить следующую картину - при их попадании на облучаемую поверхность, происходит частичное поглощение поступающей энергии тканями человека. В результате в них возбуждаются высокочастотные токи, нагревающие организм.

Как реакция механизма терморегуляции, следует усиление циркуляции крови. Если облучение было локальным, возможен быстрый отвод тепла от разогретых участков. При общем облучении такой возможности нет, поэтому оно является более опасным.

Поскольку циркуляция крови выполняет роль охлаждающего фактора, то в органах, обеднённых кровеносными сосудами, тепловой эффект выражен наиболее ярко. В первую очередь - в хрусталике глаза, вызывая его помутнение и разрушение. К сожалению, эти изменения необратимы.

Наиболее значительной поглощательной способностью отличаются ткани с большим содержанием жидкого компонента: крови, лимфы, слизистой желудка, кишечника, хрусталика глаза.

В результате могут наблюдаться:

  • изменения в крови и щитовидной железе;
  • снижение эффективности адаптационных и обменных процессов;
  • изменения в психической сфере, которые могут привести к депрессивным состояниям, а у людей с неустойчивой психикой - спровоцировать склонность к суициду.

Микроволновое излучение обладает кумулятивным эффектом. Если в первое время его воздействие проходит бессимптомно, то постепенно начинают формироваться патологические состояния. Вначале они проявляются в учащении головных болей, быстрой утомляемости, нарушениях сна, повышении артериального давления, сердечных болях.

При длительном и регулярном воздействии СВЧ излучение приводит к глубинным изменениям, перечисленным ранее. То есть, можно утверждать, что СВЧ излучение оказывает негативное влияние на здоровье человека. Причём отмечена возрастная чувствительность к микроволнам - молодые организмы оказались более подверженными влиянию СВЧ ЭМП (электромагнитного поля).

Средства защиты от СВЧ-излучения

Характер воздействия СВЧ излучения на человека зависит от следующих факторов:

  • удалённости от источника излучения и его интенсивности;
  • продолжительности облучения;
  • длины волны;
  • вида излучения (непрерывное или импульсное);
  • внешних условий;
  • состояния организма.

Для количественной оценки опасности введено понятие плотности излучения и допустимой нормы облучения. В нашей стране этот стандарт взят с десятикратным «запасом прочности» и равен 10 микроватт на сантиметр (10 мкВт/см). Это означает, что мощность потока СВЧ энергии, на рабочем месте человека не должна превышать 10 мкВт на каждый сантиметр поверхности.

Как же быть? Сам собой напрашивается вывод, что следует всячески избегать воздействия микроволновых лучей. Уменьшить воздействие СВЧ-излучения в сфере быта достаточно просто: следует ограничить время контакта с бытовыми его источниками.

Совершенно иной механизм защиты должен быть у людей, чья профессиональная деятельность связана с воздействием СВЧ радиоволн. Средства защиты от СВЧ-излучения подразделяются на общие и индивидуальные.

Поток излучаемой энергии убывает обратно пропорционально увеличению квадрата расстояния между излучателем и облучаемой поверхностью. Поэтому важнейшей коллективной защитной мерой является увеличение расстояния до источника излучения.

Другими действенными мерами по защите от СВЧ-излучения являются следующие:

Большая часть из них базируется на основных свойствах микроволнового излучения - отражении и поглощении веществом облучаемой поверхности. Поэтому защитные экраны подразделяются на отражающие и поглощающие.

Отражательные экраны выполняются из листового металла, металлической сетки и металлизированной ткани. Арсенал защитных экранов достаточно разнообразен. Это листовые экраны из однородного металла и многослойные пакеты, включающие слои изоляционных и поглощающих материалов (шунгита, углеродистых соединение) и т. д.

Конечным звеном в этой цепи являются средства индивидуальной защиты от СВЧ-излучения. Они включают спецодежду, выполненную из металлизированной ткани (халаты и фартуки, перчатки, накидки с капюшонами и вмонтированными в них очками). Очки покрыты тончайшим слоем металла, отражающего излучение. Их ношение обязательно при облучении в 1 мкВт/см.

Ношение спецодежды снижает уровень облучения в 100–1000 раз.

Польза микроволнового излучения

Вся предыдущая информация c негативной направленностью, имеет своей целью упредить нашего читателя от, исходящей от СВЧ-излучения, опасности. Однако среди специфических действий микроволновых лучей встречается термин стимуляция, то есть улучшение под их влиянием общего состояния организма или чувствительности его органов. То есть воздействие СВЧ-излучения на человека может быть и полезным. Терапевтическое свойство микроволнового излучения основано на его биологическом действии при физиотерапии.

Излучения, исходящие от специализированного медицинского генератора, проникает в организм человека на заданную глубину, вызывая прогревание тканей и целую систему полезных реакций. Сеансы СВЧ-процедур оказывают болеутоляющее и противозудное действие.

Их с успехом используют для лечения фронтита и гайморита, невралгии тройничного нерва.

Для воздействия на эндокринные органы, органы дыхания, почки, и лечения гинекологических заболеваний используют микроволновое излучение с большей проникающей способностью.

Исследование влияния СВЧ-излучения на организм человека начались несколько десятилетий назад. Накопленных знаний достаточно, чтобы быть уверенными в безвредности естественного фона этих излучений для человека.

Разнообразные генераторы этих частот, создают дополнительную дозу воздействия. Однако, их доля очень мала, а, используемая защита достаточно надёжна. Поэтому фобии об их огромном вреде не более чем миф, если соблюдаются все условия эксплуатации и защиты от промышленных и бытовых источников микроволновых излучателей.