Что такое сжиженный природный газ (СПГ)? Сжижение газов

СЖИЖЕНИЕ ГАЗОВ - производят при охлаждении их ниже критич. темп-ры Т к (см. Критическая точка ).С. г. с критич. темп-рой выше темп-ры окружающей среды (С1 2 , NH 3 , CO 2 и др.) производится сжатием их в компрессорах и последующей конденсацией в теплообменниках, охлаждаемых водой или холодильным рассолом. Для С. г. с критич. темп-рой ниже темп-ры окружающей среды их предварительно охлаждают с помощью соответствующих холодильных (криогенных) циклов.

Идеальный цикл С. г. приведён на рис. 1: 1 - 2 - изобарич. охлаждение газа от темп-ры Т 0 до темп-ры Т 2 начала конденсации (T 2 ниже Т к) , изотерма 2-0 - конденсация газа; 1-3 - изотермич. сжатие газа, 3-0 - адиабатич. его расширение. Площадь под 1 -2 -0 соответствует отводимой при С. г. теплоте, площадь внутри 1 - 2 - 0- 3 - мин. работе A мин С. г.: где S Г, S Ж - энтропия, Н Г, Н Ж - энтальпия газа и жидкости соответственно.

Рис. 1. Т - S-диаграм-ма идеального цикла сжижения газов (р - давление, Н - энтальпия) .

Давления, необходимые для идеального цикла С. г., составляют сотни тысяч атм, поэтому на практике цикл неосуществим. Реальные затраты энергии при С. г. обычно превышают А мин в 5-10 и более раз.

Совр. методы С. г. основаны на охлаждении предварительно сжатого газа при Джоуля - Томсона эффекте (т. е. при дросселировании - пропускании газа через пористую перегородку, кран, вентиль), изоэнтропич. расширении газа с совершением внеш. работы в детандере и при выпуске газа из сосуда пост. объёма (выхлоп). Процесс дросселирования необратим, идёт с возрастанием энтропии по закону: Н = const. Инверсионная темп-pa всех газов (темп-pa, при к-рой положит. становится отрицательным и газ начинает нагреваться), кроме Н 2 , Не и Ne, на сотни градусов выше темп-ры окружающей среды, и поэтому они могут быть охлаждены и сжижены простым дросселированием. Инверсионные темп-ры Н 2 , Не и Ne значительно ниже комнатных, поэтому их предварительно охлаждают (Н 2 и Ne - жидким азотом, Не - жидким водородом).

Термодинамически наиб. эффективен метод С. г. с помощью детандера; этот метод в пром. установках является основным. В поршневых детандерах сжатый газ движет поршень и охлаждается, в турбодетандерах - вращает турбину. В большинстве случаев после детандера газ дополнительно охлаждают дросселированием. Процесс расширения газа в детандере: S = const.

Рис. 2. Схема установки сжижения газов (а) и её Т - S-диаграмма (б); К - компрессор, Д - детандер, Т/о - теплообменники, Др - дроссель, Сб - сборник .

На рис. 2 приведены типовая схема установки для С. г. (а Т - S -диаграмма (б )термодинамич. процессов в ней. После сжатия в компрессоре (1-2 )и предварит. охлаждения в теплообменнике (2-3 )поток сжатого газа делится на два: поток М отводится в детандер, где, расширяясь, производит работу, охлаждается (3-7 )и охлаждает вторую часть сжатого газа 1 - М , к-рый затем дросселируется и сжижается. Теоретически расширение газа в детандере должно протекать при пост. энтропии (3-6) , однако в результате разл. потерь реально идёт процесс 3-7 . В крупных установках С. г. применяют неск. детандеров, работающих в разных температурных интервалах. Спец. устройство позволяет получать сжиженный газ непосредственно в самом детандере и обходиться без дроссельной ступени. Для сжижения небольших кол-в газа используются криогенно-газовые машины, представляющие собой комбинацию компрессора, теплообменного аппарата и детандера. С помощью таких машин получают темп-ры до 10 К, т. е. достаточно низкие для сжижения всех газов, кроме гелия (для сжижения гелия пристраивается дополнит. дроссельная ступень). В небольшом объёме С. г. может производиться при охлаждении испаряющейся жидкостью с более низкой (чем получаемая) темп-рой кипения. Так, с помощью жидкого азота можно сжижать кислород, аргон, метан и др. газы, с помощью жидкого водорода - неон. Такой процесс энергетически невыгоден и применяется только в лаб. условиях.

Подвергаемые сжижению газы должны быть очищены от примесей, к-рые имеют тем-ру замерзания более высокую, чем в цикле сжижения данного газа, и, затвердевая, могут закупорить теплообменную аппаратуру. Сжижение газов (N, О 2 , Н 2 , природного газа и др.) - крупная отрасль хим. пром-сти.

Лит.: Справочник по физико-техническим основам криогеники, под ред. М. П. Малкова, 3 изд., М., 1985; Фрадков А. Б., Что такое криогеника, М., 1991. А. Б. Фрадков .

Чтобы произошло сжижение газа, силы притяжения между молекулами должны стать достаточными для их связывания в жидкость. Силы притяжения становятся значительными только при малых расстояниях между молекулами. Этому условию благоприятствует высокое давление. Действию сил притяжения препятствует движение молекул, происходящее тем быстрее (с большей кинетической энергией), чем выше температура. Поэтому сжижению газов благоприятствует понижение температуры.

Сжижение газа осуществляется тем труднее, чем выше его температура , так как при более высокой температуре требуется и более высокое давление, чтобы сжижить газ (табл. 3.4). Выше определенной температуры газ вообще не поддается сжижению. Эта температура называется критической и обозначается Тс. Минимальное давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением и обозначается рс. Объем, занимаемый одним молем газа при его критических температуре и давлении, называется критическим объемом и обозначается Vc. Значения Тс, рс и Vc для каждого газа называются его критическими постоянными. В табл. 3.5 приведены значения критических постоянных для некоторых газов.

Таблица 3.4. Давления, необходимые для сжижения CO2 при разных температурах

В 1863 г., изучая соотношение между давлением и объемом определенной массы диоксида углерода при различных температурах, Томас Эндрюс получил ряд изотерм (графиков зависимости между давлением и объемом при постоянной температуре), названных изотермами Эндрюса (рис. 3.11). Изотерма для CO2 при 321 К показывает, что этот газ при такой температуре не сжижается ни при каком давлении или объеме. Дело в том, что температура 321 К выше критической температуры для CO2, равной 304 К. Изотерма, соответствующая критической температуре, называется критической изотермой. Точка P на этой изотерме соответствует газу при его критических значениях температуры, давления и объема. В условиях, соответствующих этой точке, газ находится в своем критическом состоянии. На рис. 3.11 показаны две изотермы CO2 при температурах ниже критической. Рассмотрим ту из них, которая отвечает температуре 286 К.


Рис. 3.11. Изотермы Эндрюса для CO2.

Перемещение вдоль этой изотермы от точки А к точке В соответствует сжатию газа при возрастании давления. Между точками В и С происходит большое изменение объема, которое не сопровождается изменением давления. Этот процесс соответствует сжижению газа при указанной температуре. Между точками С и D возрастание давления приводит к небольшому изменению объема. Сжимаемость жидкостей очень мала по сравнению со сжимаемостью газов.

ГАЗ . Газообразным состоянием называется такое состояние вещества, в котором силы, действующие между молекулами, чрезвычайно малы и размеры самих молекул ничтожны сравнительно с промежутками между ними. Между столкновениями молекулы газа двигаются прямолинейно, равномерно и совершенно беспорядочно. При нагревании и разрежении все газы стремятся к предельному состоянию так называемого идеального , или совершенного газа .

В идеальном газе междумолекулярные силы равны нулю, и объем самих молекул бесконечно мал сравнительно с объемом междумолекулярного пространства. Состояние идеального газа является тем предельным разведенным состоянием вещества, к которому стремятся все тела природы при достаточно высоких температурах и достаточно низких давлениях; в этом и заключается особое значение состояния идеального газа, к тому же наиболее просто поддающегося исследованию и потому полнее всего изученного. Вещество, в крайнем разрежении заполняющее межпланетное пространство, может считаться находящимся в состоянии идеального газа.

Газовое давление (р) обусловливается ударами молекул газа о стенки сосуда. Согласно кинетической теории, средняя кинетическая энергия молекул газа пропорциональна абсолютной температуре. В кинетической теории показывается, что идеальный газ строго подчиняется следующему уравнению состояния, связывающему три параметра состояния: v, T и р, из которых два являются независимыми, а третий - их функцией:

Это уравнение (уравнение Клапейрона ) заключает в себе в явной форме три основных закона состояния идеального газа:

1) Закон Бойля-Мариотта . При постоянной температуре (Т) произведение (p∙v) для данного количества идеального газа есть величина постоянная (p∙v = Const), т. е. объем идеального газа (v) обратно пропорционален его давлению (р): изотермы идеального газа в системе координат (v, р) являются равнобокими гиперболами, асимптотами которых служат оси координат.

2) . При постоянном (р) объем данного количества идеального газа линейно возрастает с температурой:

(v 0 - объем при температуре = 0°С, α - коэффициент расширения идеального газа). Изменение (p) с температурой при v = Const подчиняется такому же закону:

(α) в уравнении (3) - коэффициент давления, численно равный коэффициенту расширения (α) в уравнении (2) = 1/273,1 = 0,00367 - величина, независящая от природы газа и одинаковая для всех идеальных газов; р 0 - давление при температуре = 0°С. Вводя вместо температуры абсолютную температуру

находим вместо уравнений (2) и (3):

3) Закон Авогадро . Из уравнения (1) видно, что газовая постоянная R = p 0 ∙v 0 /273,1 пропорциональна нормальному объему v 0 , занимаемому данным количеством газа при нормальных условиях (р 0 = 1 Atm и t 0 = 0°С = 273,1° К), т. е. обратно пропорциональна плотности газа при нормальных условиях D 0 . По закону Авогадро, при одинаковых (р) и (Т) все идеальные газы содержат в равных объемах (например, равных v 0) равное число молекул. Обратно: равное число молекул (например, 1 моль = 1 граммолекуле) всякого газа в идеальном состоянии занимает один и тот же объем v 0 при нормальных условиях, независимо от природы газа (в 1 моле всякого вещества содержится N 0 = 6,06∙10 23 отдельных молекул - число Авогадро ). Найдено с большой точностью, что нормальный молярный объем любого идеального газа (V 0) м равен 22,412 литр/моль. Отсюда можно рассчитать число молекул в 1 см 3 любого идеального газа при нормальных условиях: n0 = 6,06∙10 23 /10 3 ∙22,416 = 2,705∙10 19 см 3 (число Лошмита ). При помощи уравнения (1) закон Авогадро выражается в том, что газовая постоянная R при расчете на 1 моль любого газа будет одна и та же, независимо от природы газа. Т. о. R является универсальной постоянной с размерностью [работа ]/[масса ][температура ] и выражает работу расширения 1 моля идеального газа при нагревании его на 1°С при р = Const:

в этом и состоит физическое значение R.

находим числовое значение

В других единицах значения R (на 1 моль) таковы:

Кроме разобранных трех законов, из уравнения (1) состояния идеального газа в соединении с двумя началами термодинамики следуют еще такие основные законы:

4) Закон Джоуля . Одно из общих уравнений термодинамики

дает вместе с уравнением (1) следующие условия для внутренней энергии U идеального газа:

т. е. U идеального газа есть функция только Т (закон Джоуля); при изотермическом расширении идеального газа все поглощаемое тепло переходит во внешнюю работу, а при изотермическом сжатии вся расходуемая работа - в выделяющееся тепло.

5) Теплоемкости идеального газа при постоянном объеме c v и при постоянном давлении с р являются функциями одной лишь Т. Термодинамика дает общие уравнения

но для идеального газа (р) и (v) линейно зависят от (Т), по закону Гей-Люссака (4) и (5); следовательно, правые части уравнений (9) обращаются в 0 и

Теплоемкости с р и c v не независимы друг от друга, но связаны для идеального газа простым условием:

вытекающим из газовых законов (R имеет размерность теплоемкости), т. е., если с р и c v относить к 1 молю идеального газа, то они разнятся между собой на 2 (точнее - на 1,986) – cal/моль∙град.

В кинетической теории принимается, по принципу равномерного распределения энергии, что на каждую степень свободы газовой молекулы приходится энергия k 0 ∙Т/2, а на 1 моль приходится

(k 0 = –R/N 0 есть газовая постоянная, рассчитанная на 1 молекулу - постоянная Больцмана ). Числом степеней свободы (i) называется число независимых друг от друга видов механической энергии, которой обладает молекула газа. Тогда энергия 1 моля

(приближенно, считая R = 2, c v = i, с р = i+2).

В учении о газе важную роль играет отношение c p /c v = γ; из уравнений (11) и (12):

В простейшем случае одноатомного газа (молекула которого состоит из 1 атома, каковы благородные газы и пары многих металлов) i наименьшее и равняется 3: вся энергия молекулы сводится к кинетической энергии ее поступательных движений, которые могут совершаться по трем независимым взаимно перпендикулярным направлениям; тогда

а γ имеет наибольшую возможную величину: γ = 5/3 = 1,667. Для двухатомных газов (Н 2 , O 2 , N 2 , СО и другие) можно считать I = 3+2 (два вращения вокруг двух взаимно перпендикулярных осей, перпендикулярных к линии, соединяющей оба атома); тогда c v = 4,96 ≈ 5, cр = 6,95 ≈ 7 и γ = 7/5 = 1,40. Для трехатомного газа (Н 2 O, СO 2 , H 2 S, N 2 O)i = 3+3 (вращение вокруг трех взаимно перпендикулярных осей) и c v = 5,96 ≈ 6, cр = 7,95 ≈ 7 и γ = 4/3 = 1,33.

При дальнейшем усложнении строения молекулы, т. е. с увеличением i, возрастают c v и с р, а γ = 1 + 2/i и стремится к 1. Табл. 1 показывает, что все сказанное хорошо согласуется с данными опыта, что γ всегда >1 и ≤1,667 и не может быть = 1,50 (для i = 4).

Для одноатомных газов c v и с р, в соответствии с теорией, практически не изменяются с температурой (так, для Ar значения c v и с р лежат в пределах от 2,98 до 3,00 между температурами = 0° и 1000° С). Изменения c v и с р с температурой находят объяснение в теории квант. Впрочем, теплоемкости газов, близких к идеальным, практически почти не изменяются в широких интервалах температуры. Экспериментально определяются обычно с р и у, a c v вычисляется из этих данных.

Реальные газы . Все газы, существующие в действительности, - реальные газы б. или м. уклоняются от законов идеальных газов, но тем меньше, чем выше температура и чем ниже давление. Т. о. законы идеальных газов являются для реальных газов предельными. При обычной температуре уклонения меньше всего у газов, критические температуры которых чрезвычайно низки (т. н. постоянные газы: Не, Н 2 , N 2 , О 2 , воздух); у газов же со сравнительно высокой критической температуры и у паров (паром называется газ при температуре меньше критической температуры) уклонения бывают очень значительны. Причины уклонений реальных газов от газовых законов заключаются в том, что: 1) в них действуют междумолекулярные силы; поэтому поверхностные молекулы втягиваются внутрь газов силами, равнодействующая которых, рассчитанная на единицу поверхности и направленная перпендикулярно к ней, называется молекулярным (внутренним) давлением К ; 2) не весь объем газа (v), а только часть его (v-b) дает свободу для движений молекул; часть объема (b), коволюм , как бы занята самими молекулами. Если бы газ был идеальным, его давление было бы больше наблюдаемого (р) на величину К; поэтому уравнение состояния реального газа напишется в виде.

В этом общем уравнении К и b могут зависеть от Т и v.

Ван-дер-Ваальс показал, что в простейшем случае К = a/v 2 , а b - величина постоянная, равная учетверенному объему самих молекул газа. Таким образом, уравнение Ван-дер-Ваальса имеет вид:

а и b, константы Ван-дер-Ваальса, как показывает опыт, все же зависят от T и v, и потому уравнение (15) является лишь первым приближением; оно хорошо передает качественную форму изотерм реальных газов.

На фиг. 1 изображены для СO 2 теоретической изотермы: S-образные части этих изотерм отвечают термодинамически метастабильным состояниям .

На фиг. 2 изображены для СО 2 экспериментальные изотермы: S-образные части кривых заменены прямолинейными частями; справа от этих частей кривые соответствуют газу (ненасыщенному пару), слева - жидкости, а сами прямолинейные отрезки - равновесию пара и жидкости. Уравнение (15), в полном согласии с опытом, показывает, что с повышением температуры размеры прямолинейных отрезков на изотермах делаются все меньше (фиг. 2) и, наконец, при некоторой температуре равной критической температуре длина этого отрезка обращается в 0. При температуре большей критической температуры газ не может обращаться в жидкость ни при каких давлениях: жидкость перестает существовать. Т. о. уравнение Ван-дер-Ваальса охватывает два состояния - газообразное и жидкое - и служит основанием для учения о непрерывности перехода между этими двумя состояниями. Критические температуры для некоторых газов имеют следующие значения: +360°С для Н 2 О, +31°С для СО 2 , –241°С для Н 2 и –254°С для Не.

Сжижение газа . Всякий газ можно обратить в жидкость надлежащим давлением, предварительно охладив его ниже критической температуры. Необходимые для сжижения СО 2 давления (в Atm) при разных температурах приведены в табл. 2.

Понятно, что эти давления являются давлениями насыщенного пара жидкой углекислоты и тем ниже, чем ниже температура.

Чтобы предварительно сильно охладить газ для сжижения, в технических установках пользуются эффектом Джоуля-Томсона, заключающимся в том, что при адиабатическом расширении (например, при резком падении давления, когда газ вытекает из отверстия) внутренняя энергия газа возрастает на ΔU, а Т изменяется на ΔТ, причем термодинамически

В случае идеальных газов ΔU = 0 и ΔТ = 0 [так как, по уравнению (1), T∙dv/dT – v = 0].

Для реальных газов ΔТ ≠ 0, т. е. происходит охлаждение или нагревание, смотря по тому, будет ли T∙dv/dT – v ≠ 0 (Δp < 0). По уравнению Ван-дер-Ваальса,

(с достаточным приближением). Т. о. при достаточно высоких температурах все газы при адиабатическом расширении нагреваются (ΔТ > 0, т. к. a/R∙T< b), но с понижением температуры для каждого газа наступает инверсионная точка Т i , определяемая условием

ниже которой газы начинают охлаждаться при адиабатическом расширении (a/R∙T> b при Т < Т i). Для всех газов, кроме Н 2 и Не, Т i лежит выше обычных температур (так, для воздуха Т i соответствует +360°С), и потому газы могут быть сжижены по принципу Линде , без предварительного охлаждения. Для Н 2 инверсионная точка Т i - 80,5°С, а для Не - даже 15°К; поэтому Н 2 и Не для сжижения д. б. предварительно охлаждены ниже этих температур.

Соответственные состояния . Критические температура Т к, давление р к и объем v к м. б. выражены через константы Ван-дер-Ваальса а, b и R следующим образом:

Если за единицы измерения Т, р и v принять соответственно критические величины, то вместо Т, р и v состояние будет характеризоваться приведенными величинами :

Если ввести θ, π и ϕ в уравнение Ван-дер-Ваальса (15), то константы а, b и R сократятся, и получится приведенное уравнение состояния , с численными коэффициентами

вовсе не содержащее величин, зависящих от природы вещества. Уравнение (19) предполагает, однако, правильность уравнения Ван-дер-Ваальса, и потому уклонения от него часто весьма значительны, особенно в случае ассоциированных веществ. Учение о соответственных состояниях (так называются состояния, отвечающие одинаковым θ, π и ϕ) дает возможность находить большое число универсальных зависимостей, подобных уравнению (19).

Применение газов . Сжатые и сжиженные газы применяются в технике всюду, где нужны значительные количества газа в небольшом объеме; так, СО 2 применяется для газирования вод, Сl 2 и фосген - в военно-химическом деле, O 2 - для медицинских целей, сжатый воздух - для пуска двигателей внутреннего сгорания. Особенное значение сжиженные газы (СО 2 и NH 3) имеют в холодильном деле, в холодильных машинах (например, для получения искусственного льда). Легкие газы (Н 2 , светильный газ, в последнее время Не) применяются для наполнения аэростатов . Инертные газы (N 2 и благородные газы, особенно Аr) применяются для наполнения полуваттных ламп накаливания. Особняком стоит применение газа для освещения или в качестве топлива: светильный, силовой, водяной газы и другие.

Крупномасштабное производство сжиженного природного газа

Преобразование природного газа в жидкое состояние осуществляется в несколько этапов. Сначала удаляются все примеси - прежде всего, двуокись углерода, а иногда и минимальные остатки соединений серы. Затем извлекается вода, которая в противном случае может превратиться в ледяные кристаллы и закупорить установку сжижения.

Как правило, в последнее время для комплексной очистки газа от влаги, углекислого газа и тяжелых углеводородов используют адсорбционный способ глубокой очистки газа на молекулярных ситах.

Следующий этап - удаление большинства тяжелых углеводородов, после чего остаются главным образом метан и этан. Затем газ постепенно охлаждается, обычно с помощью двухцикличного процесса охлаждения в серии теплообменников (испарителей холодильных машин). Очистка и фракционирование реализуются, как и основная доля охлаждения, под высоким давлением. Холод производится одним или несколькими холодильными циклами, позволяющими снизить температуру до -160°С. Тогда он и становится жидкостью при атмосферном давлении.

сжиженный природный газ производство

Рисунок 1.Процесс сжижения природного газа (получение СПГ)

Сжижение природного газа возможно лишь при охлаждении его ниже критической температуры. Иначе газ не сможет быть превращен в жидкость даже при очень высоком давлении. Для сжижения природного газа при температуре, равной критической (Т = Т кр), давление его должно быть равным или больше критического, т. е. Р > Ркт. При сжижении природного газа под давлением ниже критического (Р < Ркт) температура газа также должна быть ниже критической.

Для сжижения природного газа могут быть использованы как принципы внутреннего охлаждения, когда природный газ сам выступает в роли рабочего тела, так и принципы внешнего охлаждения, когда для охлаждения и конденсации природного газа используются вспомогательные криогенные газы с более низкой температурой кипения (например кислород, азот, гелий). В последнем случае теплообмен между природным газом и вспомогательным криогенным газом происходит через теплообменную поверхность.

При промышленном производстве СПГ наиболее эффективными являются циклы сжижения с использованием внешней холодильной установки (принципы внешнего охлаждения), работающей на углеводородах или азоте, при этом сжижается почти весь природный газ. Широкое распространение получили циклы на смесях хладагентов, где чаще других используется однопоточный каскадный цикл, у которого удельный расход энергии составляет 0,55-0,6 кВт" ч/кг СПГ.

В установках сжижения небольшой производительности в качестве холодильного агента используется сжижаемый природный газ, в этом случае применяют более простые циклы: с дросселированием, детандером, вихревой трубой и др. В таких установках коэффициент сжижения составляет 5-20 %, а природный газ необходимо предварительно сжимать в компрессоре.

Сжижение природного газа на основе внутреннего охлаждения может достигаться следующими способами:

* изоэнтальпийным расширением сжатого газа (энтальпия i = const), т. е. дросселированием (использование эффекта Джоуля-Томсона); при дросселировании поток газа не производит какой либо работы;

* изоэнтропийным расширением сжатого газа (энтропия S-const) с отдачей внешней работы; при этом получают дополнительное количество холода, помимо обусловленного эффектом Джоуля-Томсона, так как работа расширения газа совершается за счет его внутренней энергии.

Как правило, изоэнтальпийное расширение сжатого газа используется только в аппаратах сжижения малой и средней производительности, в которых можно пренебречь некоторым перерасходом энергии. Изоэнтропийное расширение сжатого газа используется в аппаратах большой производительности (в промышленных масштабах).

Сжижение природного газа на основе внешнего охлаждения может достигаться следующими способами:

* использованием криогенераторов Стирлинга, Вюлемье-Такониса и т.д; рабочими телами данных криогенераторов является, как правило, гелий и водород, что позволяет при совершении замкнутого термодинамического цикла достигать температуры на стенке теплообменника ниже температуры кипения природного газа;

* использованием криогенных жидкостей с температурой кипения ниже, чем у природного газа, например жидкого азота, кислорода и т. д.;

* использованием каскадного цикла с помощью различных холодильных агентов (пропана, аммиака, метана и т. д.); при каскадном цикле газ легко поддающийся сжижению путем компримирования, при испарении создает холод, необходимый для понижения температуры другого трудносжижаемого газа.

После сжижения СПГ помещается в специально изолированные резервуары хранения, а затем загружается в танкеры-газовозы для транспортировки. За это время транспортировки небольшая часть СПГ неизменно «выпаривается» и может использоваться в качестве топлива для двигателей танкера. По достижении терминала потребителя сжиженный газ разгружается и помещается в резервуары хранения.

Прежде чем пустить СПГ в употребление, его вновь приводят в газообразное состояние на станции регазификации. После регазификации природный газ используется так же, как и газ, транспортируемый по газопроводам.

Приемный терминал СПГ - менее сложное сооружение, чем завод сжижения, и состоит главным образом из пункта приема, сливной эстакады, резервуаров хранения, установок обработки газов испарения из резервуаров и узла учета.

Технология сжижения газа, его транспортировки и хранения уже вполне освоена в мире. Поэтому производство СПГ - довольно стремительно развивающаяся отрасль в мировой энергетике.

Маломасштабное производство сжиженного природного газа

Современные технологии позволяют решить проблему автономного энергоснабжения небольших промышленных, социальных предприятий и населенных пунктов путем создания энергетических объектов на базе мини-энергетики с использованием СПГ.

Автономные объекты мини-энергетики с применением сжиженного природного газа не только помогут ликвидировать проблему энергообеспечения отдаленных регионов, но и являются альтернативой для прекращения зависимости потребителей от крупных поставщиков электрической и тепловой энергии. На данный момент маломасштабное производство СПГ является привлекательной сферой для инвестиций в объекты энергетики со сравнительно коротким сроком окупаемости капитальных вложений.

Существует технология сжижения природного газа с использованием энергии перепада давления газа на ГРС с внедрением детандер-компрессорных агрегатов, реализованная на ГРС "Никольская" (Ленинградская область). Расчетная производительность установки по СПГ равна 30 тоннам в сутки.

Установка сжижения природного газа состоит из блока теплообменников вымораживателей, системы охлаждения компримированного газа, блока сжижения, двухступенчатого турбодетандер-компрессорного агрегата, автоматизированной системы контроля и управления работой установки (АСКУ), арматуры, в том числе управляемой, и КИП.

Рисунок 2. Схема установки сжижения ПГ

Принцип работы установки заключается в следующем (рис.2).

Природный газ с расходом 8000 нм3/ч и давлением 3,3 МПа поступает на турбокомпрессоры К1 и К2, работающие на одном валу с турбодетандерами Д1 и Д2.

В установке по сжижению природного газа в связи с достаточно высокой чистотой природного газа (содержание СО2 не более 400 ррm) предусматривается только осушка газа, которую с целью снижения стоимости оборудования предусмотрено проводить способом вымораживания влаги.

В 2-х ступенчатом турбокомпрессоре давление газа повышается до 4,5 МПа, затем сжатый газ последовательно охлаждается в теплообменниках Т3-2 и Т3-1 и поступает в вымораживатель, состоящий из 3-х теплообменников Т11-1, Т11-2 и Т11-3 (или Т12-1, Т12-2 и Т12-3), где за счет использования холода обратного потока газа из теплообменника Т2-1 происходит вымораживание влаги. Очищенный газ после фильтра Ф1-2 разбивается на два потока.

Один поток (большую часть) направляют в вымораживатель для рекуперации холода, а на выходе из вымораживателя через фильтр подают последовательно на турбодетандеры Д1 и Д2, а после них направляют в обратный поток на выходе из сепаратора С2-1.

Второй поток направляют в теплообменник Т2-1, где после охлаждения дросселируют через дроссель ДР в сепаратор С2-1, в котором производят отделение жидкой фазы от его паров. Жидкую фазу (сжиженный природный газ) направляют в накопитель и потребителю, а паровую фазу подают последовательно в теплообменник Т2-1, вымораживатель Т11 или Т12 и теплообменник Т3-2, а после него в магистраль низкого давления, расположенную после газораспределительной станции, где давление становится равным 0,28-0,6 МПа.

Через определенное время работающий вымораживатель Т11 переводят на отогрев и продувку газом низкого давления из магистрали, а на рабочий режим переводят вымораживатель Т12. 28 января 2009 г.,А.П. Иньков, Б.А. Скородумов и др. Neftegaz.RU

В нашей стране имеется значительное количество ГРС, где редуцируемый газ бесполезно теряет свое давление, а в отдельных случаях в зимний период приходится подводить еще энергию для подогрева газа перед его дросселированием.

В то же время, используя практически бесплатную энергию перепада давления газа, можно получить общественно полезный, удобный и экологически безопасный энергоноситель - сжиженный природный газ, с помощью которого можно газифицировать промышленные, социальные объекты и населенные пункты, не имеющие трубопроводного газоснабжения.

Опытный факт охлаждения вещества при испарении был известен издавна и даже практически использовался (например, применение пористых сосудов для сохранения свежести воды). Но первое научное исследование этого вопроса предпринял Джан Франческо Чинья и описал в работе 1760 г. «De frigore ex evaporationе» («О холоде вследствие испарения»).

Чинья доказал, что чем быстрее происходит испарение, тем интенсивнее остывание, а Меран показал, что если дуть на влажный шарик термометра, понижение температуры окажется больше, чем при таком же опыте с сухим шариком термометра. Антуан Боме (1728—1804) обнаружил, что при выпаривании серного эфира охлаждение происходит сильнее, чем при испарении воды. Основываясь на этих фактах, Тиберио Кавалло создал в 1800 г. холодильную машину, а Волластон построил в 1810 г. свой известный криофор, применяемый и в наше время. На основе этого прибора в 1820 г. был создан гигрометр Даниэля. Холодильная машина стала практически применимой лишь после 1859 г., т. е. после того, как Фернан Карре (1824— 1894) опубликовал свой метод получения льда с помощью испарения эфира, впоследствии замененного аммиаком. В 1871 г. Карл Линде (1842—1934) описал созданную им холодильную машину, в которой охлаждение достигается за счет расширения газа. В 1896 г. он скомбинировал эту машину с противоточным теплообменником, описываемым в курсах физики, и это позволило ему получить жидкий водород. Достигнутые к тому времени физиками экспериментальные результаты начали внедряться в промышленность.

Проблема сжижения газов имеет вековую историю, берущую свое начало во второй половине XVIII столетия. Началось все с сжижения аммиака простым охлаждением, которое произвел ван Марум, серного ангидрида — Монж и Клуэ, хлора — Нортмор (1805 г.) и сжижения аммиака компрессионным методом, предложенным Баччелли (1812 г.).

Определяющий вклад в решение этой проблемы одновременно и независимо внесли Шарль Каньяр де Латур (1777—1859) и Майкл Фарадей (1791—1867).

В серии работ, опубликованных в 1822 и 1823 гг., Каньяр де Латур описал опыты, проведенные им для определения существования для жидкости (как это чувствуется интуитивно) некоторого предельного расширения, дальше которого независимо от приложенного давления вся она переходит в парообразное состояние. С этой целью де Латур положил в котел, заполненный на одну треть спиртом, каменный шар и начал постепенно разогревать котел. По шуму, производимому шаром, поворачивавшимся внутри котла, де Латур пришел к выводу, что при определенной температуре весь спирт испарился. Опыты были повторены с небольшими трубками; из трубок удалялся воздух, а затем они заполнялись на 2/5 исследуемой жидкостью (спирт, эфир, бензин) и нагревались в пламени. По мере увеличения температуры жидкость становилась все более подвижной, а граница раздела жидкости и пара все более нечеткой, пока при определенной температуре совсем не исчезала и вся жидкость казалась превратившейся в пар. Соединив эти трубки с манометром со сжатым воздухом, Каньяр де Латур сумел измерить давление, устанавливающееся в трубке в момент, когда исчезает граница раздела между жидкостью и паром, и соответствующую температуру. Вопреки бытующему представлению Каньяр де Латур не только не определил в этих опытах критическую температуру для воды, ему не удалось даже полностью испарить воду, потому что трубки всегда лопались раньше, чем достигался желаемый эффект.

Более конкретный результат содержали опыты Фарадея, проведенные в 1823 г. с загнутыми стеклянными трубками, более длинное плечо, которых было запаяно. В это плечо Фарадей помещал вещество, которое при нагреве должно было давать исследуемый газ, затем закрывал второе, короткое плечо трубки и погружал трубку в охлаждающую смесь. Если, проделав это, нагревать вещество в длинном плече трубки, то образуется газ, давление которого постепенно увеличивается, причем во многих случаях в короткой трубке у Фарадея происходило сжижение газа. Так, нагревая бикарбонат натрия, Фарадей получил жидкую углекислоту; таким же способом он получал жидкий сероводород, хлористый водород, серный ангидрид и др.

Опыты де Латура и Фарадея показали, что можно добиться сжижения газа, подвергая его высокому давлению. В этом направлении начали работать многие физики, в частности Иоганн Наттерер (1821—1901). Однако некоторые газы (водород, кислород, азот) сжижить таким путем не удавалось. В 1850 г. Вертело подверг кислород давлению в 780 атм, но не смог добиться сжижения. Это заставило Вертело присоединиться к мнению Фарадея, который, уверенный, что рано или поздно удастся получить твердый водород, полагал, что одного давления недостаточно для сжижения некоторых газов, прозванных тогда «перманентными» или «неукротимыми».

В том же 1845 г., когда Фарадей высказал это соображение, Реньо, заметив, что при низкой температуре углекислый газ обладает аномальной сжимаемостью, а при приближении к 100° С начинает следовать закону Бой-ля, выдвинул предположение, что для каждого газа существует некая область температур, где он подчиняется закону Бойля. В 1860 г. эту идею Реньо развил и модифицировал Дмитрий Иванович Менделеев (1834—1907), согласно которому для всех жидкостей должна существовать «абсолютная температура кипения», выше которой она может существовать лишь в газообразном состоянии, каково бы ни было давление.

Исследование этого вопроса было возобновлено в 1863 г. в новой форме Томасом Эндрюсом (1813—1885). В 1863 г. Эндрюс ввел в капиллярную трубку углекислый газ, заперев объем газа столбиком ртути. С помощью винта он произвольно устанавливал давление, под которым находился газ, одновременно меняя постепенно температуру. Добившись с помощью одного лишь увеличения давления частичного сжижения газа и затем медленно нагревая трубку, Эндрюс наблюдал те же явления, которые за 30 лет до него исследовал Каньяр де Латур. Когда температура углекислоты достигала 30,92° С, граница раздела между жидкостью и газом исчезала и никаким давлением нельзя было уже получить обратно жидкую углекислоту. В своей обстоятельной работе 1869 г. Эндрюс предложил назвать температуру 30,92° С «критической точкой» для углекислоты. Таким же методом он определил критические точки для хлористого водорода, аммиака, серного эфира, окиси азота. Термин «пар» он предложил сохранить для газообразных веществ, находящихся при температуре ниже критической точки, а термин «газ» применять к веществам, находящимся при температуре выше критической точки. Подтверждением этой точки зрения Эндрюса являлись упомянутые уже опыты Наттерера, проведенные им с 1844 по 1855 г., в которых перманентные газы подвергались давлению до 2790 атм, так и не сжижаясь, и многочисленные аналогичные опыты, начатые в 1870 г. Эмилем Амага (1841—1915), в которых достигалось давление до 3000 атм.

Все эти отрицательные результаты опытов подтверждали гипотезу Эндрюса о том, что перманентные газы — это вещества, для которых критическая температура ниже достигнутых в тот момент значений, так что их сжижение можно было бы осуществить с помощью предварительного глубокого охлаждения, возможно с последующим сжатием. Эта гипотеза была блестяще подтверждена в 1877 г. Луи Кальете (1832—1913) и Раулем Пикте (1846—1929), которым независимо друг от друга удалось после предварительного сильного охлаждения добиться сжижения кислорода, водорода, азота, воздуха. Работы Кальете и Пикте были продолжены другими физиками, но лишь появление холодильной машины Линде, о которой мы уже упоминали, сделало методы сжижения практически доступными, позволив получать сжиженные газы в больших количествах и широко применять их при научных исследованиях и в промышленности.

УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ГАЗОВ

Методы определения удельной теплоемкости трудно было применить к газообразным веществам вследствие малого удельного веса газов и паров. Поэтому в начале XIX века Парижская Академия наук объявила конкурс на лучший метод измерения удельной теплоемкости газа. Премия была присуждена Франсуа Деларошу (? — 1813?) и Жаку Берару (1789—1869), предложившим поместить в калориметр змеевик, по которому при известной температуре проходил бы газ при фиксированном давлении. Этот метод фактически не был новым; он был предложен еще за 20 лет до того Лавуазье. Как бы то ни было, результаты, полученные Деларошем и Бераром, приводились в курсах физики в течение полувека. Заслуга этих ученых прежде всего в том, что было привлечено внимание к необходимости различать удельные теплоемкости при постоянном давлении и при постоянном объеме. Последняя величина очень трудно поддается измерению из-за малой величины теплоемкости газа по сравнению с теплоемкостью содержащего его резервуара.

Но за несколько лет до появления работ Делароша и Берара началось исследование любопытного явления, отмеченного Эразмом Дарвином (1731—1802) в 1788 г., а затем в 1802 г. Дальтоном и заключающегося в том, что сжатие воздуха вызывает его разогрев, а расширение приводит к охлаждению. Началом исследования этого явления обычно считают опыт Гей-Люссака (1807 г.), повторенный Джоулем в 1845 г. Гей-Люссак соединил трубкой два баллона, подобно тому как это делал Герике; один из баллонов был наполнен воздухом, а второй пустой; из наполненного баллона воздух мог свободно перетекать в пустой. В результате было установлено понижение температуры первого баллона и повышение температуры второго. Такое тепловое поведение воздуха заставляло считать, что удельная теплоемкость при постоянном давлении должна быть больше, чем при постоянном объеме, какой бы теории природы тепла мы ни придерживались. Действительно, если, расширяясь, газ охлаждается, то, позволяя ему при нагреве расширяться, необходимо сообщить ему дополнительное тепло, чтобы скомпенсировать сопутствующее расширению охлаждение.

Исходя из этих экспериментальных фактов, Лаплас в 1816 г. пришел к гениальной идее о том, что известное несоответствие между значением скорости звука, получающимся из опыта, и его теоретическим значением, получающимся из закона Ньютона, можно объяснить изменением температуры, которое испытывают слои воздуха при чередующихся сжатиях и разрежениях. На основе этих теоретических предпосылок Лаплас исправил формулу Ньютона, введя в нее коэффициент, равный отношению удельных теплоемкостей при постоянном давлении и при постоянном объеме для воздуха. Сопоставление экспериментального значения скорости звука в воздухе и теоретического значения, получающегося по формуле Ньютона, позволило найти отношение удельных теплоемкостей. Таким косвенным путем физикам удалось получить первые данные о значении этого отношения и тем самым, поскольку значение удельной теплоемкости при постоянном давлении было известно, оценить удельную теплоемкость воздуха при постоянном объеме. Несколькими годами позже (1819 г.) Никола Клеману (1779—1841) и Шарлю Дезорму (1777—?) удалось в опытах по расширению газов, многократно повторяющихся другими учеными вплоть до наших дней и вошедших во все учебники по физике, непосредственно определить отношение теплоемкостей, которое в пределах экспериментальных ошибок совпало с найденным Лапласом.

В 1829 г. в результате тонких и кропотливых исследований Дюлонг определил отношение теплоемкостей для различных газов, для чего вызывал звук в трубке с помощью потоков различных газов. Эти эксперименты заставили его прийти к выводу, что в газах и парах при равных условиях (объем, давление, температура) образуется при одинаковом относительном сжатии или расширении одинаковое количество теплоты.

Заметим, что метод Дюлонга был существенно улучшен в 1866 г. Кундтом (1839—1894), который ввел специальную трубку (эта трубка называется теперь трубкой Кундта). Метод Кундта до сих пор считается одним из лучших методов определения отношения удельных теплоемкостей.

Составитель Савельева Ф.Н.