Кислород, физические свойства

Вездесущий, всемогущий и невидимый — это все о нем. Еще он не имеет ни вкуса, ни запаха. Создается впечатление, что разговор идет о том, чего вообще не существует. Однако это вещество есть, мало того: без него человечество попросту задохнулось бы. Поэтому, наверное, Лавуазье с ходу назвал этот газ «жизненным газом».

Кислород всемогущий

По мнению людей религиозных, вездесущим, всемогущим и в то же время невидимым может быть только бог. В действительности же все эти три эпитета вполне можно отнести к химическому элементу с атомным номером 8 - кислороду. Если бы растения в процессе фотосинтеза не превращали воду и углекислый газ в органические соединения, и этот процесс не сопровождался высвобождением связанного кислорода, то, исчерпав довольно быстро запасы атмосферного кислорода, весь животный мир, включая человечество, вскоре задохнулся бы.

Кислород — вездесущ: из него в значительной степени состоят не только воздух, вода и земля, но и мы с вами, наши еда, питье, одежда; в подавляющем большинстве окружающих нас веществ есть кислород. Могущество кислорода проявляется уже в том, что мы им дышим, а ведь дыхание это синоним жизни. И еще кислород можно считать всемогущим потому, что могучая стихия огня, как правило, сильно зависит от нашего кандидата в вездесущие и всемогущие.

Что касается третьего эпитета — «невидимый», то здесь, вероятно, нет нужды в доказательствах. При обычных условиях элементарный кислород не только бесцветен и потому невидим, но и не воспринимаем, не ощутим никакими органами чувств. Правда, недостаток, а тем более отсутствие кислорода мы ощутили бы моментально...

Открытие: XVIII век

То, что кислород невидим, безвкусен, лишен запаха, газообразен при обычных условиях, надолго задержало его открытие. Многие ученые прошлого догадывались, что существует вещество со свойствами, которые, как мы теперь знаем, присущи кислороду.

Открытие кислорода (англ. Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. Лишь в XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение.

Кислород открыли почти одновременно и независимо друг от друга два выдающихся химика второй половины XVIII в.— швед Карл Вильгельм Шееле и англичанин Джозеф Пристли. Шееле получил кислород раньше, но его трактат «О воздухе и огне», содержавший информацию о кислороде, был опубликован позже, чем сообщение об открытии Пристли.

Джозеф
Пристли

«1 августа 1774 года я попытался извлечь воздух из ртутной окалины и нашел, что воздух легко может быть изгнан из нее посредством линзы. Этот воздух не поглощался водой. Каково же было мое изумление, когда я обнаружил, что свеча горит в этом воздухе необычайно ярким пламенем. Тщетно пытался я найти объяснение этому явлению».

И все-таки главная фигура в истории открытия кислорода — не Шееле и не Пристли. Они открыли новый газ — и только. Позже Фридрих Энгельс напишет об этом: «Оба они так и не узнали, что оказалось у них в руках. Элемент, которому суждено было революционизировать химию, пропадал в их руках бесследно... Собственно открывшим кислород поэтому остается Лавуазье, а не те двое, которые только описали кислород, даже не догадываясь, что они описывают».

Подробное изучение свойств кислорода и его роли в процессах горения и образования окислов привело Лавуазье к неправильному выводу о том, что этот газ представляет собой кислотообразующее начало. В1779 г. Лавуазье ввел для кислорода название Oxygenium (от греч. «окис» - «кислый» и «геннао» - рождаю») — «рождающий кислоты».

«Окислительный» элемент

Кислород — бесцветный (в толстом слое — голубой) газ без вкуса и запаха. Он немного тяжелее воздуха и малорастворим в воде. При охлаждении до -183°С кислород превращается в подвижную жидкость голубого цвета, а при -219°С — замерзает.

Как и положено элементу, занимающему место в правом верхнем углу таблицы Менделеева, кислород — один из самых активных элементов-неметаллов и обладает ярко выраженными окислительными свойствами. Если можно так выразиться, окислительнее кислорода — только один элемент, фтор. Именно поэтому баки с жидким кислородом — необходимая принадлежность большинства жидкостных ракетных двигателей. Получено соединение кислорода даже с таким химически пассивным газом, как ксенон.

Для развития активной реакции кислорода с большинством простых и сложных веществ нужно нагревание — чтобы преодолеть потенциальный барьер, препятствующий химическому процессу. С помощью катализаторов, снижающих энергию активации, процессы могут идти и без подогрева, в частности, соединение кислорода с водородом.

Высокая окислительная способность кислорода лежит в основе горения всех видов топлива, включая порох, для горения которых не нужен кислород воздуха: в процессе горения таких веществ кислород выделяется из них самих.

Процессы медленного окисления различных веществ при обычной температуре имеют для жизни не меньшее значение, чем горение — для энергетики.

Медленное окисление веществ пищи в нашем организме — «энергетическая база» жизни. Заметим попутно, что наш организм не слишком экономно использует вдыхаемый кислород: в выдыхаемом воздухе кислорода примерно 16%. Тепло преющего сена — результат медленного окисления органических веществ растительного происхождения. Медленное окисление навоза и перегноя согревает парники.

Применение: «море энергии»

Кислород применяется в лечебной практике , причем не только при легочных и сердечных заболеваниях, когда затруднено дыхание. Подкожное введение кислорода оказалось эффективным средством лечения таких тяжелых заболеваний, как гангрена, тромбофлебит, слоновость, трофические язвы.

Не менее важен он и для промышленности . Обогащение воздуха кислородом делает эффективнее, быстрее, экономичнее многие технологические процессы, в основе которых — окисление. А на таких процессах пока держится почти вся тепловая энергетика. Превращение чугуна в сталь тоже невозможно без кислорода. Именно кислород «изымает» из чугуна избыток углерода. Одновременно улучшается и качество стали. Нужен кислород и в цветной металлургии . Жидкий кислород служит окислителем ракетного топлива .

При сжигании водорода в токе кислорода образуется весьма обыкновенное вещество — Н 2 O. Конечно, ради получения этого вещества не следовало бы заниматься сжиганием водорода (который, кстати, часто именно из воды получают). Цель этого процесса иная, она будет ясна, если ту же реакцию записать полностью, учитывая не только химические продукты, но и энергию, выделяющуюся в ходе реакции: Н 2 +0,5O 2 =H 2 O+68317 калорий.

Почти семьдесят больших калорий на грамм-молекулу! Так можно получить не только, «море воды», но и «море энергии». Для этого и получают воду в реактивных двигателях, работающих на водороде и кислороде.

Та же реакция используется для сварки и резки металлов . Правда, в этой области водород можно заменить ацетиленом. Кстати, ацетилен все в больших масштабах получают именно с помощью кислорода, в процессах термоокислительного крекинга: 6СН 4 + 4O 2 = С 2 Н 2 + 8Н 2 + ЗСО + СO 2 + ЗН 2 O.

Это только один пример использования кислорода в химической промышленности. Кислород нужен для производства многих веществ (достаточно вспомнить об азотной кислоте), для газификации углей, нефти, мазута...

Любое пористое горючее вещество, например, опилки, будучи пропитанными голубоватой холодной жидкостью — жидким кислородом, становится взрывчатым веществом. Такие вещества называются оксиликвитами и в случае необходимости могут заменить динамит при разработке рудных месторождений.

Ежегодное мировое производство (и потребление) кислорода измеряется миллионами тонн. Не считая кислорода, которым мы дышим.

Производство кислорода

Попытки создать более или менее мощную кислородную промышленность предпринимались еще в прошлом веке во многих странах. Но от идеи до технического воплощения часто лежит «дистанция огромного размера»...

Особенно быстрое развитие кислородной промышленности началось после изобретения академиком П.Л.Капицей турбодетандера и создания мощных воздухоразделительных установок.

Проще всего получить кислород из воздуха, поскольку воздух — не соединение, и разделить воздух не так уж трудно. Температуры кипения азота и кислорода отличаются (при атмосферном давлении) на 12,8°С. Следовательно, жидкий воздух можно разделить на компоненты в ректификационных колоннах так же, как делят, например, нефть. Но чтобы превратить воздух в жидкость, его нужно охладить до минус 196°С. Можно сказать, что проблема получения кислорода — это проблема получения холода.

Чтобы получать холод с помощью обыкновенного воздуха, последний нужно сжать, а затем дать ему расшириться и при этом заставить его производить механическую работу. Тогда в соответствии с законами физики воздух обязан охлаждаться. Машины, в которых это происходит, называют детандерами .

Чтобы получить жидкий воздух с помощью поршневых детандеров, нужны были давления порядка 200 атмосфер. КПД установки был немногим выше, чем у паровой машины. Установка получалась сложной, громоздкой, дорогой. В конце тридцатых годов советский физик академик П.Л.Капица предложил использовать в качестве детандера турбину. Главная особенность турбодетандера Капицы в том, что воздух в ней расширяется не только в сопловом аппарате, но и на лопатках рабочего колеса. При этом газ движется от периферии колеса к центру, работая против центробежных сил.

Турбодетандер «делает» холод с помощью воздуха, сжатого всего лишь до нескольких атмосфер. Энергия, которую отдает расширяющийся воздух, не пропадает напрасно, она используется для вращения ротора генератора электрического тока.

Современные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода.

Кислород находится во втором периоде VI-ой главной группы устаревшего короткого варианта периодической таблицы. По новым стандартам нумерации — это 16-я группа. Соответствующее решение принято ИЮПАК в 1988 году. Формула кислорода как простого вещества — О 2 . Рассмотрим его основные свойства, роль в природе и хозяйстве. Начнем с характеристики всей группы периодической системы, которую возглавляет кислород. Элемент отличается от родственных ему халькогенов, а вода отличается от водородных селена и теллура. Объяснение всем отличительным чертам можно найти, только узнав о строении и свойствах атома.

Халькогены — родственные кислороду элементы

Сходные по свойствам атомы образуют одну группу в периодической системе. Кислород возглавляет семейство халькогенов, но отличается от них по ряду свойств.

Атомная масса кислорода — родоначальника группы — составляет 16 а. е. м. Халькогены при образовании соединений с водородом и металлами проявляют свою обычную степень окисления: -2. Например, в составе воды (Н 2 О) окислительное число кислорода равно -2.

Состав типичных водородных соединений халькогенов отвечает общей формуле: Н 2 R. При растворении этих веществ образуются кислоты. Только водородное соединение кислорода — вода — обладает особыми свойствами. Согласно выводам ученых, это необычное вещество является и очень слабой кислотой, и очень слабым основанием.

Сера, селен и теллур имеют типичные положительные степени окисления (+4, +6) в соединениях с кислородом и другими неметаллами, обладающими высокой электроотрицательностью (ЭО). Состав оксидов халькогенов отражают общие формулы: RO 2 , RO 3 . Соответствующие им кислоты имеют состав: H 2 RO 3 , H 2 RO 4 .

Элементам соответствуют простые вещества: кислород, сера, селен, теллур и полоний. Первые три представителя проявляют неметаллические свойства. Формула кислорода — О 2 . Аллотропное видоизменение того же элемента - озон (О 3) . Обе модификации являются газами. Сера и селен — твердые неметаллы. Теллур — металлоидное вещество, проводник электрического тока, полоний — металл.

Кислород — самый распространенный элемент

Мы уже знаем, что есть другая разновидность существования того же самого химического элемента в форме простого вещества. Это озон — газ, образующий на высоте около 30 км от поверхности земли слой, часто называемый озоновым экраном. Связанный кислород входит в молекулы воды, в состав многих горных пород и минералов, органических соединений.

Строение атома кислорода

Периодическая таблица Менделеева содержит полную информацию о кислороде:

  1. Порядковый номер элемента — 8.
  2. Заряд ядра — +8.
  3. Общее число электронов — 8.
  4. Электронная формула кислорода — 1s 2 2s 2 2p 4 .

В природе встречаются три стабильных изотопа, которые имеют одинаковый порядковый номер в таблице Менделеева, идентичный состав протонов и электронов, но разное число нейтронов. Обозначаются изотопы одним и тем же символом — О. Для сравнения приведем схему, отражающую состав трех изотопов кислорода:

Свойства кислорода — химического элемента

На 2р-подуровне атома имеются два неспаренных электрона, что объясняет появление степеней окисления -2 и +2. Два спаренных электрона не могут разъединиться, чтобы степень окисления возросла до +4, как у серы и других халькогенов. Причина — отсутствие свободного подуровня. Поэтому в соединениях химический элемент кислород не проявляет валентность и степень окисления, равные номеру группы в коротком варианте периодической системы (6). Обычное для него окислительное число равно -2.

Только в соединениях с фтором кислород проявляет нехарактерную для него положительную степень окисления +2. Значение ЭО двух сильных неметаллов отличается: ЭО (О) = 3,5; ЭО (F) = 4. Как более электроотрицательный химический элемент, фтор сильнее удерживает свои электроны и притягивает валентные частицы на атома кислорода. Поэтому в реакции с фтором кислород является восстановителем, отдает электроны.

Кислород — простое вещество

Английский исследователь Д. Пристли в 1774 году в ходе опытов выделил газ при разложении оксида ртути. Двумя годами ранее это же вещество в чистом виде получил К. Шееле. Лишь спустя несколько лет французский химик А. Лавуазье установил, что за газ входит в состав воздуха, изучил свойства. Химическая формула кислорода — О 2 . Отразим в записи состава вещества электроны, участвующие в образовании неполярной ковалентной связи — О::О. Заменим каждую связывающую электронную пару одной чертой: О=О. Такая формула кислорода наглядно показывает, что атомы в молекуле связаны между двумя общими парами электронов.

Выполним несложные расчеты и определим, чему равна относительная молекулярная масса кислорода: Mr(O 2) = Ar(O) х 2 = 16 х 2 = 32. Для сравнения: Mr(возд.) = 29. Химическая формула кислорода отличается от на один атом кислорода. Значит, Mr(O 3) = Ar(O) х 3 = 48. Озон в 1,5 раза тяжелее кислорода.

Физические свойства

Кислород — это газ без цвета, вкуса и запаха (при обычной температуре и давлении, равном атмосферному). Вещество немного тяжелее воздуха; растворяется в воде, но в небольших количествах. Температура плавления кислорода является отрицательной величиной и составляет -218,3 °C. Точка, в которой жидкий кислород вновь превращается в газообразный, — это его температура кипения. Для молекул О 2 значение этой физической величины достигает -182,96 °C. В жидком и твердом состоянии кислород приобретает светло-синюю окраску.

Получение кислорода в лаборатории

При нагревании кислородосодержащих веществ, например перманганата калия, выделяется бесцветный газ, который можно собрать в колбу или пробирку. Если внести в чистый кислород зажженную лучину, то она горит более ярко, чем в воздухе. Два других лабораторных способа получения кислорода - разложение пероксида водорода и хлората калия (бертолетовой соли). Рассмотрим схему прибора, который применяется для термического разложения.

В пробирку или круглодонную колбу надо насыпать немного бертолетовой соли, закрыть пробкой с газоотводной трубочкой. Ее противоположный конец следует направить (под водой) в опрокинутую вверх дном колбу. Горлышко должно быть опущено в широкий стакан или кристаллизатор, наполненный водой. При нагревании пробирки с бертолетовой солью выделяется кислород. По газоотводной трубке он поступает в колбу, вытесняя из нее воду. Когда колба наполнится газом, ее закрывают под водой пробкой и переворачивают. Полученный в этом лабораторном опыте кислород можно использовать для изучения химических свойств простого вещества.

Горение

Если в лаборатории проводится сжигание веществ в кислороде, то нужно знать и соблюдать противопожарные правила. Водород мгновенно сгорает в воздухе, а смешанный с кислородом в соотношении 2:1, он взрывоопасен. Горение веществ в чистом кислороде происходит намного интенсивнее, чем в воздухе. Объясняется это явление составом воздуха. Кислород в атмосфере составляет чуть больше 1/5 части (21%). Горение — это реакция веществ с кислородом, в результате которой образуются разные продукты, в основном оксиды металлов и неметаллов. Пожароопасны смеси О 2 с горючими веществами, кроме того, получившиеся соединения могут быть токсичными.

Горение обычной свечки (или спички) сопровождается образованием диоксида углерода. Следующий опыт можно провести в домашних условиях. Если сжигать вещество под стеклянной банкой или большим стаканом, то горение прекратится, как только израсходуется весь кислород. Азот не поддерживает дыхание и горение. Углекислый газ — продукт окисления — больше не вступает в реакцию с кислородом. Прозрачная позволяет обнаружить присутствие после горения свечи. Если пропускать продукты горения через гидроксид кальция, то раствор мутнеет. Происходит химическая реакция между известковой водой и углекислым газом, получается нерастворимый карбонат кальция.

Получение кислорода в промышленных масштабах

Самый дешевый процесс, в результате которого получаются свободные от воздуха молекулы О 2 , не связан с проведением химических реакций. В промышленности, скажем, на металлургических комбинатах, воздух при низкой температуре и высоком давлении сжижают. Такие важнейшие компоненты атмосферы, как азот и кислород, кипят при разных температурах. Разделяют воздушную смесь при постепенном нагревании до обычной температуры. Сначала выделяются молекулы азота, затем кислорода. Способ разделения основан на разных физических свойствах простых веществ. Формула простого вещества кислорода такая же, как была до охлаждения и сжижения воздуха, — О 2 .

В результате некоторых реакций электролиза тоже выделяется кислород, его собирают над соответствующим электродом. Газ нужен промышленным, строительным предприятиям в больших объемах. Потребности в кислороде постоянно растут, особенно нуждается в нем химическая промышленность. Хранят полученный газ для производственных и медицинских целей в стальных баллонах, снабженных маркировкой. Емкости с кислородом окрашивают в синий или голубой цвет, чтобы отличать от других сжиженных газов — азота, метана, аммиака.

Химические расчеты по формуле и уравнениям реакций с участием молекул О 2

Численное значение молярной массы кислорода совпадает с другой величиной — относительной молекулярной массой. Только в первом случае присутствуют единицы измерения. Коротко формула вещества кислорода и его молярной массы должна быть записана так: М(О 2) = 32 г/моль. При нормальных условиях молю любого газа соответствует объем 22,4 л. Значит, 1 моль О 2 — это 22,4 л вещества, 2 моль О 2 — 44,8 л. По уравнению реакции между кислородом и водородом можно заметить, что взаимодействуют 2 моля водорода и 1 моль кислорода:

Если в реакции участвует 1 моль водорода, то объем кислорода составит 0,5 моль. 22,4 л/моль = 11,2 л.

Роль молекул О 2 в природе и жизни человека

Кислород потребляется живыми организмами на Земле и участвует в круговороте веществ свыше 3 млрд лет. Это главное вещество для дыхания и метаболизма, с его помощью происходит разложение молекул питательных веществ, синтезируется необходимая для организмов энергия. Кислород постоянно расходуется на Земле, но его запасы пополняются благодаря фотосинтезу. Русский ученый К. Тимирязев считал, что благодаря именно этому процессу до сих пор существует жизнь на нашей планете.

Велика роль кислорода в природе и хозяйстве:

  • поглощается в процессе дыхания живыми организмами;
  • участвует в реакциях фотосинтеза в растениях;
  • входит в состав органических молекул;
  • процессы гниения, брожения, ржавления протекают при участии кислорода, выступающего в качестве окислителя;
  • используется для получения ценных продуктов органического синтеза.

Сжиженный кислород в баллонах используют для резки и сварки металлов при высоких температурах. Эти процессы проводят на машиностроительных заводах, на транспортных и строительных предприятиях. Для проведения работ под водой, под землей, на большой высоте в безвоздушном пространстве люди тоже нуждаются в молекулах О 2 . применяются в медицине для обогащения состава воздуха, вдыхаемого больными людьми. Газ для медицинских целей отличается от технического практически полным отсутствием посторонних примесей, запаха.

Кислород — идеальный окислитель

Известны соединения кислорода со всеми химическими элементами таблицы Менделеева, кроме первых представителей семейства благородных газов. Многие вещества непосредственно вступают в реакции с атомами О, исключая галогены, золото и платину. Большое значение имеют явления с участием кислорода, которые сопровождаются выделением света и тепла. Такие процессы широко используются в быту, промышленности. В металлургии взаимодействие руд с кислородом называют обжигом. Предварительно измельченную руду смешивают с воздухом, обогащенным кислородом. При высоких температурах происходит восстановление металлов из сульфидов до простых веществ. Так получают железо и некоторые цветные металлы. Присутствие чистого кислорода повышает скорость технологических процессов в разных отраслях химии, технике и металлургии.

Появление дешевого способа получения кислорода из воздуха методом разделения на компоненты при низкой температуре стимулировало развитие многих направлений промышленного производства. Химики считают молекулы О 2 и атомы О идеальными окислительными агентами. Это естественные материалы, они постоянно возобновляются в природе, не загрязняют окружающую среду. Кроме того, химические реакции с участием кислорода чаще всего завершаются синтезом еще одного натурального и безопасного продукта — воды. Велика роль О 2 в обезвреживании токсичных производственных отходов, очистке воды от загрязнений. Кроме кислорода, для обеззараживания используется его аллотропная модификация — озон. Это простое вещество обладает высокой окислительной активностью. При озонировании воды разлагаются загрязняющие вещества. Озон также губительно действует на болезнетворную микрофлору.

Министерство образования и науки РФ

«КИСЛОРОД»

Выполнил:

Проверил:


Общая характеристика кислорода.

КИСЛОРОД (лат. Oxygenium), O (читается «о»), химический элемент с атомным номером 8, атомная масса 15,9994. В периодической системе элементов Менделеева кислород расположен во втором периоде в группе VIA.

Природный кислород состоит из смеси трех стабильных нуклидов с массовыми числами 16 (доминирует в смеси, его в ней 99,759 % по массе), 17 (0,037%) и 18 (0,204%). Радиус нейтрального атома кислорода 0,066 нм. Конфигурация внешнего электронного слоя нейтрального невозбужденного атома кислорода 2s2р4. Энергии последовательной ионизации атома кислорода 13,61819 и 35,118 эВ, сродство к электрону 1,467 эВ. Радиус иона О 2 – при разных координационных числах от 0,121 нм (координационное число 2) до 0,128 нм (координационное число 8). В соединениях проявляет степень окисления –2 (валентность II) и, реже, –1 (валентность I). По шкале Полинга электроотрицательность кислорода 3,5 (второе место среди неметаллов после фтора).

В свободном виде кислород - газ без цвета, запаха и вкуса.

Особенности строения молекулы О 2: атмосферный кислород состоит из двухатомных молекул. Межатомное расстояние в молекуле О 2 0,12074 нм. Молекулярный кислород (газообразный и жидкий) - парамагнитное вещество, в каждой молекуле О 2 имеется по 2 неспаренных электрона. Этот факт можно объяснить тем, что в молекуле на каждой из двух разрыхляющих орбиталей находится по одному неспаренному электрону.

Энергия диссоциации молекулы О 2 на атомы довольно высока и составляет 493,57 кДж/моль.

Физические и химические свойства

Физические и химические свойства: в свободном виде встречается в виде двух модификаций О 2 («обычный» кислород) и О 3 (озон). О 2 - газ без цвета и запаха. При нормальных условиях плотность газа кислорода 1,42897 кг/м 3 . Температура кипения жидкого кислорода (жидкость имеет голубой цвет) равна –182,9°C. При температурах от –218,7°C до –229,4°C существует твердый кислород с кубической решеткой (-модификация), при температурах от –229,4°C до –249,3°C - -модификация с гексагональной решеткой и при температурах ниже –249,3°C - кубическая -модификация. При повышенном давлении и низких температурах получены и другие модификации твердого кислорода.

При 20°C растворимость газа О 2: 3,1 мл на 100 мл воды, 22 мл на 100 мл этанола, 23,1 мл на 100 мл ацетона. Существуют органические фторсодержащие жидкости (например, перфторбутилтетрагидрофуран), в которых растворимость кислорода значительно более высокая.

Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови (точнее с железом II гема), что обеспечивает перенос кислорода от органов дыхания к другим органам.

Со многими веществами кислород вступает во взаимодействие без нагревания, например, со щелочными и щелочноземельными металлами (образуются соответствующие оксиды типа Li 2 O, CaO и др., пероксиды типа Na 2 O2, BaO 2 и др. и супероксиды типа КО 2 , RbO 2 и др.), вызывает образование ржавчины на поверхности стальных изделий. Без нагревания кислород реагирует с белым фосфором, с некоторыми альдегидами и другими органическими веществами.

При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует с взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ. Известно, что при нагревании в атмосфере кислорода или на воздухе многие простые и сложные вещества сгорают, причем образуются различные оксиды, например:

S+O 2 = SO 2 ; С + O 2 = СО 2

4Fe + 3O 2 = 2Fe 2 O 3 ; 2Cu + O 2 = 2CuO

4NH 3 + 3O 2 = 2N 2 + 6H 2 O; 2H 2 S + 3O 2 = 2H 2 O + 2SO 2

Если смесь кислорода и водорода хранить в стеклянном сосуде при комнатной температуре, то экзотермическая реакция образования воды

2Н 2 + О 2 = 2Н 2 О + 571 кДж

протекает крайне медленно; по расчету, первые капельки воды должны появиться в сосуде примерно через миллион лет. Но при внесении в сосуд со смесью этих газов платины или палладия (играющих роль катализатора), а также при поджигании реакция протекает с взрывом.

С азотом N 2 кислород реагирует или при высокой температуре (около 1500-2000°C), или при пропускании через смесь азота и кислорода электрического разряда. При этих условиях обратимо образуется оксид азота (II):

N 2 + O 2 = 2NO

Возникший NO затем реагирует с кислородом с образованием бурого газа (диоксида азота):

2NO + О 2 = 2NO2

Из неметаллов кислород напрямую ни при каких условиях не взаимодействует с галогенами, из металлов - с благородными металлами серебром, золотом, платиной и др.

Бинарные соединения кислорода, в которых степень окисления атомов кислорода равна –2, называют оксидами (прежнее название - окислы). Примеры оксидов: оксид углерода (IV) CO 2 ,оксид серы (VI) SO 3 , оксид меди (I) Cu 2 O, оксид алюминия Al 2 O 3 , оксид марганца (VII) Mn 2 O 7 .

Кислород образует также соединения, в которых его степень окисления равна –1. Это - пероксиды (старое название - перекиси), например, пероксид водорода Н 2 О 2 , пероксид бария ВаО 2 , пероксид натрия Na 2 O 2 и другие. В этих соединениях содержится пероксидная группировка - О - О -. С активными щелочными металлами, например, с калием, кислород может образовывать также супероксиды, например, КО 2 (супероксид калия), RbO 2 (супероксид рубидия). В супероксидах степень окисления кислорода –1/2. Можно отметить, что часто формулы супероксидов записывают как К 2 О 4 , Rb 2 O 4 и т.д.

С самым активным неметаллом фтором кислород образует соединения в положительных степенях окисления. Так, в соединении O 2 F 2 степень окисления кислорода +1, а в соединении O 2 F - +2. Эти соединения принадлежат не к оксидам, а к фторидам. Фториды кислорода можно синтезировать только косвенным путем, например, действуя фтором F 2 на разбавленные водные растворы КОН.

История открытия

История открытия кислорода, как и азота, связана с продолжавшимся несколько веков изучением атмосферного воздуха. О том, что воздух по своей природе не однороден, а включает части, одна из которых поддерживает горение и дыхание, а другая - нет, знали еще в 8 веке китайский алхимик Мао Хоа, а позднее в Европе - Леонардо да Винчи. В 1665 английский естествоиспытатель Р. Гук писал, что воздух состоит из газа, содержащегося в селитре, а также из неактивного газа, составляющего большую часть воздуха. О том, что воздух содержит элемент, поддерживающий жизнь, в 18 веке было известно многим химикам. Шведский аптекарь и химик Карл Шееле начал изучать состав воздуха в 1768. В течение трех лет он разлагал нагреванием селитры (KNO 3 , NaNO 3) и другие вещества и получал «огненный воздух», поддерживающий дыхание и горение. Но результаты своих опытов Шееле обнародовал только в 1777 году в книге «Химический трактат о воздухе и огне». В 1774 английский священник и натуралист Дж. Пристли нагреванием «жженой ртути» (оксида ртути HgO) получил газ, поддерживающий горение. Будучи в Париже, Пристли, не знавший, что полученный им газ входит в состав воздуха, сообщил о своем открытии А. Лавуазье и другим ученым. К этому времени был открыт и азот. В 1775 Лавуазье пришел к выводу, что обычный воздух состоит из двух газов - газа, необходимого для дыхания и поддерживающего горение, и газа «противоположного характера» - азота. Лавуазье назвал поддерживающий горение газ oxygene - «образующий кислоты» (от греч. oxys - кислый и gennao - рождаю; отсюда и русское название «кислород»), так как он тогда считал, что все кислоты содержат кислород. Давно уже известно, что кислоты бывают как кислородсодержащими, так и бескислородными, но название, данное элементу Лавуазье, осталось неизменным. На протяжении почти полутора веков 1/16 часть массы атома кислорода служила единицей сравнения масс различных атомов между собой и использовалась при численной характеристике масс атомов различных элементов (так называемая кислородная шкала атомных масс).

Нахождение в природе: кислород - самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8% (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры.

Получение:

В настоящее время кислород в промышленности получают за счет разделения воздуха при низких температурах. Сначала воздух сжимают компрессором, при этом воздух разогревается. Сжатому газу дают охладиться до комнатной температуры, а затем обеспечивают его свободное расширение. При расширении температура газа резко понижается. Охлажденный воздух, температура которого на несколько десятков градусов ниже температуры окружающей среды, вновь подвергают сжатию до 10-15 МПа. Затем снова отбирают выделившуюся теплоту. Через несколько циклов «сжатие-расширение» температура падает ниже температуры кипения и кислорода, и азота. Образуется жидкий воздух, который затем подвергают перегонке (дистилляции). Температура кипения кислорода (–182,9°C) более чем на 10 градусов выше, чем температура кипения азота (–195,8°C). Поэтому из жидкости азот испаряется первым, а в остатке накапливается кислород. За счет медленной (фракционной) дистилляции удается получить чистый кислород, в котором содержание примеси азота составляет менее 0,1 объемного процента.

Четыре элемента-«халькогена» (т.е. «рождающих медь») возглавляют главную подгруппу VI группы (по новой классификации - 16-ю группу) периодической системы. Кроме серы, теллура и селена к ним также относится кислород. Давайте подробно разберем свойства этого наиболее распространенного на Земле элемента, а также применение и получение кислорода.

Распространенность элемента

В связанном виде кислород входит в химический состав воды - его процентное соотношение составляет порядка 89%, а также в состав клеток всех живых существ - растений и животных.

В воздухе кислород находится в свободном состоянии в виде О2, занимая пятую часть его состава, и в виде озона - О3.

Физические свойства

Кислород О2 представляет собой газ, который не обладает цветом, вкусом и запахом. В воде растворяется слабо. Температура кипения - 183 градуса ниже нуля по Цельсию. В жидком виде кислород имеет голубой цвет, а в твердом виде образует синие кристаллы. Температура плавления кислородных кристаллов составляет 218,7 градуса ниже нуля по Цельсию.

Химические свойства

При нагревании этот элемент реагирует со многими простыми веществами, как металлами, так и неметаллами, образуя при этом так называемые оксиды - соединения элементов с кислородом. в которую элементы вступают с кислородом, называется окислением.

Например,

4Na + О2= 2Na2O

2. Через разложение перекиси водорода при нагревании ее в присутствии оксида марганца, выступающего в роли катализатора.

3. Через разложение перманганата калия.

Получение кислорода в промышленности проводится такими способами:

1. Для технических целей кислород получают из воздуха, в котором обычное его содержание составляет порядка 20%, т.е. пятую часть. Для этого воздух сначала сжигают, получая смесь с содержанием жидкого кислорода около 54%, жидкого азота - 44% и жидкого аргона - 2%. Затем эти газы разделяют с помощью процесса перегонки, используя сравнительно небольшой интервал между температурами кипения жидкого кислорода и жидкого азота - минус 183 и минус 198,5 градуса соответственно. Получается, что азот испаряется раньше, чем кислород.

Современная аппаратура обеспечивает получение кислорода любой степени чистоты. Азот, который получается при разделении жидкого воздуха, используется в качестве сырья при синтезе его производных.

2. также дает кислород очень чистой степени. Этот способ получил распространение в странах с богатыми ресурсами и дешевой электроэнергией.

Применение кислорода

Кислород является основным по значению элементом в жизнедеятельности всей нашей планеты. Этот газ, который содержится в атмосфере, расходуется в процессе животными и людьми.

Получение кислорода очень важно для таких сфер деятельности человека, как медицина, сварка и резка металлов, взрывные работы, авиация (для дыхания людей и для работы двигателей), металлургия.

В процессе хозяйственной деятельности человека кислород расходуется в больших количествах - например, при сжигании различных видов топлива: природного газа, метана, угля, древесины. Во всех этих процессах образуется При этом природа предусмотрела процесс естественного связывания данного соединения с помощью фотосинтеза, который проходит в зеленых растениях под действием солнечного света. В результате этого процесса образуется глюкоза, которую растение потом расходует для строительства своих тканей.

ОПРЕДЕЛЕНИЕ

Кислород - восьмой элемент Периодической таблицы. Обозначение - О от латинского «oxygenium». Расположен во втором периоде, VIА группе. Относится к неметаллам. Заряд ядра равен 8.

Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Массовая доля кислорода в земной коре составляет около 47%.

В виде простого вещества кислород представляет собой бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 л кислорода при нормальных условиях равна 1,43 г, а 1 л воздуха 1,293г. Кислород растворяется в воде, хотя и в небольших количествах: 100 объемов воды при 0 o С растворяют 4,9, а при 20 o С - 3,1 объема кислорода.

Атомная и молекулярная масса кислорода

ОПРЕДЕЛЕНИЕ

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Относительная атомная масса атомарного кислорода равна 15,999 а.е.м.

ОПРЕДЕЛЕНИЕ

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Это безразмерная величина.Известно, что молекула кислорода двухатомна - О 2 . Относительная молекулярная масса молекулы кислорода будет равна:

M r (О 2) = 15,999 × 2 ≈32.

Аллотропия и аллотропные модификации кислорода

Кислород может существовать в виде двух аллотропных модификаций - кислорода О 2 и озона О 3 (физические свойства кислорода описаны выше).

При обычных условиях озон - газ. От кислорода его можно отделить сильным охлаждением; озон конденсируется в синюю жидкость, кипящую при (-111,9 o С).

Растворимость озона в воде значительно больше, чем кислорода: 100 объемов воды при 0 o С растворяют 49 объемов озона.

Образование озона из кислорода можно выразить уравнением:

3O 2 = 2O 3 - 285 кДж.

Изотопы кислорода

Известно, что в природе кислород может находиться в виде трех изотопов 16 O (99,76%), 17 O (0,04%) и 18 O (0,2%). Их массовые числа равны 16, 17 и 18 соответственно. Ядро атома изотопа кислорода 16 O содержит восемь протонов и восемь нейтронов, а изотопов 17 O и 18 O- такое же количество протонов,девять и десять нейтронов соответственно.

Существует двенадцать радиоактивных изотопов кислорода с массовыми числами от 12-ти до 24-х, из которых наиболее стабильным является изотоп 15 О с периодом полураспада равным 120 с.

Ионы кислорода

На внешнем энергетическом уровне атома кислорода имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 4 .

Схема строения атома кислорода представлена ниже:

В результате химического взаимодействия кислород может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

О 0 +2e → О 2- ;

О 0 -1e → О 1+ .

Молекула и атом кислорода

Молекула кислорода состоит из двух атомов - О 2 . Приведем некоторые свойства, характеризующие атом и молекулу кислорода:

Примеры решения задач

ПРИМЕР 1