Когда люди смогут летать к другим звездам. Космическое путешествие: Межзвёздный перелет. Почему сворачиваются исследовательские миссии

Как только на город опускается тьма, мы поднимаем головы вверх и смотрим на звёзды. Они ведь есть, хоть и где-то далеко. Такие призрачные и настолько реальные одновременно. Смогут ли люди когда-то отправятся к этим сгусткам энергии или навсегда останутся прикованными к поверхности родной планеты?

Чего мы добились в покорении Вселенной?

На сегодняшний день у человека весьма сомнительные достижения в плане освоения космоса:

  • Не было ни одной пилотируемой мисси к другой планете;
  • Нога человека ступила только на спутник Земли и никуда более;
  • На ближайшее время нет даже запланированных программ по покорению нашей звёздной системы;
  • Подавляющее большинство космических стартов связано с запуском грузов на околоземную орбиту;
  • В окружающем пространстве действует не более десятка исследовательских зондов, посылающих информацию на Землю.

Выходит, что где-то полвека назад человечество думало покорять Луну, но уже на том этапе ретировалось к границам собственной орбиты. Мы запустили международную станцию и периодически доставляем туда космонавтов и всё им необходимое.

Ещё о спутниках можно упомянуть - да здравствует надёжный интернет и навигация. И метеорология ещё, куда без неё. Но ведь всё это лишь игрушки - мы лишь вплотную подобрались к самому космическому пространству, но так и не решились сделать хоть ещё один шаг вперёд.

Почему сворачиваются исследовательские миссии

Как ни странно, космические программы, это очень дорогое удовольствие :

  1. Почти никакой финансовой отдачи космические агентства не получают;
  2. Большинство ракет и кораблей строятся для всего одного использования;
  3. Учитывая необходимый уровень качества и надёжности - производство одной ракеты обходится в десятки миллионов долларов;
  4. Сами путешествия в космосе - прямая угроза для жизни космонавтов, что добавляет дополнительные риски;
  5. Полученная теоретическая информация далеко не всегда имеет практическое применение на Земле.

Короче говоря - готовить космонавтов слишком долго и дорого, а ещё каждый из них может погибнуть в любой момент. Корабль неудачно стартовал, и вся команда сгорела в огромном огненном шаре - перспектива вполне реальная, такое уже случалось.

Да и сами корабли, вместе с ракетоносителями, не только дорого стоят, но ещё и отправляются на свалку истории уже после первого пуска. Представьте, что вы летите на частном самолёте. Каждый раз на новом, ведь после посадки воздушное судно самоуничтожается или это происходит при самой посадке, а вы вынуждены приземляться в спасательной капсуле. Долго сможете полетать, в таких условиях, когда постоянно необходимо покупать не самые дешёвые в мире самолёты?

Непреодолимый барьер

Но это всё лирика, ведь основной ограничитель заключается в другом ‒ до ближайшей звезды несколько световых лет. Чтобы было понятно - свет движется с максимальной скоростью, которая только существует во Вселенной. И даже у него уйдёт несколько лет на преодоление этого маршрута.

Сегодня лишь «Вояджер» является единственным рукотворным предметом, покинувшем пределы Солнечной системы. На это у него ушло порядка 40 лет и это лишь выход за пределы системы, на достижение другой уйдут десятки тысяч лет, при нынешних скоростях. К сожалению, человек смертен и попросту не может ждать столько времени. Цивилизации на Земле существуют примерно столько же, сколько придётся лететь .

Можно заявить, что проблема заключается лишь в текущем уровне развития. И это действительно так, но понимание пришло много десятков лет назад, и за это время не было сделано ничего для разрешения сложившейся ситуации. Да, имеются огромные межзвёздные пространства, но не существует никакого технического решения для их преодоления. И в обозримом будущем, откровенно говоря, они и не появятся.

Физики активно эксплуатируют теорию «кротовых дыр», о том, что отдалённые точки в пространстве могут соприкасаться при определённых условиях. Только на практике ни одной такой кротовой дыры мы так и не обнаружили, да и вероятность подобного «подарка» именно в нашей звёздной системе - не особо велика.

Первые шаги в вопросах колонизации

Теоретически, для достижения любой цели необходимо хоть что-то делать, а не сидеть на месте. Первыми шагами в освоении космоса может быть покорение Марса - планета вполне пригодна для существования, в условиях закрытых ферм и при наличии скафандров. Во всяком случае, до масштабного изменения климата, создания атмосферы и прочих проектов, которые на данный момент кажутся нереальными.

Для начала необходимо создать хоть какой-то форпост в космосе. Можно сказать, что уже сейчас существует станция на орбите, где постоянно обитают астронавты. Но опять-таки, это слишком близко к поверхности Земли. Речь идёт о Луне, а в идеале - о Марсе. Именно с покорения этой планеты может начаться экспансия человечества в другие миры. При условии, что колоссальные пустоты в межзвёздном пространстве будут хоть как-то преодолены.

Прогресс и романтика

Всего несколько столетий назад человек считал, что на облаках расположен рай. За такой незначительный промежуток времени представление об окружающей действительности значительно изменилось и учёные создали множество механизмов, которые наши предки даже представить себе не могли.

Возможно, это ожидает и наших потомков - удивление тем фактом, почему мы сами так поздно додумались до тех или иных технологий.

Свет звёзд: этот образ используется как в романтической литературе, так и в фантастике. Неизменно одно заявление - мы видим отражение, частицу прошлого и свет умерших миров. В этом есть доля правды, если учесть, что от далёких звёзд свет может идти десятки тысяч лет. Но разве это способно остановить стремление человечества к покорению окружающего пространства?

Фантасты дали нам образ - гигантские корабли, движущиеся в межзвёздном пространстве на протяжении десятилетий и даже столетий. Пассажиры, спящие в условиях анабиоза. Для них это путешествие происходит не только в пространстве, но и во времени. Возможно, когда-то будет реализовано нечто подобное. Но скорее всего, учитывая уровень технологий и низкую заинтересованность - космос останется непокорённым.

Мы родились слишком рано, чтобы осваивать звёзды. За будущие поколения говорить сложно, но на своем веку мы вряд ли увидим значимых открытий в этой области. Разве что, если вдруг произойдёт контакт с внеземной цивилизацией.

Видео: что будет, если все население Земли поднимется?

В данном ролике Лев Прокопьев расскажет, что может произойти, если все люди на планеты одновременно покинут Землю:

Наш читатель Никита Агеев спрашивает: в чем основная проблема межзвездных перелетов? Ответ, как и , потребует большой статьи, хотя на вопрос можно ответить и единственным символом: c .

Скорость света в вакууме, c, равна примерно тремстам тысячам километров в секунду, и превысить ее невозможно. Следовательно, нельзя и добраться до звезд быстрее, чем за несколько лет (свет идет 4,243 года до Проксимы Центавра, так что космический корабль не сможет прибыть еще быстрее). Если добавить время на разгон и торможение с более-менее приемлемым для человека ускорением, то получится около десяти лет до ближайшей звезды.

В каких условиях лететь?

И этот срок уже существенное препятствие сам по себе, даже если отвлечься от вопроса «как разогнаться до скорости, близкой к скорости света». Сейчас не существует космических кораблей, которые позволяли бы экипажу автономно жить в космосе столько времени — космонавтам постоянно привозят свежие припасы с Земли. Обычно разговор о проблемах межзвездных перелетов начинают с более фундаментальных вопросов, но мы начнем с сугубо прикладных проблем.

Даже спустя полвека после полета Гагарина инженеры не смогли создать для космических кораблей стиральную машину и достаточно практичный душ, а рассчитанные на условия невесомости туалеты ломаются на МКС с завидной регулярностью . Перелет хотя бы к Марсу (22 световые минуты вместо 4 световых лет) уже ставит перед конструкторами сантехники нетривиальную задачу: так что для путешествия к звездам потребуется как минимум изобрести космический унитаз с двадцатилетней гарантией и такую же стиральную машину.

Воду для стирки, мытья и питья тоже придется либо брать с собой, либо использовать повторно. Равно как и воздух, да и еду тоже необходимо либо запасать, либо выращивать на борту. Эксперименты по созданию замкнутой экосистемы на Земле уже проводились, однако их условия все же сильно отличались от космических хотя бы наличием гравитации. Человечество умеет превращать содержимое ночного горшка в чистую питьевую воду, но в данном случае требуется суметь сделать это в невесомости, с абсолютной надежностью и без грузовика расходных материалов: брать к звездам грузовик картриджей для фильтров слишком накладно.

Стирка носков и защита от кишечных инфекций могут показаться слишком банальными, «нефизическими» ограничениями на межзвездные полеты - однако любой опытный путешественник подтвердит, что «мелочи» вроде неудобной обуви или расстройства желудка от незнакомой пищи в автономной экспедиции могут обернуться угрозой для жизни.

Решение даже элементарных бытовых проблем требует столь же серьезной технологической базы, как и разработка принципиально новых космических двигателей. Если на Земле изношенную прокладку в бачке унитаза можно купить в ближайшем магазине за два рубля, то уже на марсианском корабле нужно предусмотреть либо запас всех подобных деталей, либо трехмерный принтер для производства запчастей из универсального пластикового сырья.

В ВМС США в 2013 году всерьез занялись трехмерной печатью после того, как оценили затраты времени и средств на ремонт боевой техники традиционными методами в полевых условиях. Военные рассудили, что напечатать какую-нибудь редкую прокладку для снятого с производства десять лет назад узла вертолета проще, чем заказать деталь со склада на другом материке.

Один из ближайших соратников Королева, Борис Черток, писал в своих мемуарах «Ракеты и люди» о том, что в определенный момент советская космическая программа столкнулась с нехваткой штепсельных контактов. Надежные соединители для многожильных кабелей пришлось разрабатывать отдельно.

Кроме запчастей для техники, еды, воды и воздуха космонавтам потребуется энергия. Энергия будет нужна двигателю и бортовому оборудованию, так что отдельно придется решить проблему с мощным и надежным ее источником. Солнечные батареи не годятся хотя бы по причине удаленности от светил в полете, радиоизотопные генераторы (они питают «Вояджеры» и «Новые горизонты») не дают требуемой для большого пилотируемого корабля мощности, а полноценные ядерные реакторы для космоса до сих пор делать не научились.

Советская программа по созданию спутников с ядерной энергоустановкой была омрачена международным скандалом после падения аппарата «Космос-954» в Канаде, а также рядом отказов с менее драматичными последствиями; аналогичные работы в США свернули еще раньше. Сейчас созданием космической ядерной энергоустановки намерены заняться в Росатоме и Роскосмосе, но это все-таки установки для ближних перелетов, а не многолетнего пути к другой звездной системе.

Возможно, вместо ядерного реактора в будущих межзвездных кораблях найдут применение токамаки. О том, насколько сложно хотя бы правильно определить параметры термоядерной плазмы, в МФТИ этим летом . Кстати, проект ITER на Земле успешно продвигается: даже те, кто поступил на первый курс, сегодня имеют все шансы приобщиться к работе над первым экспериментальным термоядерным реактором с положительным энергетическим балансом.

На чем лететь?

Для разгона и торможения межзвездного корабля обычные ракетные двигатели не годятся. Знакомые с курсом механики, который читают в МФТИ в первом семестре, могут самостоятельно рассчитать то, сколько топлива потребуется ракете для набора хотя бы ста тысяч километров в секунду. Для тех, кто еще не знаком с уравнением Циолковского, сразу озвучим результат - масса топливных баков получается существенно выше массы Солнечной системы.

Уменьшить запас топлива можно за счет повышения скорости, с которой двигатель выбрасывает рабочее тело, газ, плазму или что-то еще, вплоть до пучка элементарных частиц. В настоящее время для перелетов автоматических межпланетных станций в пределах Солнечной системы или для коррекции орбиты геостационарных спутников активно используют плазменные и ионные двигатели, но у них есть ряд других недостатков. В частности, все такие двигатели дают слишком малую тягу, ими пока нельзя придать кораблю ускорение в несколько метров на секунду в квадрате.

Проректор МФТИ Олег Горшков - один из признанных экспертов в области плазменных двигателей. Двигатели серии СПД - производят в ОКБ «Факел», это серийные изделия для коррекции орбиты спутников связи.

В 1950-е годы разрабатывался проект двигателя, который бы использовал импульс ядерного взрыва (проект Orion), но и он далек от того, чтобы стать готовым решением для межзвездных полетов. Еще менее проработан проект двигателя, который использует магнитогидродинамический эффект, то есть разгоняется за счет взаимодействия с межзвездной плазмой. Теоретически, космический корабль мог бы «засасывать» плазму внутрь и выбрасывать ее назад с созданием реактивной тяги, но тут возникает еще одна проблема.

Как выжить?

Межзвездная плазма - это прежде всего протоны и ядра гелия, если рассматривать тяжелые частицы. При движении со скоростями порядка сотни тысяч километров в секунду все эти частицы приобретают энергию в мегаэлектронвольты или даже десятки мегаэлектронвольт - столько же, сколько имеют продукты ядерных реакций. Плотность межзвездной среды составляет порядка ста тысяч ионов на кубический метр, а это значит, что за секунду квадратный метр обшивки корабля получит порядка 10 13 протонов с энергиями в десятки МэВ.

Один электронвольт, эВ , это та энергия, которую приобретает электрон при пролете от одного электрода до другого с разностью потенциалов в один вольт. Такую энергию имеют кванты света, а кванты ультрафиолета с большей энергией уже способны повредить молекулы ДНК. Излучение или частицы с энергиями в мегаэлектронвольты сопровождает ядерные реакции и, кроме того, само способно их вызывать.

Подобное облучение соответствует поглощенной энергии (в предположении, что вся энергия поглощается обшивкой) в десятки джоулей. Причем эта энергия придет не просто в виде тепла, а может частично уйти на инициацию в материале корабля ядерных реакций с образованием короткоживущих изотопов: проще говоря, обшивка станет радиоактивной.

Часть налетающих протонов и ядер гелия можно отклонять в сторону магнитным полем, от наведенной радиации и вторичного излучения можно защищаться сложной оболочкой из многих слоев, однако эти проблемы тоже пока не имеют решения. Кроме того, принципиальные сложности вида «какой материал в наименьшей степени будет разрушаться при облучении» на стадии обслуживания корабля в полете перейдут в частные проблемы - «как открутить четыре болта на 25 в отсеке с фоном в пятьдесят миллизиверт в час».

Напомним, что при последнем ремонте телескопа «Хаббл» у астронавтов поначалу не получилось открутить четыре болта, которые крепили одну из фотокамер. Посовещавшись с Землей, они заменили ключ с ограничением крутящего момента на обычный и приложили грубую физическую силу. Болты стронулись с места, камеру успешно заменили. Если бы прикипевший болт при этом сорвали, вторая экспедиция обошлась бы в полмиллиарда долларов США. Или вовсе бы не состоялась.

Нет ли обходных путей?

В научной фантастике (часто более фантастической, чем научной) межзвездные перелеты совершаются через «подпространственные туннели». Формально, уравнения Эйнштейна, описывающие геометрию пространства-времени в зависимости от распределенных в этом пространстве-времени массы и энергии, действительно допускают нечто подобное - вот только предполагаемые затраты энергии удручают еще больше, чем оценки количества ракетного топлива для полета к Проксиме Центавра. Мало того, что энергии нужно очень много, так еще и плотность энергии должна быть отрицательной.

Вопрос о том, нельзя ли создать стабильную, большую и энергетически возможную «кротовую нору» - привязан к фундаментальным вопросам об устройстве Вселенной в целом. Одной из нерешенных физических проблем является отсутствие гравитации в так называемой Стандартной модели - теории, описывающей поведение элементарных частиц и три из четырех фундаментальных физических взаимодействий. Абсолютное большинство физиков довольно скептически относится к тому, что в квантовой теории гравитации найдется место для межзвездных «прыжков через гиперпространство», но, строго говоря, попробовать поискать обходной путь для полетов к звездам никто не запрещает.

Ученые говорят о том, что человечество маленькими шажками продвигается к будущему, в котором полеты из одной планетной системы в другую наконец-то станут реальностью. По последним оценкам специалистов такое будущее может наступить в течение одного или двух веков, если научный прогресс не будет топтаться на месте. В свое время только при помощи сверхмощного телескопа «Кеплер» астрономы смогли обнаружить 54 потенциально обитаемых экзопланеты. Все эти далекие от нас миры располагаются в так называемой обитаемой зоне, на определенном удалении от центральной звезды, что позволяет поддерживать на планете воду в жидком состоянии.

При этом получить ответ на самый главный вопрос – одиноки ли мы во Вселенной –достаточно трудно. Из-за очень больших расстояний, которые разделяют Солнечную систему и наших ближайших соседей. К примеру, одна из «перспективных» планет Gliese 581g располагается на удалении в 20 световых лет, что довольно близко по меркам космоса, но пока что очень далеко для обычных земных технологий. Обилие экзопланет в радиусе 100 и менее световых лет от нашей родной планеты и очень большой научный и даже цивилизационный интерес, которые они представляют для всего человечества, заставляют совершенно по-новому смотреть на доселе фантастическую идею совершения межзвездных перелетов.


Главной задачей, которая сегодня стоит перед космологами и инженерами является создание принципиально нового двигателя, который позволил бы землянам преодолевать огромные космические расстояния за сравнительно небольшое время. При этом о совершении межгалактических перелетов речь пока, безусловно, не ведется. Для начала человечество могло бы исследовать нашу родную галактику – Млечный путь.

Млечный путь состоит из большого количества звезд, вокруг которых вращаются планеты. Ближайшая к Солнцу звезда носит название Альфа Центавра. Эта звезда удалена от Земли на 4,3 световых года или 40 триллионов километров. Если предположить, что ракета с обыкновенным двигателем вылетит с нашей планеты сегодня, то она сможет преодолеть это расстояние только через 40 тысяч лет! Конечно же, такая космическая миссия выглядит полным абсурдом. Марк Миллис, бывший глава проекта NASA по созданию новейших технологий в области создания двигателей и основатель фонда Tau Zero, считает, что человечеству необходимо долго и методично идти к созданию нового типа двигателя. В наши дни существует уже огромное количество теорий насчет того, каким будет этот двигатель, но какая из теорий сработает, мы не знаем. Потому Миллис считает бессмысленным делать акцент только на одной какой-то технологии.

Сегодня ученые пришли к заключению, что космические корабли будущего смогут летать при помощи использования термоядерного двигателя, солнечного паруса, двигателя на антиматерии или двигателя искривления пространства-времени (или варп-двигателя, который хорошо известен поклонникам сериала Star Trek). Последний двигатель в теории должен сделать возможными полеты быстрее скорости света, а значит, и небольшие путешествия во времени.

При этом все перечисленные технологии только лишь описаны, как их реализовать на практике пока что не знает никто. По этой же причине нет ясности, какая же именно технология подает больше всего надежд на реализацию. Правда некоторое количество солнечных парусов уже успело слетать в космос, но для осуществления пилотируемой миссии межзвездных перелетов потребуется огромный парус размерами с Архангельскую область. Принцип работы солнечного паруса практически не отличается от ветряного, только вместо потоков воздуха он ловит сверхсфокусированные лучи света, испускаемые мощной лазерной установкой, вращающейся вокруг Земли.


Марк Миллис в пресс-релизе своего фонда Tau Zero говорит о том, что правда находится где-то посередине между уже почти привычными нам солнечными парусами и совсем фантастическими разработками, вроде варп-двигателя. «Необходимо проводить научные открытия и медленно, но верно двигаться к намеченной цели. Чем больше людей мы сможем заинтересовать, тем большие объемы финансирования привлечем, именно финансирования в настоящее время катастрофически не хватает», – говорит Миллис. Марк Миллис полагает, что финансирование для больших проектов нужно собирать по крупицам, не рассчитывая, что кто-то неожиданно вложит целое состояние в реализацию амбициозных планов ученых.

Сегодня по всему миру найдется масса энтузиастов, которые верят и уверены в том, что будущее нужно строить уже сейчас. Ричард Обузи, являющийся президентом и сооснователем компании Icarus Interstellar, отмечает: «Межзвёздные перелеты – это международная инициатива многих поколений людей, которая требует огромных интеллектуальных и финансовых затрат. Уже в наши дни мы должны инициировать необходимые программы, для того чтобы через сотню лет человечество смогло вырваться за пределы нашей Солнечной системы».

В августе текущего года компания Icarus Interstellar собирается провести научную конференцию Starship Congress, на которой ведущие мировые эксперты в данной области обсудят не только возможности, но и последствия межзвездных полетов. Организаторы отмечают, что на конференции будет организована и практическая часть, на которой будут рассмотрены как краткосрочные, так и долгосрочные перспективы освоения человеком дальнего космоса.


Стоит отметить, что подобные космические путешествия требуют затрат колоссального количества энергии, о которых человечество в наши дни даже не мыслит. В то же время неправильное использование энергии может нанести невосполнимый вред как Земле, так и тем планетам, на поверхность которых человек захочет высадиться. Несмотря на все нерешенные проблемы и препятствия и Обузи, и Миллис полагают, что у человеческой цивилизации есть все шансы для того, чтобы покинуть пределы своей «колыбели». Бесценные данные о экзопланетах, звездных системах и инопланетных мирах, которые были собраны космическими обсерваториями «Гершель» и «Кеплер», помогут учеными в тщательном составлении планов полетов.

На сегодняшний день открыто и подтверждено существование около 850 экзопланет, многие из которых – это суперземли, то есть планеты, обладающие массой, которая сравнима с земной. Специалисты считают, что недалек тот день, когда астрономы смогут подтвердить наличие экзопланеты, которая бы как две капли воды походила на нашу собственную. В этом случае финансирование проектов по созданию новых ракетных двигателей возросло бы в разы. Свою роль в освоении космоса должна сыграть и добыча полезных ископаемых с астероидов, что сейчас звучит уже не так необычно, как те же межзвездные полеты. Человечество должно научиться использовать ресурсы не только Земли, но и всей Солнечной системы, полагают эксперты.

К проблеме межзвездных перелетов подключились ученые и инженеры из американского космического агентства NASA, а также агентства по перспективным оборонным научно-исследовательским разработкам США – DARPA. Они готовы объединить свои усилия в рамках реализации проекта «100-year Starship», при этом это даже не проект, а проект проекта. «100-year Starship» – это космический корабль, который смог бы выполнять межзвездные перелеты. Задача сегодняшнего этапа исследований – это создание «суммы технологий», которые необходимы для того, чтобы межзвездные перелеты превратились в реальность. Помимо этого, создается бизнес-модель, которая позволила бы привлечь в проект инвестиции.

По словам Павла Еременко, являющегося пресс-секретарем DARPA, данному проекту будут необходимы «стабильные инвестиции в финансовый и интеллектуальный капитал» из разных источников. Также Еременко подчеркнул, что цель проекта «100-year Starship» – не только разработка и последующее строительство звездолета. «Мы прилагаем все возможные усилия, для того чтобы побудить интерес нескольких поколений к инновациям и открытиям прорывных технологий во множестве дисциплин».

Специалисты агентства DARPA надеются на то, что результаты, которые будут получены при работе над этим проектом, смогут быть использованы министерством обороны США в различных областях, таких как системы жизнеобеспечения, энергетика, вычислительная техника.

Источники информации:
-http://www.vesti.ru/doc.html?id=1100469
-http://rnd.cnews.ru/reviews/index_science.shtml?2011/10/11/459501
-http://www.nkj.ru/news/18905

Могут ли межзвездные перелеты превратиться из несбыточной мечты в реальную перспективу?

Ученые всего мира говорят, что человечество все дальше продвигается в освоении космоса, появляются все новые открытия и технологии. Однако о межзвездных перелетах людям приходится пока еще только мечтать. Но так ли недостижима и нереальна эта мечта? Чем располагает человечество сегодня и каковы перспективы на будущее?

По оценкам специалистов, если прогресс не застопорится на месте, то на протяжении одного или двух веков, человечество сможет исполнить свою мечту. Сверхмощный телескоп «Кеплер» в свое время позволил астрономам обнаружить 54 экзопланеты, где не исключено развитие жизни, а сегодня уже подтверждено существование 1028 таких планет. Эти планеты, обращающиеся вокруг звезды за пределами Солнечной системы, находятся на таком отдалении от центральной звезды, что на их поверхности возможно поддержание воды в жидком состоянии.

Однако получить ответ на главный вопрос — одиноко ли человечество во Вселенной — пока невозможно из-за гигантских расстояний до ближайших планетных систем. Множество экзопланет, на расстояние ста и менее световых лет от Земли, а также громадный научный интерес, который они вызывают, заставляют взглянуть на идею межзвездных перелетов совершенно по-иному.

Полет к другим планетам будет зависеть от разработки новых технологий и выбора способа, который необходим для достижения такой далекой цели. А пока выбор еще не сделан.

Для того чтобы земляне смогли преодолевать невероятно огромные космические расстояния, причем за сравнительно короткий срок, инженерам и космологам придется создать принципиально новый двигатель. Говорить о межгалактических перелетах пока рано, но человечество могло бы исследовать – Млечный путь, галактику, в которой находится Земля и Солнечная система.

Галактика Млечный путь насчитывает около 200 – 400 миллиардов звезд, вокруг которых по своим орбитам движутся планеты. Ближе всех к Солнцу находится звезда под названием Альфа Центавра. Расстояние до нее примерно сорок триллионов километров или 4,3 световых года.

Ракете с обычным двигателем придется лететь до нее примерно 40 тысяч лет! Пользуясь формулой Циолковского легко подсчитать, что для того, чтобы разогнать космический аппарат с реактивным двигателем на ракетном топливе до скорости в 10% от скорости света, нужно больше горючего, чем его имеется на всей Земле. Поэтому говорить о космической миссии при современных технологиях, это полный абсурд.

Как считают ученые, будущие космические звездолеты смогут летать с использованием термоядерного ракетного двигателя. Реакция термоядерного синтеза позволяет производить энергию на единицу массы в среднем почти в миллион раз больше, чем при химическом процессе сгорания.

Как раз поэтому в 1970 годах группа инженеров совместно с учеными разработали проект гигантского межзвездного корабля с термоядерной двигательной установкой. Беспилотный космический корабль Дедал предполагалось оборудовать импульсным термоядерным двигателем. Небольшие гранулы должны были вбрасываться в камеру сгорания и воспламеняться пучками мощных электронных лучей. Плазма, как продукт термоядерной реакции, вылетающая из сопла двигателя, придает тяговое усилие кораблю.

Предполагалось, что Дедал должен был лететь к звезде Барнарда, путь до которой составляет шесть световых лет. Громаднейший космический корабль добрался бы до нее за 50 лет. И хотя проект не был осуществлен, до сегодняшнего дня нет более реального технического проекта.

Другим направлением в технологии создания межзвездных кораблей является солнечный парус. Использование солнечного паруса рассматривается сегодня как самый перспективный и реалистичный вариант звездолёта. Превосходство солнечного парусника в том, что на борту не нужно топливо, а это значит, что намного возрастет полезная нагрузка по сравнению с другими космическими кораблями. Уже сегодня существует возможность постройки межзвездного зонда, где давление солнечного ветра будет основным источником энергии корабля.

О серьезности намерений освоения межпланетных полетов говорит проект, который разрабатывается с 2010 года в одной из основных научных лабораторий НАСА. Ученые работают над проектом по подготовке в течение ближайших ста лет пилотируемого полета к другим звездным системам.

Современные технологии и открытия выводят освоение космоса на совершенно иной уровень, однако межзвездные перелеты пока еще остаются мечтой. Но так ли она нереальна и недостижима? Что мы можем уже сейчас и чего ждать в ближайшем будущем?

Изучая данные полученные с телескопа «Кеплер» астрономы обнаружили 54 потенциально обитаемые экзопланеты. Эти далекие миры находятся в обитаемой зоне, т.е. на определенном расстоянии от центральной звезды, позволяющем поддерживать на поверхности планеты воду в жидком виде.

Однако ответ на главный вопрос, одиноки ли мы во Вселенной, получить затруднительно - из-за огромной дистанции, разделяющей Солнечную систему и наших ближайших соседей. Например, «перспективная» планета Gliese 581g находится на расстоянии в 20 световых лет – это достаточно близко по космическим меркам, но пока слишком далеко для земных инструментов.

Обилие экзопланет в радиусе 100 и менее световых лет от Земли и огромный научный и даже цивилизационный интерес, которые они представляют для человечества, заставляют по-новому взглянуть на доселе фантастическую идею межзвездных перелетов.

Полет к другим звездам - это, разумеется, вопрос технологий. Более того, существуют несколько возможностей для достижения столь далекой цели, и выбор в пользу того или иного способа еще не сделан.

Человечество уже отправляло в космос межзвездные аппараты: зонды Pioneer и Voyager. В настоящее время они покинули пределы Солнечной системы, однако их скорость не позволяет говорить о сколь-нибудь быстром достижении цели. Так, Voyager 1, движущийся со скоростью около 17 км/с, даже к ближайшей к нам звезде Проксима Центавра (4,2 световых года) будет лететь невероятно долгий срок - 17 тысяч лет.

Очевидно, что с современными ракетными двигателями мы никуда дальше Солнечной системы не выберемся: для транспортировки 1 кг груза даже к недалекой Проксиме Центавра нужны десятки тысяч тонн топлива. При этом с ростом массы корабля увеличивается количество необходимого топлива, и для его транспортировки нужно дополнительное горючее. Замкнутый круг, ставящий крест на баках с химическим топливом - постройка космического судна весом в миллиарды тонн представляется совершенно невероятной затеей. Простые вычисления по формуле Циолковского демонстрируют, что для ускорения космических аппаратов с ракетным двигателем на химическом топливе до скорости примерно в 10% скорости света потребуется больше горючего, чем доступно в известной вселенной.

Реакция термоядерного синтеза производит энергии на единицу массы в среднем в миллион раз больше, чем химические процессы сгорания. Именно поэтому в 1970-х годах в НАСА обратили внимание на возможность применения термоядерных ракетных двигателей. Проект беспилотного космического корабля Дедал предполагал создание двигателя, в котором небольшие гранулы термоядерного топлива будут подаваться в камеру сгорания и поджигаться пучками электронов. Продукты термоядерной реакции вылетают из сопла двигателя и придают кораблю ускорение.

Космический корабль Дедал в сравнении с небоскребом Эмпайр стейт Билдинг

Дедал должен был взять на борт 50 тыс. тонн топливных гранул диаметром 4 и 2 мм. Гранулы состоят из ядра с дейтерием и тритием и оболочки из гелия-3. Последний составляет лишь 10-15 % от массы топливной гранулы, но, собственно, и является топливом. Гелия-3 в избытке на Луне, а дейтерий широко используется в атомной промышленности. Дейтериевое ядро служит детонатором для зажигания реакции синтеза и провоцирует мощную реакцию с выбросом реактивной плазменной струи, которая управляется мощным магнитным полем. Основная молибденовая камера сгорания двигателя Дедала должна была иметь вес более 218 тонн, камера второй ступени – 25 тонн. Магнитные сверхпроводящие катушки тоже под стать огромному реактору: первая весом 124,7 т, а вторая - 43,6 т. Для сравнения: сухая масса шаттла менее 100 т.

Полет Дедала планировался двухэтапным: двигатель первой ступени должен был проработать более 2 лет и сжечь 16 млн топливных гранул. После отделения первой ступени почти два года работал двигатель второй ступени. Таким образом, за 3,81 года непрерывного ускорения Дедал достиг бы максимальной скорости в 12,2% скорости света. Расстояние до звезды Барнарда (5,96 световых лет) такой корабль преодолеет за 50 лет и сможет, пролетая сквозь далекую звездную систему, передать по радиосвязи на Землю результаты своих наблюдений. Таким образом, вся миссия займет около 56 лет.

Несмотря на большие сложности с обеспечением надежности многочисленных систем Дедала и его огромной стоимостью, этот проект реализуем на современном уровне технологий. Более того, в 2009 году команда энтузиастов возродила работу над проектом термоядерного корабля. В настоящее время проект Икар включает 20 научных тем по теоретической разработке систем и материалов межзвездного корабля.

Таким образом, уже сегодня возможны беспилотные межзвездные полеты на расстояние до 10 световых лет, которые займут около 100 лет полета плюс время на путешествие радиосигнала обратно на Землю. В этот радиус укладываются звездные системы Альфа Центавра, Звезда Барнарда, Сириус, Эпсилон Эридана, UV Кита, Росс 154 и 248, CN Льва, WISE 1541-2250. Как видим, рядом с Землей достаточно объектов для изучения с помощью беспилотных миссий. Но если роботы найдут что-то действительно необычное и уникальное, например, сложную биосферу? Сможет ли отправиться к далеким планетам экспедиция с участием людей?

Полет длинною в жизнь

Если беспилотный корабль мы можем начинать строить уже сегодня, то с пилотируемым дело обстоит сложнее. Прежде всего остро стоит вопрос времени полета. Возьмем ту же звезду Барнарда. К пилотируемому полету космонавтов придется готовить со школьной скамьи, поскольку даже если старт с Земли состоится в их 20-летие, то цели полета корабль достигнет к 70-летию или даже 100-летию (учитывая необходимость торможения, в котором нет нужды в беспилотном полете). Подбор экипажа в юношеском возрасте чреват психологической несовместимостью и межличностными конфликтами, а возраст в 100 не дает надежду на плодотворную работу на поверхности планеты и на возвращение домой.

Однако есть ли смысл возвращаться? Многочисленные исследования НАСА приводят к неутешительному выводу: длительное пребывание в невесомости необратимо разрушит здоровье космонавтов. Так, работа профессора биологии Роберта Фиттса с космонавтами МКС показывает, что даже несмотря на активные физические упражнения на борту космического корабля, после трехлетней миссии на Марс крупные мышцы, например икроножные, станут на 50% слабее. Аналогично снижается и минеральная плотность костной ткани. В результате трудоспособность и выживаемость в экстремальных ситуациях уменьшается в разы, а период адаптации к нормальной силе тяжести составит не менее года. Полет же в невесомости на протяжении десятков лет поставит под вопрос сами жизни космонавтов. Возможно, человеческий организм сможет восстановиться, например, в процессе торможения с постепенно нарастающей гравитацией. Однако риск гибели все равно слишком высок и требует радикального решения.

Тор Стенфорда – колоссальное сооружение с целыми городами внутри вращающегося обода.

К сожалению, решить проблему невесомости на межзвездном корабле не так просто. Доступная нам возможность создания искусственной силы тяжести при помощи вращения жилого модуля имеет ряд сложностей. Чтобы создать земную гравитацию, даже колесо диаметром 200 м придется вращать со скоростью 3 оборота в минуту. При таком быстром вращении сила Кариолиса будет создавать совершенно непереносимые для вестибулярного аппарата человека нагрузки, вызывая тошноту и острые приступы морской болезни. Единственное решение этой проблемы - Тор Стенфорда, разработанный учеными Стенфордского университета в 1975 году. Это - огромное кольцо диаметром 1,8 км, в котором могли бы жить 10 тыс. космонавтов. Благодаря своим размерам оно обеспечивает силу тяжести на уровне 0.9-1,0 g и вполне комфортное проживание людей. Однако даже на скорости вращения ниже, чем один оборот в минуту, люди все равно будут испытывать легкий, но ощутимый дискомфорт. При этом если подобный гигантский жилой отсек будет построен, даже небольшие сдвиги в развесовке тора повлияют на скорость вращения и вызовут колебания всей конструкции.

Сложной остается и проблема радиации. Даже вблизи Земли (на борту МКС) космонавты находятся не более полугода из-за опасности радиационного облучения. Межпланетный корабль придется оснастить тяжелой защитой, но и при этом остается вопрос влияния радиации на организм человека. В частности, на риск онкологических заболеваний, развитие которых в невесомости практически не изучено. В начале этого года ученый Красимир Иванов из Германского аэрокосмического центра в Кельне опубликовал результаты интересного исследования поведения клеток меланомы (самой опасной формы рака кожи) в невесомости. По сравнению с раковыми клетками, выращенными при нормальной силе тяжести, клетки, проведшие в невесомости 6 и 24 часа, менее склонны к метастазам. Это вроде бы хорошая новость, но только на первый взгляд. Дело в том, что такой «космический» рак способен находиться в состоянии покоя десятилетия, и неожиданно масштабно распространяться при нарушении работы иммунной системы. Кроме этого, исследование дает понять, что мы еще мало знаем о реакции человеческого организма на длительное пребывание в космосе. Сегодня космонавты, здоровые сильные люди, проводят там слишком мало времени, чтобы переносить их опыт на длительный межзвездный перелет.

В любом случае корабль на 10 тыс. человек – сомнительная затея. Для создания надежной экосистемы для такого числа людей нужно огромное количество растений, 60 тыс. кур, 30 тыс. кроликов и стадо крупного рогатого скота. Только это может обеспечить диету на уровне 2400 калорий в день. Однако все эксперименты по созданию таких замкнутых экосистем неизменно заканчиваются провалом. Так, в ходе крупнейшего эксперимента «Биосфера-2» компании Space Biosphere Ventures была построена сеть герметичных зданий общей площадью 1,5 га с 3 тыс. видами растений и животных. Вся экосистема должна была стать самоподдерживающейся маленькой «планетой», в которой жили 8 человек. Эксперимент длился 2 года, но уже после нескольких недель начались серьезные проблемы: микроорганизмы и насекомые стали неконтролируемо размножаться, потребляя кислород и растения в слишком больших количествах, также оказалось, что без ветра растения стали слишком хрупкими. В результате локальной экологической катастрофы люди начали терять вес, количество кислорода снизилось с 21% до 15%, и ученым пришлось нарушить условия эксперимента и поставлять восьмерым «космонавтам» кислород и продукты.

Таким образом, создание сложных экосистем представляется ошибочным и опасным путем обеспечения экипажа межзвездного корабля кислородом и питанием. Для решения этой проблемы понадобятся специально сконструированные организмы с измененными генами, способные питаться светом, отходами и простыми веществами. Например, большие современные цеха по производству пищевой водоросли хлореллы могут производить до 40 т суспензии в сутки. Один полностью автономный биореактор весом несколько тонн может производить до 300 л суспензии хлореллы в сутки, чего достаточно для питания экипажа в несколько десятков человек. Генетически модифицированная хлорелла могла бы не только удовлетворять потребности экипажа в питательных веществах, но и перерабатывать отходы, включая углекислый газ. Сегодня процесс генетического инжиниринга микроводорослей стал обычным делом, и существуют многочисленные образцы, разработанные для очистки сточных вод, выработки биотоплива и т.д.

Замороженный сон

Практически все вышеперечисленные проблемы пилотируемого межзвездного полета могла бы решить одна очень перспективная технология – анабиоз или как его еще называют криостазис. Анабиоз - это замедление процессов жизнедеятельности человека как минимум в несколько раз. Если удастся погрузить человека в такую искусственную летаргию, замедляющую обмен веществ в 10 раз, то за 100-летний полет он постареет во сне всего на 10 лет. При этом облегчается решение проблем питания, снабжения кислородом, психических расстройств, разрушения организма в результате воздействия невесомости. Кроме того, защитить отсек с анабиозными камерами от микрометеоритов и радиации проще, чем обитаемую зону большого объема.

К сожалению, замедление процессов жизнедеятельности человека – это чрезвычайно сложная задача. Но в природе существуют организмы, способные впадать в спячку и увеличивать продолжительность своей жизни в сотни раз. Например, небольшая ящерица под названием сибирский углозуб способна впадать в спячку в тяжелые времена и десятилетиями оставаться в живых, даже будучи вмороженной в глыбу льда с температурой минус 35-40°С. Известны случаи, когда углозубы проводили в спячке около 100 лет и, как ни в чем не бывало, оттаивали и убегали от удивленных исследователей. При этом обычная «непрерывная» продолжительность жизни ящерицы не превышает 13 лет. Удивительная способность углозуба объясняется тем, что его печень синтезирует большое количество глицерина, почти 40 % от веса тела, что защищает клетки от низких температур.

Главное препятствие для погружения человека в криостазис – вода, из которой на 70% состоит наше тело. При замерзании она превращается в кристаллики льда, увеличиваясь в объеме на 10%, из-за чего разрывается клеточная мембрана. Кроме того, по мере замерзания растворенные внутри клетки вещества мигрируют в оставшуюся воду, нарушая внутриклеточные ионообменные процессы, а также организацию белков и других межклеточных структур. В общем, разрушение клеток во время замерзания делают невозможным возвращение человека к жизни.

Однако существует перспективный путь решения этой проблемы - клатратные гидраты. Они были обнаружены в далеком 1810 году, когда британский ученый сэр Хэмфри Дэви подал в воду хлор под высоким давлением и стал свидетелем образования твердых структур. Это и были клатратные гидраты – одна из форм водяного льда, в который включен посторонний газ. В отличие от кристаллов льда, клатратные решетки менее твердые, не имеют острых граней, зато имеют полости, в которые могут «спрятаться» внутриклеточные вещества. Технология клатратного анабиоза была бы проста: инертный газ, например, ксенон или аргон, температура чуть ниже нуля, и клеточный метаболизм начинает постепенно замедляться, пока человек не впадает в криостазис. К сожалению, для образования клатратных гидратов требуется высокое давление (около 8 атмосфер) и весьма высокая концентрация газа, растворенного в воде. Как создать такие условия в живом организме, пока неизвестно, хотя некоторые успехи в этой области есть. Так, клатраты способны защитить ткани сердечной мышцы от разрушения митохондрий даже при криогенных температурах (ниже 100 градусов Цельсия), а также предотвратить повреждение клеточных мембран. Об экспериментах по клатратному анабиозу на людях речь пока не идет, поскольку коммерческий спрос на технологии криостазиса невелик и исследования на эту тему проводятся в основном небольшими компаниями, предлагающими услуги по заморозке тел умерших.

Полет на водороде

В 1960 году физик Роберт Бассард предложил оригинальную концепцию прямоточного термоядерного двигателя, который решает многие проблемы межзвездного перелета. Суть заключается в использовании водорода и межзвездной пыли, присутствующих в космическом пространстве. Космический корабль с таким двигателем сначала разгоняется на собственном горючем, а затем разворачивает огромную, диаметром тысячи километров воронку магнитного поля, которое захватывает водород из космического пространства. Этот водород используется в качестве неисчерпаемого источника топлива для термоядерного ракетного двигателя.

Применение двигателя Бассарда сулит огромные преимущества. Прежде всего за счет «дармового» топлива есть возможность двигаться с постоянным ускорением в 1 g, а значит - отпадают все проблемы, связанные с невесомостью. Кроме того двигатель позволяет разогнаться до огромной скорости - в 50% от скорости света и даже больше. Теоретически, двигаясь с ускорением в 1 g, расстояние в 10 световых лет корабль с двигателем Бассарда может преодолеть примерно за 12 земных лет, причем для экипажа из-за релятивистских эффектов прошло бы всего 5 лет корабельного времени.

К сожалению, на пути создания корабля с двигателем Бассарда стоит ряд серьезных проблем, которые нельзя решить на современном уровне технологий. Прежде всего необходимо создать гигантскую и надежную ловушку для водорода, генерирующую магнитные поля гигантской силы. При этом она должна обеспечивать минимальные потери и эффективную транспортировку водорода в термоядерный реактор. Сам процесс термоядерной реакции превращения четырех атомов водорода в атом гелия, предложенный Бассардом, вызывает немало вопросов. Дело в том, что эта простейшая реакция трудноосуществима в прямоточном реакторе, поскольку она слишком медленно идет и, в принципе, возможна только внутри звезд.

Однако прогресс в изучении термоядерного синтеза позволяет надеяться, что проблема может быть решена, например, использованием «экзотических» изотопов и антиматерии в качестве катализатора реакции.

Пока изыскания на тему двигателя Бассарда лежат исключительно в теоретической плоскости. Необходимы расчеты, базирующиеся на реальных технологиях. Прежде всего, нужно разработать двигатель, способный произвести энергию, достаточную для питания магнитной ловушки и поддержания термоядерной реакции, производства антиматерии и преодоления сопротивления межзвездной среды, которая будет тормозить огромный электромагнитный «парус».

Антиматерия в помощь

Возможно, это звучит странно, но сегодня человечество ближе к созданию двигателя, работающего на антиматерии, чем к интуитивно понятному и простому на первый взгляд прямоточному двигателю Бассарда.

Зонд разработки Hbar Technologies будет иметь тонкий парус из углеродного волокна, покрытого ураном 238. Врезаясь в парус, антиводород будет аннигилировать и создавать реактивную тягу.

В результате аннигиляции водорода и антиводорода образуется мощный поток фотонов, скорость истечения которого достигает максимума для ракетного двигателя, т.е. скорости света. Это идеальный показатель, который позволяет добиться очень высоких околосветовых скоростей полета космического корабля с фотонным двигателем. К сожалению, применить антиматерию в качестве ракетного топлива очень непросто, поскольку во время аннигиляции происходят вспышки мощнейшего гамма-излучения, которое убьет космонавтов. Также пока не существует технологий хранения большого количества антивещества, да и сам факт накопления тонн антиматерии, даже в космосе далеко от Земли, является серьезной угрозой, поскольку аннигиляция даже одного килограмма антиматерии эквивалентна ядерному взрыву мощностью 43 мегатонны (взрыв такой силы способен превратить в пустыню треть территории США). Стоимость антивещества является еще одним фактором, осложняющим межзвездный полет на фотонной тяге. Современные технологии производства антивещества позволяют изготовить один грамм антиводорода по цене в десяток триллионов долларов.

Однако большие проекты по исследованию антиматерии приносят свои плоды. В настоящее время созданы специальные хранилища позитронов, «магнитные бутылки», представляющие собой охлажденные жидким гелием емкости со стенками из магнитных полей. В июне этого года ученым ЦЕРНа удалось сохранить атомы антиводорода в течение 2000 секунд. В Университете Калифорнии (США) строится крупнейшее в мире хранилище антивещества, в котором можно будет накапливать более триллиона позитронов. Одной из целей ученых Калифорнийского университета является создание переносных емкостей для антивещества, которые можно использовать в научных целях вдали от больших ускорителей. Этот проект пользуется поддержкой Пентагона, который заинтересован в военном применении антиматерии, так что крупнейший в мире массив магнитных бутылок вряд ли будет ощущать недостаток финансирования.

Современные ускорители смогут произвести один грамм антиводорода за несколько сотен лет. Это очень долго, поэтому единственный выход: разработать новую технологию производства антиматерии или объединить усилия всех стран нашей планеты. Но даже в этом случае при современных технологиях нечего и мечтать о производстве десятков тонн антиматерии для межзвездного пилотируемого полета.

Однако все не так уж печально. Специалисты НАСА разработали несколько проектов космических аппаратов, которые могли бы отправиться в глубокий космос, имея всего один микрограмм антивещества. В НАСА полагают, что совершенствование оборудования позволит производить антипротоны по цене примерно 5 млрд долл. за 1 грамм.

Американская компания Hbar Technologies при поддержке НАСА разрабатывает концепцию беспилотных зондов, приводимых в движение двигателем, работающем на антиводороде. Первой целью этого проекта является создание беспилотного космического аппарата, который смог бы менее чем за 10 лет долететь к поясу Койпера на окраине Солнечной системы. Сегодня долететь в такие удаленные точки за 5-7 лет невозможно, в частности, зонд НАСА New Horizons пролетит сквозь пояс Койпера через 15 лет после запуска.

Зонд, преодолевающий расстояние в 250 а.е. за 10 лет, будет очень маленьким, с полезной нагрузкой всего 10 мг, но ему и антиводорода потребуется немного – 30 мг. Теватрон выработает такое количество за несколько десятилетий, и ученые смогли бы протестировать концепцию нового двигателя в ходе реальной космической миссии.

Предварительные расчеты также показывают, что подобным образом можно отправить небольшой зонд к Альфе Центавра. На одном грамме антиводорода он долетит к далекой звезде за 40 лет.

Может показаться, что все вышеописанное - фантастика и не имеет отношения к ближайшему будущему. К счастью, это не так. Пока внимание общественности приковано к мировым кризисам, провалам поп-звезд и прочим актуальным событиям, остаются в тени эпохальные инициативы. Космическое агентство НАСА запустило грандиозный проект 100 Year Starship, который предполагает поэтапное и многолетнее создание научного и технологического фундамента для межпланетных и межзвездных полетов. Эта программа не имеет аналогов в истории человечества и должна привлечь ученых, инженеров и энтузиастов других профессий со всего мира. С 30 сентября по 2 октября 2011 года в Орландо (штат Флорида) состоится симпозиум, на котором будут обсуждаться различные технологии космических полетов. На основании результатов таких мероприятий специалисты НАСА будут разрабатывать бизнес-план по оказанию помощи определенным отраслям и компаниям, которые разрабатывают пока отсутствующие, но необходимые для будущего межзвездного перелета технологии. Если амбициозная программа НАСА увенчается успехом, уже через 100 лет человечество будет способно построить межзвездный корабль, а по Солнечной системе мы будем перемещаться с такой же легкостью, как сегодня перелетаем с материка на материк.