Направления внешней политики александра 3 кратко. Внешняя политика Александра III — Гипермаркет знаний. Воспитание и начало деятельности

Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуется магнитное поле . Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34). Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле . Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,- южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).

Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,- дальше друг от друга. Силовые линии нигде не пересекаются.

Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.

Магнитная индукция и магнитный поток. Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м 2 или 1 см 2 , расположенную перпендикулярно магнитному полю. Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле

Ф = BS (40)

где S - площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:

B = Ф /S (41)

Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф 2 будет меньше Ф 1 .

В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м 2 .

Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость? а. Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом*с/м).
В среде с большей магнитной проницаемостью электрический ток определенной силы создает магнитное поле с большей индукцией. Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов (см. § 18), имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной, ? о = 4?*10 -7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости? а какого-либо вещества к магнитной проницаемости вакуума? о называют относительной магнитной проницаемостью:

? = ? а /? о (42)

Напряженность магнитного поля. Напряженность И не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением

H = B/? а = B/(?? о) (43)

Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).

Что же такое постоянный магнит? Постоянным магнитом называется тело, способное долгое время сохранять намагничивание. В результате многократных исследований, проведенных многочисленных опытов, мы можем сказать, что только три вещества на Земле могут быть постоянными магнитами (рис. 1).

Рис. 1. Постоянные магниты. ()

Только эти три вещества и их сплавы могут быть постоянными магнитами, только они могут намагничиваться и сохранять такое состояние долгое время.

Постоянные магниты использовались очень давно, и в первую очередь это приборы ориентирования в пространстве - первый компас был изобретен в Китае для того, чтобы ориентироваться в пустыне. На сегодняшний день о магнитных стрелках, о постоянных магнитах уже никто не спорит, их используют повсеместно в телефонах и в радиопередатчиках и просто в различных электротехнических изделиях. Они могут быть разными: есть полосовые магниты (рис. 2)

Рис. 2. Полосовой магнит ()

А есть магниты, которые называются дугообразными или подковообразными (рис. 3)

Рис. 3. Дугообразный магнит ()

Исследование постоянных магнитов связано исключительно с их взаимодействием. Магнитное поле может создаваться электрическим током и постоянным магнитом, поэтому первое, что было проведено, - это исследования с магнитными стрелками. Если поднести магнит к стрелке, то мы увидим взаимодействие - одноименные полюса будут отталкиваться, а разноименные будут притягиваться. Такое взаимодействие наблюдается со всеми магнитами.

Расположим вдоль полосового магнита маленькие магнитные стрелки (Рис. 4), южный полюс будет взаимодействовать с северным, а северный будет притягивать южный. Магнитные стрелки будут располагаться вдоль линии магнитного поля. Принято считать, что магнитные линии направлены вне постоянного магнита от северного полюса к южному, а внутри магнита от южного полюса к северному. Таким образом, магнитные линии замкнуты точно так же, как и у электрического тока, это концентрические окружности, они замыкаются внутри самого магнита. Получается, что вне магнита магнитное поле направлено от севера к югу, а внутри магнита от юга к северу.

Рис. 4. Лини магнитного поля полосового магнита ()

Для того чтобы пронаблюдать форму магнитного поля полосового магнита, форму магнитного поля дугообразного магнита, воспользуемся следующими приборами или деталями. Возьмем прозрачную пластину, железные опилки и проведем эксперимент. Посыплем железными опилками пластину, находящуюся на полосовом магните (рис. 5):

Рис. 5. Форма магнитного поля полосового магнита ()

Мы видим, что линии магнитного поля выходят из северного полюса и входят в южный полюс, по густоте линий можно судить о полюсах магнита, где линии гуще - там находятся полюса магнита (рис. 6).

Рис. 6. Форма магнитного поля дугообразного магнита ()

Аналогичный опыт проведем с дугообразным магнитом. Мы видим, что магнитные линии начинаются на северном и заканчиваются на южном полюсе по всему магниту.

Нам уже известно, что магнитное поле образуется только вокруг магнитов и электрических токов. Как же нам определить магнитное поле Земли? Любая стрелка, любой компас в магнитном поле Земли строго ориентированы. Раз магнитная стрелка строго ориентируется в пространстве, следовательно, на нее действует магнитное поле, и это магнитное поле Земли. Можно сделать вывод о том, что наша Земля - это большой магнит (Рис. 7) и, соответственно, этот магнит создает в пространстве достаточно мощное магнитное поле. Когда мы смотрим на стрелку магнитного компаса, мы знаем, что красная стрелочка показывает на юг, а синяя на север. Как же располагаются магнитные полюсы Земли? В этом случае необходимо помнить о том, что на северном географическом полюсе Земли располагается южный магнитный полюс и на южном географическом полюсе располагается северный магнитный полюс Земли. Если рассмотреть Землю как тело, находящееся в пространстве, то можно говорить о том, что, когда мы идем по компасу на север, мы придем на южный магнитный полюс, а когда идем на юг - мы попадем на северный магнитный полюс. На экваторе стрелочка компаса будет располагаться практически горизонтально относительно поверхности Земли, и чем ближе мы будем находиться к полюсам, тем вертикальнее будет расположение стрелки. Магнитное поле Земли могло изменяться, были времена, когда полюсы менялись относительно друг друга, то есть южный был там, где северный, и наоборот. По предположению ученых, это было предвестником больших катастроф на Земле. Последние несколько десятков тысячелетий этого не наблюдалось.

Рис. 7. Магнитное поле Земли ()

Магнитные и географические полюса не совпадают. Внутри самой Земли тоже существует магнитное поле, и, как в постоянном магните, оно направлено от южного магнитного полюса к северному.

Откуда же берется магнитное поле в постоянных магнитах? Ответ на этот вопрос дал французский ученый Андре-Мари Ампер. Он высказал идею о том, что магнитное поле постоянных магнитов объясняется элементарными, простейшими токами, протекающими внутри постоянных магнитов. Эти простейшие элементарные токи определенным образом усиливают друг друга и создают магнитное поле. Отрицательно заряженная частица - электрон - движется вокруг ядра атома, это движение можно считать направленным, и, соответственно, вокруг такого движущегося заряда создается магнитное поле. Внутри любого тела количество атомов и электронов просто огромно, соответственно, все эти элементарные токи принимают упорядоченное направление, и мы получаем достаточно значительное магнитное поле. То же самое мы можем сказать о Земле, то есть магнитное поле Земли очень напоминает магнитное поле постоянного магнита. А постоянный магнит - это достаточно яркая характеристика любого проявления магнитного поля.

Кроме существования магнитных бурь, существуют еще магнитные аномалии. Они связаны с солнечным магнитным полем. Когда на Солнце происходят достаточно мощные взрывы или выбросы, они происходят не без помощи проявления магнитного поля Солнца. Это эхо достигает Земли и сказывается на ее магнитном поле, в результате мы с вами наблюдаем магнитные бури. Магнитные аномалии связаны с залежами железных руд в Земле, огромные залежи в течение долгого времени намагничиваются магнитным полем Земли, и все тела, находящиеся вокруг, будут испытывать действие магнитного поля со стороны этой аномалии, стрелки компасов будут показывать неправильное направление.

На следующем уроке мы с вами рассмотрим другие явления, связанные с магнитными действиями.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Class-fizika.narod.ru ().
  2. Class-fizika.narod.ru ().
  3. Files.school-collection.edu.ru ().

Домашнее задание

  1. Какой из концов стрелки компаса притягивается к северному полюсу Земли?
  2. В каком месте Земли нельзя верить магнитной стрелке?
  3. О чем говорит густота линий на магните?

До сих пор мы рассматривали магнитное поле, создаваемое проводниками с током. Однако, магнитное поле создается и постоянными магнитами , в которых электрический ток отсутствует, в том смысле, что заряженные частицы не совершают направленного движения по проводнику. Еще до открытия Эрстеда магнитное поле постоянных магнитов пытались объяснить наличием магнитных зарядов , находящихся в теле, подобно тому, как электрические заряды создают электрическое поле. Противоположные полюса магнита считали сосредоточением магнитных зарядов разных знаков. Однако первой трудностью была невозможность разделить эти полюса. После разрезания полосового магнита не получалось отдельно северного и южного полюсов – получалось два магнита, у каждого из которых был и северный, и южный полюс. Поиски магнитных зарядов («монополей») продолжаются до сих пор, и пока безуспешно. Ампер предложил более естественное объяснение. Поскольку виток с током создает поле, похожее на поле полосового магнита, Ампер предположил, что в веществе, а точнее в атомах, присутствуют заряженные частицы, совершающие круговое движение, и создающие таким образом, круговые «атомные» токи.

Эта идея хорошо согласовалась с предложенной впоследствии моделью атома Резерфорда. Понятно также, почему вещество в обычном состоянии практически не проявляет магнитных свойств. Для того, чтобы поля различных «витков» сложились, они должны быть расположены так, как показано на рисунке, чтобы их поля были сориентированы в одном направлении. Но в силу теплового движения, их направления ориентированы хаотически друг по отношению к другу во всех направлениях. А поскольку магнитные поля складываются по векторному закону, то суммарное поле равно нулю. Это справедливо для большинства металлов и других веществ. Упорядочить атомные токи можно лишь в некоторых металлах, называемых ферромагнетиками. Именно в них магнитные свойства проявляются очень заметно. Многие металлы, например медь и алюминий не проявляют заметных магнитных свойств, например, не могут быть намагничены. Наиболее известный пример ферромагнетика – железо. В нем существуют довольно большие по сравнению с размером атома области (10 -6 -10 -4 см) - домены , в которых атомные токи уже строго упорядочены. Сами области хаотически расположены по отношению друг к другу – металл не намагничен. Помещая его в магнитное поле, мы можем перевести домены в упорядоченное состояние – намагнитить металл, причем, убрав внешнее поле, мы сохраним его намагниченность. В процессе намагничивания домены с ориентацией атомных токов вдоль внешнего поля растут, другие – уменьшаются. Мы видели, что виток с током в магнитном поле поворачивается силой Ампера так, чтобы его магнитное поле установилось по внешнему полю. Это положение равновесия витка, которое он и стремится занять. После того, как внешнее поле выключается, ориентация атомных токов сохраняется. Некоторые сорта стали сохраняют намагниченность очень устойчиво – их них можно делать постоянные магниты. Другие сорта легко перемагничиваются, они годятся для производства электромагнитов. Если поместить в соленоид ферромагнитный стержень, то создаваемое в нем поле увеличится в 10-20 тысяч раз.


Таким образом, магнитное поле всегда создается электрическим током , либо протекающим по проводнику, когда заряды перемещаются на расстояния во много раз больше атомных (такие токи называются макроскопическими ), либо микроскопическими (атомными) токами.

Магнитное поле Земли. Одним из первых наблюдений магнитного поля и использования его в прикладных целях было обнаружение магнитного поля Земли. В древнем Китае магнитную стрелку (полосовой магнит) использовали для определения направления на север, что делается и в современных компасах. Очевидно, во внутренней части Земли существуют некие токи, которые и приводят к появлению небольшого (примерно 10 -4 Тл) магнитного поля. Если предположить, что оно связано с вращением Земли, внутри нее есть круговые токи вокруг ее оси, и соответствующее магнитное поле (как поле витка) должно быть сориентировано внутри Земли вдоль оси ее вращения. Линии индукции должны выглядеть, как показано на рисунке.

Видно, что северный магнитный полюс Земли находится вблизи ее южного географического полюса. Линии индукции замыкаются во внешнем пространстве, причем вблизи поверхности земли они ориентированы вдоль географических меридианов. Именно вдоль них в направлении на север устанавливается северный конец магнитной стрелки. С магнитным полем Земли связано еще одно важное явление. Из космоса в атмосферу земли приходит большое количество элементарных частиц, некоторые заряжены. Магнитное поле играет роль барьера для их попадания в нижние слои атмосферы, где они могут представлять опасность. Рассматривая движение заряженной частицы в магнитном поле под действием силы Лоренца, мы видели, что она начинает двигаться по винтовой линии вдоль линии индукции магнитного поля. Это и происходит с заряженными частицами в верхних слоях атмосферы. Двигаясь вдоль линий, они «уходят» к полюсам, и входят в атмосферу вблизи географических полюсов. При их взаимодействии с молекулами происходит свечение (испускание света атомами), которое и создает северные сияния. В неполярных широтах они не наблюдаются.

Тангенсные измерительные приборы. Для измерения величины индукции неизвестного магнитного поля (например, Земли) разумно предложить способ сравнения этого поля с каким-нибудь известным. Например, с полем длинного прямого тока. Тангенсный метод дает такой способ сравнения. Предположим, мы хотим измерить горизонтальную составляющую магнитного поля Земли в некоторой точке. Разместим рядом с ней длинный вертикальный провод, чтобы его середина была близко к этой точке, а длина была много больше расстояния до нее (рисунок, вид сверху).

Если ток в проводе не течет, то магнитная стрелка в точке наблюдения установится вдоль поля Земли (на рисунке – вверх, вдоль В З). Будем увеличивать ток в проводе. Стрелка начинает отклоняться влево. Поскольку появляется поле тока В Т, направленное на рисунке горизонтально. Полное поле направлено по диагонали прямоугольника, как того требует правило сложения векторов В З и В Т. Когда ток достигнет некоторого значения I 0 , угол, образуемый стрелкой станет равен 45 0 . Это значит, что выполнилось равенство В З =В Т. Но поле В Т нам известно . Измерив x и I 0 с помощью амперметра, можно вычислить В Т, а следовательно и В З. Метод называется тангенсным, потому что выполнено условие .

Вопрос 1. В чем проявились новые черты во внешней политике Александра III?

Ответ. Александр III изменил сам стиль управления внешней политикой. Теперь император определял её сам, не полагаясь на министра иностранных дел. Последний стал лишь исполнителем. Главное изменение произошло в европейской политике. Император отказался от существовавшего до этого союза с Германией и Австро-Венгрией, вместо этого заключив союз с Францией, которая в то время была республикой (потому, например, на официальном обеде в Петергофе звучала революционная «Марсельеза»). С германскими государствами Россия обычно дружила начиная с Петра I, из этих земель происходили многие русские императрицы. При этом Франция чаще всего оказывалась в числе противников России, и Крымская война оставалась ещё свежа в памяти. Однако в прежнем союзе у России было явно подчинённо положение, Германия вспоминала об этом, только когда ей было удобно, что наглядно продемонстрировал Берлинский конгресс. С Австро-Венгрией у России были противоречия на Балканах. При этом союз с Францией получился равноправным. Париж таким образом выходил из международной изоляции после Франко-прусской войны, потому был заинтересован в переговорах не меньше Санкт-Петербурга. К тому же в Европе активно формировались военно-политические блоки, дело постепенно шло к общеевропейской войне. В случае войны в союзе с Германией и Австро-Венгрией Россия не имела бы общей границы с вероятным противником, потому не могла бы рассчитывать на новые территории (в результате победы над Наполеоном она их почти не получила), в случае войны против Германии и Австро-Венгрии ситуация получалась противоположной.

Вопрос 2. На каких направлениях внешней политики Александр III придерживался традиционных подходов?

Ответ. В отношения с мусульманскими странами, а также в балканскую политику Александр III не вносил существенных новшеств. При нём Россия завершила присоединение Средней Азии, проводила политику, враждебную для Турции. Возможно, во многом по этому Турция в итоге пошла на союз с Германией, чтобы дружить с Берлином против России. Также Санкт-Петербург по-прежнему усиливал своё влияние на Балканах, особенно в православных землях региона, противостоял здесь влиянию Австро-Венгрии.

Вопрос 3. Современники называли Александра III царем-миротворцем. Справедливо ли это?

Ответ. При Александре III не было войн, за исключением военных операций в Средней Азии, потому у современников были основания его так называть. Но сегодня с ними нельзя согласиться, зная, как дальше развивались события. Соглашение России с Францией положило начало Антанте. Противостояние Антанты и Тройственного союза привело к I мировой войне. Таким образом цепь событий, из-за которых эта страшная война разразилась, началась с франко-русских переговоров Александра III.

Вопрос 4. Какие территориальные приобретения получила Россия во второй половине XIX в.?

Ответ. Россия завершила присоединение Средней Азии, таким образом получила огромные, но малоразвитые территории с суровым климатом.

Вопрос 5. Александру III приписывают слова: «Когда русский царь удит рыбу, Европа может подождать». О чем свидетельствуют эти слова?

Ответ. Данные слова наглядно показывают основной принцип внешней политики Александра III. По его мнению у России не было настоящих друзей, только страны, с которыми временно совпадали интересы. Это распространённый тогда в Европе принцип «реальной политики». Такое впечатление при изучении истории, что он действовал всегда, действует и сейчас, но только тогда государственные мужи открыто объявляли, что его используют и гордились тем, что его используют. А также фраза показывает уверенность «русского царя» в силе своей страны, своих армии и флота. Неотложные дела, это дела друзей, или дела, которые угрожают безопасности. Но Александр III считал, что у него нет ни одних, ни других, потому «Когда русский царь удит рыбу, Европа может подождать».