Определение и способы задания числовой последовательности. Числовая последовательность. Свойства числовых последовательностей

На этом уроке мы начнем изучение прогрессий. Здесь мы познакомимся с числовой последовательностью и способами ее задания.

Вначале напомним определение и свойства функций числовых аргументов и рассмотрим частный случай функции, когда х принадлежит множеству натуральных чисел. Дадим определение числовой последовательности и приведем несколько примеров. Покажем аналитический способ задания последовательности через формулу ее n-го члена и рассмотрим несколько примеров на задание и определение последовательности. Далее рассмотрим словесное и рекуррентное задание последовательности.

Тема: Прогрессии

Урок: Числовая последовательность и способы ее задания

1. Повторение

Числовая последовательность , как мы увидим, это частный случай функции, поэтому вспомним определение функции.

Функцией называется закон, по которому каждому допустимому значению аргумента ставится в соответствие единственное значение функции.

Вот примеры известных функций.

Рис. 1. График функции

Допустимы все значения, кроме 0. Графиком этой функции является гипербола (см. Рис.1).

2.. Допустимы все значения, .

Рис. 2. График функции

График квадратичной функции - парабола, характерные точки тоже отмечены (см. Рис.2).

3..

Рис. 3. График функции

Допустимы все значения х. График линейной функции - прямая (см. Рис.3).

2. Определение числовой последовательности

Если х принимает только натуральные значения (), то имеем частный случай, а именно числовую последовательность.

Напомним, что натуральными являются числа 1, 2, 3, …, n, …

Функцию , где , называют функцией натурального аргумента, или числовой последовательностью, и обозначают следующим образом: или , или .

Поясним, что обозначает, например, запись .

Это значение функции, когда n=1, т. е. .

Это значение функции, когда n=2, т. е. и т. д. …

Это значение функции, когда аргумент равен n, т. е. .

3. Примеры последовательностей

1. - это формула общего члена. Задаем различные значения n, получаем различные значения у - членов последовательности.

Когда n=1; , когда n=2 и т. д., .

Числа являются членами заданной последовательности, а точки лежат на гиперболе - графике функции (см. Рис.4).

Рис. 4. График функции

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Числа являются членами заданной последовательности, а точки лежат на параболе - графике функции (см. Рис.5).

Рис. 5. График функции

Рис. 6. График функции

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Числа являются членами заданной последовательности, а точки лежат на прямой - графике функции (см. Рис.6).

4. Аналитический способ задания последовательности

Существует три способа задания последовательностей: аналитический, словесный и рекуррентный. Рассмотрим каждый из них подробно.

Последовательность задана аналитически, если указана формула ее n-го члена .

Рассмотрим несколько примеров.

1. Найти несколько членов последовательности, которая задана формулой n-го члена: (аналитический способ задания последовательности).

Решение. Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Для заданной последовательности найдем и .

.

.

2. Рассмотрим последовательность, заданную формулой n-го члена: (аналитический способ задания последовательности).

Найдем несколько членов этой последовательности.

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Вообще нетрудно понять, что членами этой последовательности являются те числа, которые при делении на 4 дают в остатке 1.

а. Для заданной последовательности найти .

Решение: . Ответ: .

б. Даны два числа: 821, 1282. Являются ли эти числа членами заданной последовательности?

Для того чтобы число 821 было членом последовательности, необходимо, чтобы выполнялось равенство: или . Последнее равенство является уравнением относительно n. Если решением данного уравнения является натуральное число, то ответ положительный.

В данном случае это так. .

Ответ: да, 821 - член заданной последовательности, .

Переходим ко второму числу. Аналогичные рассуждения приводят нас к решению уравнения: .

Ответ: поскольку n не является натуральным числом, то число 1282 не является членом заданной последовательности.

Формулы, которые аналитически задают последовательность, могут быть самыми разными: простыми, сложными и т. д. Требование к ним одно: каждому значению n должно соответствовать единственное число.

3. Дано: последовательность задана следующей формулой .

Найти три первых члена последовательности.

, , .

Ответ: , , .

4. Являются ли числа членами последовательности ?

а. , т. е. . Решая это уравнение, получаем, что . Это натуральное число.

Ответ: первое заданное число является членом данной последовательности, а именно пятым ее членом.

б. , т. е. . Решая это уравнение, получаем, что . Это натуральное число.

Ответ: второе заданное число тоже является членом данной последовательности, а именно девяносто девятым ее членом.

5. Словесный способ задания последовательности

Мы рассмотрели аналитический способ задания числовой последовательности. Он удобный, распространенный, но не единственный.

Следующий способ - это словесное задание последовательности.

Последовательность, каждый ее член, возможность вычисления каждого ее члена можно задать словами, не обязательно формулами.

Пример 1. Последовательность простых чисел.

Напомним, что простое число - это такое натуральное число, которое имеет ровно два различных делителя: 1 и само это число. Простыми являются числа 2, 3, 5, 7, 11, 13, 17, 19, 23 и т. д.

Их бесчисленное множество. Еще Евклид доказал, что последовательность этих чисел бесконечна, т. е. не существует самого большого простого числа. Последовательность задана, каждый член можно вычислить, утомительно, но можно вычислить. Эта последовательность задана словесно. Формулы, увы, не удается подобрать.

Пример 2. Рассмотрим число =1,41421…

Это иррациональное число, десятичная его запись предусматривает бесконечное число цифр. Рассмотрим последовательность десятичных приближений числа по недостатку: 1; 1,4; 1,41; 1,414; 1,4142; и т. д.

Членов этой последовательности бесконечное множество, каждое из них можно вычислить. Задать эту последовательность формулой нельзя, поэтому описываем ее словесно.

6. Рекуррентный способ задания последовательности

Мы рассмотрели два способа задания числовой последовательности:

1. Аналитический способ, когда задается формула n-го члена.

2. Словесное задание последовательности.

И, наконец, существует рекуррентное задание последовательности, когда задаются правила вычисления n-го члена по предыдущим членам.

Рассмотрим

Пример 1. Последовательность Фибоначчи (13 век).

Историческая справка:

Леона́рдо Пиза́нский (около 1170 года, Пиза — около 1250 года) — первый крупный математик средневековой Европы. Наиболее известен под прозвищем Фибона́ччи (Fibonacci).

Значительную часть усвоенных им знаний он изложил в своей выдающейся «Книге абака» (Liber abaci, 1202 год; до наших дней сохранилась только дополненная рукопись 1228 года). Эта книга содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. «Книга абака» резко возвышается над европейской арифметико-алгебраической литературой XII—XIV вв. разнообразием и силой методов, богатством задач, доказательностью изложения. Последующие математики широко черпали из неё как задачи, так и приёмы их решения. По первой книге многие поколения европейских математиков изучали индийскую позиционную систему счисления.

Задаются первые два члена и каждый последующий член - это сумма двух предыдущих

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; … - первые несколько членов последовательности Фибоначчи.

Это последовательность задана рекуррентно, n-й член зависит от двух предыдущих.

Пример 2.

В этой последовательности каждый последующий член больше предыдущего на 2. Такая последовательность называется арифметической прогрессией.

Числа 1, 3, 5, 7 …- первые несколько членов этой последовательности.

Приведем еще один пример рекуррентного задания последовательности.

Пример 3.

Последовательность задается следующим образом:

Каждый последующий член этой последовательности получается умножением предыдущего члена на одно и то же число q. Такая последовательность имеет специальное название - геометрическая прогрессия. Арифметическая и геометрическая прогрессии будут объектами нашего изучения на следующих уроках.

Найдем несколько членов указанной последовательности при b=2 и q=3.

Числа 2; 6; 18; 54; 162 … - первые несколько членов этой последовательности.

Интересно, что эту последовательность можно задать и аналитическим способом, т. е. можно подобрать формулу. В данном случае формула будет таковой .

Действительно: если n=1, то ; если n=2, то ; если n=3, то и т. д.

Таким образом, мы констатируем: одна и та же последовательность может быть задана и аналитически и рекуррентно.

7. Итог урока

Итак, мы рассмотрели, что такое числовая последовательность и способы её задания.

На следующем уроке мы познакомимся со свойствами числовых последовательностей.

1. Макарычев Ю. Н. и др. Алгебра 9 класс (учебник для средней школы).-М.: Просвещение, 1992.

2. Макарычев Ю. Н., Миндюк Н. Г., Нешков, К. И. Алгебра для 9 класса с углубл. изуч. математики.-М.: Мнемозина, 2003.

3. Макарычев Ю. Н., Миндюк Н. Г Дополнительные главы к школьному учебнику алгебры 9 класса.-М.: Просвещение, 2002.

4. Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов (учебное пособие для учащихся школ и классов с углубл. изуч. математики).-М.: Просвещение, 1996.

5. Мордкович А. Г. Алгебра 9 класс, учебник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

6. Мордкович А. Г. , Мишутина Т. Н., Тульчинская Е. Е. Алгебра 9 класс, задачник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

7. Глейзер Г. И. История математики в школе. 7-8 классы (пособие для учителей).-М.: Просвещение, 1983.

1. Раздел College. ru по математике.

2. Портал Естественных Наук.

3. Exponenta. ru Образовательный математический сайт.

1. № 331, 335, 338 (Макарычев Ю. Н. и др. Алгебра 9 класс).

2. № 12.4 (Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов).

Обучающая цель : дать понятие и определение числовой последовательности, рассмотреть способы задания числовых последовательностей, решать упражнения.

Развивающая цель : развивать логическое мышление, познавательные навыки, техники вычисления, навыки сравнения при выборе формул, навыки учебного труда

Воспитательная цель : воспитание положительных мотивов к учебе, добросовестного отношения к труду, дисциплинированности.

Тип урока : урок закрепления метериала.

Оборудование : интерактивная доска, тестирующее установка ACTIVwote,ACTIVwand,ACTIVslate, раздаточный материал.

План урока

  1. Организация урока.
  2. Повторение теоретического материала. Фронтальный опрос. Историческая справка.
  3. Закрепление: Решение упражнений по теме «Способы задания числовых последовательностей».
  4. Проверка знаний. Тест
  5. Домашнее задание.

Ход урока

I . Организационный момент.

II . Повторение теоретического материала.

1) Фронтальныйопрос.

1. Что называется числовой последовательностью?

Ответ : Множество чисел, элементы которого можно пронумеровать.

2. Приведи пример числовой последовательности.

Ответ :

2,4,6,8,10,…..
1,3,5,7,9,11,…..
3,6,9,12,15,….

3. Что называется членами числовой последовательности?

Ответ : Числа, составляющие числовую последовательность.

а 1 =2,а 2 =4,а 3 =6,а 4 =8,….
а 1 =1,а 2 =3,а 3 =5,а 4 =7,….
а 1 =3,а 2 =6,а 3 =9,а 4 =12,….

4. Что такое общий член числовой последовательности?

Ответ : ап называется общим членом последовательности,а саму последовательность коротко обозначают через {ап}.

5. Как обозначают числовую последовательность?

Ответ : Обычно числовую последовательность обозначают малыми буквами латинского алфавита с индексами, указывающими на номер этого члена в последовательности: а 1 ,а 2 ,а 3 ,а 4 ,….,а п,…

5. Когда числовую последовательность считаются заданной?

Ответ : Если мы можем указать любой член последовательности.

2) Историческая справка.

По словам математика Лейбница «кто хочет ограничиться настоящим без знания прошлого, тот никогда его не поймет».

ФИБОНАЧЧИ (Леонардо из Пизы)

Fibonacci (Leonardo of Pisa), ок . 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи , а сами числа - числа Фибоначчи . Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение . В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха.Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности.

Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Числа Фибоначчи 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Последовательность чисел, каждый член которой равен сумме двух предыдущих, имеет множество любопытных свойств.

III. Закрепление.

Работа по учебнику (цепочкой)

№343 Напишите первые пять членов последовательности.

1. а n =2 n +1/2 n

2. х n =3n2+2 n+1

3.

1. Решение:

а n =2 n +1/2 n

Ответ :

2. Решение:

n=1, x 1 =3*1 2 +2*1+1=3+2+1=6

n=2, x 2 =3*2 2 +2*2+1=3*4+4+1=12+5=17

n=3, x 3 =3*3 2 +2*3+1=27+6+1=34

n=4, x 4 =3*4 2 +2-4+1=3*16+8+1=48+9=57

n=5, x 5 =3*5 2 +2*5+1=3*25+10+1=75+11=86

Ответ : 6,17,34,57,86…….

3. Решение:

Ответ :

№344. Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ : 0,3,6,9,12,15,.... 3n, а n =3n

№345. Напишите формулу общего члена последовательности натуральных чисел, кратных 7.

Ответ : 0,7,14,25,28,35,42.... 7n, а n =7n

№346 Напишите формулу общего члена последовательности натуральных чисел,которые при делении на 4 дают в остатке 1.

Ответ :5,9,13,17,21....... 4 n +1 , а n =4n+1

№347 Напишите формулу общего члена последовательности натуральных чисел,которые при делении на 5 дают в остатке 2.

Ответ : а n =5n+2, 7.12,17,22, 27,.... 5 n +2

№348 Напишите формулу общего члена последовательности.






2. Определить арифметическое действие, с помощью которого из двух крайних чисел получено среднее, и вместо знака * вставить пропущенное число: ,3104,62,51043,60,94 1,7*4,43,1*37,2*0,8


3. Учащиеся решали задание, в котором требуется найти пропущенные числа. У них получились разные ответы. Найдите правила, по которым ребята заполнили клетки. Задание Ответ 1Ответ




Определение числовой последовательности Говорят, что задана числовая последовательность, если всякому натуральному числу (номеру места) по какому-либо закону однозначно поставлено в соответствие определенное число (член последовательности). В общем виде указанное соответствие можно изобразить так: y 1, y 2, y 3, y 4, y 5, …, y n, … … n … Число n есть n-ый член последовательности. Всю последовательность обычно обозначают (y n).








Аналитический способ задания числовых последовательностей Последовательность задана аналитически, если указана формула n-ого члена. Например, 1) y n= n 2 – аналитическое задание последовательности 1, 4, 9, 16, … 2) y n= С – постоянная (стационарная) последовательность 2) y n= 2 n – аналитическое задание последовательности 2, 4, 8, 16, … Решить 585


Рекуррентный способ задания числовых последовательностей Рекуррентный способ задания последовательности состоит в том, что указывают правило, позволяющее вычислить n-ый член, если известны ее предыдущие члены 1) арифметическая прогрессия задается рекуррентными соотношениями a 1 =a, a n+1 =a n + d 2) геометрическая прогрессия – b 1 =b, b n+1 =b n * q


Закрепление 591, 592 (a, б) 594, – 614 (a)




Ограниченность сверху Последовательность (y n) называют ограниченной сверху, если все ее члены не больше некоторого числа. Другими словами, последовательность (y n) ограничена сверху, если существует такое число M что для любого n выполняется неравенство y n M. M – верхняя граница последовательности Например, -1, -4, -9, -16, …, -n 2, …


Ограниченность снизу Последовательность (y n) называют ограниченной снизу, если все ее члены не меньше некоторого числа. Другими словами, последовательность (y n) ограничена сверху, если существует такое число m что для любого n выполняется неравенство y n m. m – нижняя граница последовательности Например, 1, 4, 9, 16, …, n 2, …


Ограниченность последовательности Последовательность (y n) называют ограниченной, если можно указать такие два числа A и B, между которыми лежат все члены последовательности. Выполняется неравенство Ay n B A – нижняя граница, B – верхняя граница Например, 1 – верхняя граница, 0 – нижняя граница



Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например, y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> y 2 > y 3 > y 4 > y 5 > … > y n > … Например," title="Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> title="Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> 23


Проверочная работа Вариант 1Вариант 2 1. Числовая последовательность задана формулой а) Вычислите первые четыре члена данной последовательности б) Является ли членом последовательности число? б) Является ли членом последовательности число 12,25? 2. Составьте формулу -ого члена последовательности 2, 5, 10, 17, 26,…1, 2, 4, 8, 16,…

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

1. Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 < y 2 < y 3 < … < y n < y n +1 < ….

2. Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

3. Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Например: y 1 = 1; y n = n 2…– возрастающая последовательность. y 1 = 1; – убывающая последовательность. y 1 = 1; – эта последовательность не является не возрастающей не убывающей.

4. Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

5. Последовательность называется ограниченной снизу, если все ее члены не меньше некоторого числа.

6. Последовательность называется ограниченной сверху, если все ее члены не больше некоторого числа.

7. Последовательность называется ограниченной, если она ограничена и сверху, и снизу, т.е. есть такое положительное число, что все члены данной последовательности по модулю не превосходят это число. (Но ее ограниченность с двух сторон не обязательно означает, что она конечная).

8. Последовательность может иметь только один предел.

9. Любая неубывающая и ограниченная сверху последовательность имеет предел (lim).

10. Любая невозрастающая и ограниченная снизу последовательность имеет предел.

Предел последовательности – такая точка (число), в окрестностях которой расположено большинство членов последовательности, они плотно подходят к этому пределу, но не достигают его.

Геометрическая и арифметическая прогрессии являются частными случаями последовательности.

Способы задания последовательности:

Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n-го члена:

Пример. yn = 2n – 1 – последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y1 = 3; yn = yn–1 + 4, если n = 2, 3, 4,….

Здесь y1 = 3; y2 = 3 + 4 = 7; y3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

История Фибоначчи:

Fibonacci (Leonardo of Pisa), ок. 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи, а сами числа - числа Фибоначчи. Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение. В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Задача№1:

Напишите первые пять членов последовательности.

1. а n =2 n +1/2 n

а n =2 n +1/2 n

Задача№2:

Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ: 0,3,6,9,12,15,.... 3n, а n =3n

Задача№3:

Напишите формулу общего члена последовательности натуральных чисел, которые при делении на 4 дают в остатке 1.

Ответ:5,9,13,17,21....... 4 n +1 , а n =4n+1

№19. Функция.

Функция (отображение, оператор, преобразование) - математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция - это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Функция – это зависимость одной переменной величины от другой. Другими словами, взаимосвязь между величинами.

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной х однозначно определяет значение выражения , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека - его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Часто под термином «функция» понимается числовая функция; то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представляются на рисунках в виде графиков.

Можно дать и другое определение. Функция – это определенное действие над переменной.

Это означает, что мы берем величину , делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину .

Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция каждому действительному числу ставит в соответствие число в два раза большее, чем .

Множество элементов некоторой Ф., подставляемых вместо х, называют областью ее определения, а множество элементов у некоторой Ф. называют областью ее значений.

История термина:

Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному. Первоначально, понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем - у Лакруа (1806 год) - уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год). К концу XIX века понятие функции переросло рамки числовых систем. Первыми это сделали векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение.

№20. Способы задания функции.

Различают 4 способа задания функции:

1. табличный Довольно распространенный, заключается в задании таблицы отдельных

значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Удобен, когда f --конечное множество, когда же f бесконечное, указывается лишь избранные пары (х,у).

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Достоинства : точность, быстрота, по таблице значений легко найти нужное значение функции. Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений.

Недостатки : неполнота, отсутствие наглядности. В некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

2. аналитический (формулы). Чаще всего закон, устанавливающий связь между

аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим. Является наиболее важным для МА (мат.анализа), поскольку методы МА (дифференциального, интегрального счисления) предполагают этот способ задания. Одна и та же функция может быть задана различными формулами: y =∣sin(x )∣y =√1−cos2(x ) Иногда в различных частях своих областей определяемая функция может быть задана различными формулами f (x )={f 1(x ),x D 1 fn (x ),x Dn nk =1Dk =D (f ) . Часто при этом способе задания функции область определения не указывается, тогда под областью определения понимается естественная область определения, т.е. множество всех значений x при которых функция принимает действительное значение.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Частным случаем аналитического способа задания функции является задание функции уравнением вида F(x,y)=0 (1) Если это уравнение обладает свойством, что ∀x ∈Дсопоставляется единственное y , такое, что F (x ,y )=0, то говорят, что уравнение (1) на Д неявно задает функцию. Еще один частный случай задания функции -- параметрический, при этом каждая пара (x ,y )∈f задается с помощью пары функций x =ϕ(t ),y =ψ(t ) где t M .

Бесконечной числовой последовательностью называется числовая функция, определенная на множестве всех натуральных чисел. Общий вид: а 1 ; а 2 ; а 3 ; … а n ; … (или (а n)).

Способы задания последовательностей:

1. Последовательность может быть задана при помощи формулы, указывающей, как по номеру n члена последовательности вычислить его значение а.

Последовательность, у которой все члены принимают равные между собой значения, называется постоянной последовательностью.

2. Реккурентный (индуктивный) способ: он состоит в том, что указывается правило (обычно это формула), позволяющая вычислить общий член последовательности через предыдущие, и задается несколько начальных членов последовательности. Эта формула называется реккурентным соотношением.

3. Последовательность может быть задана словесно, т.е. описанием ее членов.

При изучении последовательностей удобно использовать их геометрическое изображение. Для этого используют в основном 2 способа:

1. Т.к. последовательность (а n) есть функция, заданная на N, то ее можно изобразить как график этой функции с координатами точек (n; а n).

2. Члены последовательности (а n) можно изобразить точками х=а n .

Ограниченные и неограниченные последовательности.

Последовательность (а n) называется ограниченной, если существуют числа M и m, такие, что имеет место неравенство m≤a n ≤M. В противном случае она называется неограниченной.

Существует 3 вида неограниченных последовательностей:

1. Для нее существует m и не существует M – в таком случае она ограниченная снизу и неограниченная сверху.

2. Для нее не существует m и существует M – в таком случае она неограниченная снизу и ограниченная сверху.

3. Для нее не существует ни m, ни М – в таком случае она не ограниченная ни снизу, ни сверху.

Монотонные последовательности.

К монотонным последовательностям относятся убывающие, строго убывающие, возрастающие, строго возрастающие последовательности.

Последовательность (а n) называется убывающей, если каждый предыдущий член не меньше последующего: а n +1 ≤a n .



Последовательность (а n) называется строго убывающей, если каждый предыдущий член строго больше последующего: а n >a 2 >a 3 >…>a n +1 >…

Последовательность (а n) называется возрастающей, если каждый последующий член не меньше предыдущего: а n ≤a n +1 .

Последовательность называется строго возрастающей, если каждый последующий член строго больше предыдущего: а 1

Предел числовой последовательности. Основные теоремы о пределах.

Число а называется пределом последовательности (а n), если для каждого положительного числа ε найдется такое натуральное число N, что для любого n>N выполняется неравенство:

|a n – a| < ε.

В этом случае пишут: lim a n = a , или a n ->a при n->∞.

Последовательность, имеющая предел, называется сходящейся, а не имеющая предела – расходящейся.

Если последовательность имеет предел, то она ограниченная.

Всякая сходящаяся последовательность имеет только один предел.

Последовательность называется бесконечно малой, если ее предел равен нулю.

Для того, чтобы число а было пределом последовательности (а n), необходимо и достаточно, чтобы а n имело представление а n =а+α n , где (α n) - бесконечно малая последовательность.

Сумма двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая последовательность.

Теоремы о пределах:

1. О пределе суммы: Если последовательность (а n) и (в n) сходятся, то последовательность (а n + в n) также сходится и: lim (а n + в n) = lim а n + lim в n .

n ->∞ n ->∞ n ->∞

2. О пределе произведения: Если последовательности (а n) и (в n) сходятся, то последовательность (а n ∙ в n) также сходится и:

lim (а n ∙ в n) = lim а n ∙ lim в n .

n ->∞ n ->∞ n ->∞

Следствие 1: Постоянный множитель можно выносить за знак предела:

lim (са n) = с ∙ lim а n

n ->∞ n ->∞

3. Если последовательности (а n) и (в n) сходятся, то последовательность (а n /в n) также сходится и: lim (а n / в n) = (lim а n)/ (lim в n).

n ->∞ n ->∞ n ->∞

Функция. Способы задания функции.

Если каждому элементу х по какому-либо правилу f поставлен в соответствие элемент у, единственный для каждого х, то говорят, что на множестве А задана функция f со значением из множества В, и пишут: f:А->В, или у=f (х).

Пусть задана функция у=f (х). Тогда х назыв. аргументом или независимой переменной, а у – значением функции или зависимой переменной.

Множество А называют областью определения функции, а множество всех у, поставленных в соответствие хотя бы одному х – множеством значений функции. Область определения функции называют также областью значений аргумента, или областью изменения независимой переменной..

Способы задания функции:

1. Табличный способ.

2. Аналитический способ: при таком способе указывается область определения функции (множество А), и формулируется закон (задается формула), по которому каждому х сопоставляется соответствующий у.

3. Способ словесного описания.

4. Геометрический (графический) способ: задать функцию графически – значит изобразить ее график.