Примеры решения задач по стереометрии. Защита персональной информации. Взаимное расположение прямых и плоскостей в стереометрии

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Лекция по теме «Предмет стереометрии»

Предмет стереометрии

Геометрия – это наука, которая изучает свойства геометрических фигур.

Школьный курс геометрии подразделяется на два раздела: планиметрию и стереометрию.

Планиметрия – раздел геометрии, который изучает свойства геометрических фигур на плоскости.

Планиметрию мы изучали в 7-9 классах.

В этом году мы начинаем изучать второй раздел геометрии - стереометрию

Стереометрия – это раздел геометрии, в котором изучаются свойства геометрических фигур в пространстве.

Слово "стереометрия" происходит от греческих слов "стереос" объемный, пространственный и "метрио" измерять.

В стереометрии рассматриваются математические модели тех материальных объектов, с которыми имеют дело архитекторы, конструкторы, строители и другие специалисты.

Кроме того, школьный курс стереометрии служит основой для черчения и начертательной геометрии – важнейших дисциплин любого технического вуза.

Основные фигуры стереометрии

Итак, стереометрия изучает свойства геометрических фигур в пространстве.

Геометрических фигур в пространстве.

называют телами.

В стереометрии мы будем изучать свойства геометрических тел, вычислять их площади и объемы.

При изучении пространственных фигур используются их изображение на чертеже.

Изображением пространственной фигуры служит ее проекция на ту или иную плоскость. Одна и та же фигура допускает различные изображения.

Обычно выбирают то из них, которое наиболее удобно для исследования ее свойств.

На экране вы видите многогранники – куб, параллелепипед и пирамида, тела вращения – шар, конус и цилиндр.

При изображении пространственных фигур невидимые части этих фигур изображены штриховыми линиями.

С чего начинается стереометрия?

Также как планиметрия.

Планиметрию мы начинали изучать с основных понятий, фигур и аксиом.

Основные понятия стереометрии

Во-первых, это точка и прямая, как в планиметрии. И еще добавляется плоскость.

Итак, основными понятиями стереометрии являются: тоска, прямая, плоскость. Они принимаются без определений.

Новым для нас понятием является плоскость.

Плоскость, как и прямая в планиметрии, бесконечна. Она простирается во все стороны на неограниченное расстояние.

Геометрическими моделями части плоскости являются, например, поверхность стола, доски и т. д.

Изображают плоскости в виде параллелограмма, либо в виде произвольной области.

Обозначение, которые мы будем применять.

Точки. Как и ранее, точки будем обозначать прописными латинскими буквами A , B , C ….

На экране изображены 4 точки. Они обозначены буквами A , B , C и D

Прямые. Прямые обозначают строчными латинскими буквами a , b , c …, или двумя прописными латинскими буквами AB , CD , …

Во втором случае используются обозначения

двух точек, через которые прямая проходит.

На экране вы видите прямую a . На ней лежат точки M и N .

Прямая a может быть также обозначена как MN .

Плоскости. Плоскости обычно обозначают строчными греческими буквами (альфа, бета, гамма, дельта, …)

Плоскости также можно называть по трем точкам, через которые плоскости проходят.

Например, на экране плоскость синего цвета обозначена как α, она же может называться ABC .

Плоскость бежевого цвета обозначена β, она же может быть обозначена как KLN или KLM . Берутся любые три точки, через которые плоскость проходит.

Так же, как и в планиметрии, в стереометрии мы будем применять для точек знак: (принадлежит плоскости), а для прямых знак: (лежит в плоскости).

Перечеркнутые знаки означают отрицание – не принадлежит плоскости, не лежит в плоскости.

На рисунке вы видите, что две точки A и B принадлежат плоскости α (плоскость проходит через эти точки), а точки M, N, K не принадлежат этой плоскости (плоскость не проходит через эти точки).

Коротко это записывается так:

Точка А принадлежит плоскости α, точка B принадлежит плоскости α.

Точка M N не принадлежит плоскости α, точка K не принадлежит плоскости α.

На этом уроке мы познакомились с новым разделом геометрии – стереометрией.

Узнали, что основными понятиями стереометрии являются точка, прямая, плоскость. Вспомнили, как изображаются точки и прямые. Узнали как изображается и обозначается плоскость.

Переходим к решению задач.

Задача 1.

Дано:

Точки A , B , C и D не лежащие в одной плоскости.

Указать плоскости, которым принадлежит:

а) прямая AB ;

б) точка F ;

в) точка C .

Решение.

а) Прямая AB лежит в двух плоскостях: ABC и ABD ;

б) Точка F принадлежит плоскостям: ABC и BCD ;

в) Точка C принадлежит трем плоскостям: ABC , BCD , ACD .

Введение

§1. Роль и место геометрических построений в школьном курсе

§2. Методика решения задач по стереометрии

§3. Основы теории геометрических построений

3.1 Общие аксиомы конструктивной геометрии

3.2 Задача на построение

§4. Методика решения задач на построение в стереометрии

4.1 Анализ

4.2 Построение

4.3 Доказательство

4.4 Исследование

Заключение

Литература

Введение

Вся история геометрии и некоторых других разделов математики тесно связана с развитием теории геометрических построений. Важнейшие аксиомы геометрии, сформулированные основоположником научной геометрической системы Евклидом около 300 г. до н.э., ясно показывают какую роль сыграли геометрические построения в формировании геометрии. «От всякой точки до всякой точки можно провести прямую линию», «Ограниченную прямую можно непрерывно продолжать», «Из всякого центра и всяким раствором может быть описан круг» - эти постулаты Евклида явно указывают на основное положение конструктивных методов в геометрии древних.

Древнегреческие математики считали «истинно геометрическими» лишь построения, производимые лишь циркулем и линейкой, не признавая «законным» использование других средств для решения конструктивных задач. При этом, в соответствии с постулатами Евклида, они рассматривали линейку как неограниченную и одностороннюю, а циркулю приписывалось свойство чертить окружности любых размеров. Задачи на построение циркулем и линейкой и сегодня считаются весьма интересными, и вот уже более ста лет это традиционный материал школьного курса геометрии.

Одной из самых ценных сторон таких задач является то, что они развивают поисковые навыки решения практических проблем, приобщают к посильным самостоятельным исследованиям, способствуют выработке конкретных геометрических представлений, а также более тщательной обработке умений и навыков. А это в свою очередь усиливает прикладную и политехническую направленность обучения геометрии. Задачи на построение не допускают формального к ним подхода, являются качественно новой ситуацией применения изученных теорем и, таким образом, дают возможность осуществлять проблемное повторение. Такие задачи успешно могут быть связаны с новыми идеями школьного курса геометрии (преобразованиями, векторами).

Геометрические построения могут сыграть серьезную роль в математической подготовке школьника. Ни один вид задач не дает столько материала для развития математической инициативы и логических навыков учащегося, как геометрические задачи на построение. Эти задачи обычно не допускают стандартного подхода к ним и формального восприятия их учащимися. Задачи на построение удобны для закрепления теоретических знаний учащихся по любому разделу школьного курса геометрии. Решая геометрические задачи на построение, учащийся приобретает много полезных чертежных навыков.

В этой курсовой работе будет рассмотрена методика решения задач на построения в стереометрии, а так же роль и место геометрических построений в школьном курсе.

§1. Роль и место геометрических построений в школьном курсе

Задачи на построение - это задачи, в которых требуется построить некоторую геометрическую фигуру по заранее заданным данным с помощью ограниченного набора чертежных инструментов (чаще всего - линейки и циркуля).

Роль задач на построение в школьном курсе:

  1. Она способствует развитию воображения школьников, так как еще до решения данной задачи приходится отчетливо представить искомый образ.
  2. Развивает конструктивные способности учащихся и закрепляют соответствующие чертежные навыки.
  3. Анализ и исследование полученного решения, рассмотрение взаимосвязей между данными и искомыми элементами содействует развитию логического мышления школьников, в частности - мыслительных операций: анализа, синтеза, абстрагирования; пробуждают их инициативу.
  4. Способствует прочному закреплению теоретического материала курса.

Тематическое планирование материала, связанного с геометрическими построениями, предполагает следующее его распределение по этапам:

  1. Ознакомительный этап (1-4 кл.). Здесь школьники впервые знакомятся с чертежными инструментами - линейкой, циркулем, треугольником и решают простейшие задачи на построение прямой, отрезка, окружности, угла.
  2. Пропедевтический этап (5-6 кл.). более значительное внимание к геометрическим построениям подготавливает учащихся к решению более сложных задач систематического курса. Используются линейка, циркуль, транспортир, треугольник. Рассматривается построение параллельных и перпендикулярных прямых с помощью угольника и линейки; треугольника с помощью линейки, циркуля и транспортира; окружности, квадрата, прямоугольника.
  3. Систематический курс геометрии (7-11 кл.).

7 класс. Здесь впервые учащиеся встречаются с основным требованием, предъявляемым к геометрическим чертежам - все построения должны выполняться только при помощи циркуля и линейки. Это требование вытекает из двух постулатов Евклида в «Началах»: а) от всякой точки до всякой точки можно провести прямую; б) из всякого центра любым раствором циркуля можно описать круг. При этом возникает необходимость доказательства того, что построенная фигура удовлетворяет требованиям задачи. В 7 классе учащиеся знакомятся с элементарными задачами на построение, построение окружности, вписанной и описанной около треугольника; кроме того, учащиеся усваивают первый общий метод решения задач на построение - метод геометрических мест (метод пересечений).

класс. В теме «Четырехугольники» решаются соответствующие задачи на построение методом геометрических мест; в теме «Движения» - используются все виды движения для решения задач на построение; в теме «Декартовы координаты на плоскости» рассматриваются построения на координатной плоскости (построение прямой, окружности, точек пересечения).

класс. В теме «Подобные фигуры» - задачи на построение с использованием гомотетии и преобразования подобия; в теме «Правильные многоугольники» - задачи на построение вписанных и описанных правильных многоугольников.

(10-11 классы). В стереометрии рассматриваются два вида геометрических построений: а) воображаемые построения, основывающиеся только на аксиомах стереометрии (часто используются при решении конструктивных задач типа «Докажите, что через точку вне плоскости можно провести…»; б) построения на проекционном чертеже, когда указываются кроме точек фигуры их проекции на проекционной плоскости.

Процесс решения задач состоит из четырех этапов, с которыми учащиеся знакомятся еще в 7 классе:

1)анализ;

2)построение (синтез);

3) доказательство;

)исследование.

Не все указанные этапы с самого начала обязательно должны явно присутствовать при решении задач на построение. В простейших конструктивных задачах, где алгоритм построения очевиден, допустимо не проводить анализ задачи в явном виде; если же доказательство непосредственно следует из построения, его можно также опустить (например, при построении в 7-8 классах обычно либо отсутствует, либо ограничивается проверкой выполнимости каждой операции и проведением исследования на нахождение количества решений (если возможно)).

§2. Методика решения задач по стереометрии

I. Можно выделить следующие основные задачи, решаемые при изучении стереометрии:

1)развитие и закрепление содержательных линий, начатых в неполной средней школе; обобщение основных математических методов на случай пространства;

2)изучение основных свойств пространственных фигур;

3)овладение навыками изображения пространственных фигур на плоскости на основе свойств параллельного проектирования;

4)развитие логического мышления, пространственных представлений учащихся при решении задач и доказательстве теорем курса стереометрии.

В изучении стереометрии в школе можно выделить два основных этапа:

) Формирование первоначальных представлений о пространственных фигурах (1-9 классы);

) Систематический курс стереометрии (10-11 классы).

Систематический курс стереометрии, на изучение которого отводится приблизительно по 70 часов в десятом и одиннадцатом классах, предусматривает рассмотрение следующих тем:

1.Аксиомы стереометрии и их простейшие следствия.

2.Параллельность прямых и плоскостей в пространстве.

.Перпендикулярность прямых и плоскостей в пространстве.

.Координаты, векторы, геометрические преобразования в пространстве.

.Многогранники.

.Тема вращения.

.Площадь поверхностей и объем геометрических тел.

.Изображение пространственных фигур на плоскости.

В действующих учебниках ставятся разные содержательные акценты при изучении стереометрии.

Учебник Атанасяна: материал различных по содержанию вопросов часто включается в одну главу (фузионизм). При этом наблюдается частая повторяемость материала, обращение к уже знакомым вопросам. Большое внимание, чем у Погорелова, уделяется векторам, движению к координатам.

Учебник Погорелова: отличается четкой логической структурой, меньше внимания векторам и геометрическим преобразованиям. Это подспудно несет в себе опасность затушевывания естественных связей между темами.

Выделим некоторые методические особенности изучения стереометрии.

1.Курс стереометрии полностью опирается на курс планиметрии.

большинство задач курса сводятся к решению планиметрических задач, соответственно все недочеты, имевшие место при изучении планиметрии, ощущаются и при изучении стереометрии.

Следовательно, для успешного изучения стереометрии учитель должен постоянно возвращаться к планиметрическому материалу; перед изучением той или иной теоремы необходимо повторять нужные планиметрические сведения.

2. В стереометрии принципиально другой подход к геометрическим построениям.

Если при изучении планиметрии учащиеся пользуются чертежами, которые дают явные представления об изучаемом объекте, то в стереометрии нет чертежных инструментов, которые позволяют изобразить пространственные фигуры. Здесь мы имеем дело не с самим объектом, а лишь с его изображением.

Каждая стереометрическая задача является одновременно задачей на построение изображения фигуры с помощью свойств параллельной проекции. Это требует от учащихся значительно больших усилий, чем их требуется при решении планиметрических задач.

3. В курсе стереометрии уделяется большое внимание логической стороне проводимых умозаключений; приходится обосновывать каждый свой вывод, четко устанавливая предпосылки.

Программа по стереометрии предполагает более быстрый темп прохождения материала, чем в планиметрии. При этом времени на решение задач требуется гораздо больше, соответственно более значительное место занимает самостоятельная работа школьников. Необходим тщательный подбор заданий на уроке - включать только самое необходимое.

5. Курс стереометрии строится аксиоматически. При изучении аксиоматики стереометрии необходимо решить две основные методические задачи:

) переформулируются аксиомы планиметрии для пространства (некоторые должны быть с уточнениями).

Здесь фактически под видом договоренности между учителем и учащимся вводится, как бы новая аксиома:

В любой плоскости пространства выполняются все аксиомы планиметрии.

) добавляются новые специфические аксиомы пространства, которые на первых этапах изучения иллюстрируются с помощью моделей, стереометрического ящика, рисунка, геометрии классной комнаты.

II. Формирование пространственных представлений идет в несколько этапов и включает в себя:

умение представить по чертежу целостный образ геометрической фигуры, взаимное расположение ее элементов;

умение мысленно изменить положение фигуры - посмотреть с другой стороны;

умение мысленно расчленить фигуру, составить из нее новый объект;

умение изобразить фигуру на чертеже, адекватно отразив имеющиеся отношения;

умение представить фигуру на основе ее словесного описания и т.д.

На I этапе на наглядной основе формируются предпосылки для создания целостного образа фигуры с выделением ее существенных признаков. На данном этапе учитель должен широко использовать модели, реальные объекты окружающего мира. После этого строится чертеж, который закрепляет рассмотрение соответствующей геометрической конфигурации.

В конце I этапа и на II у школьников формируются образы фигур и их комбинаций, которые они могут представить себе в почти неизмененных условиях.

Схема формирования пространственных представлений на I и II этапе следующая:

Модель чертеж представление

На II этапе роль моделей несколько уменьшается, т. к. в противном случае у школьников будет тормозиться развитие способностей мысленно представлять себе особенности расположения фигуры и ее элементов.

При построении чертежа на данных этапах учителю не следует сразу демонстрировать готовый чертеж, а стараться его выполнять постепенно вместе с учащимися с целью поэтапного восприятия или пространственных образов.

III этап: - овладение умением оперировать образами в измененных условиях. Школьники сначала работают с основным чертежом, который однако часто не дает возможность увидеть особенности расположения фигуры с разных позиций. Поэтому чертеж, как правило, должен подкрепляться рассмотрением соответствующей модели. Демонстрация сопровождается специально подобранными вопросами.

Например: Какие фигуры могут получиться при пересечении тетраэдра плоскости? Покажите на модели и чертеже различные случаи. Ответ обоснуйте.

Схема формирования пространственных представлений на III этапе:

чертеж модель представление.

IV этап: Учащиеся должны конструировать стереометрические объекты самостоятельно на базе сформулированных ранее представлений. При этом не используется ни чертеж, ни заранее подготовленная модель, а можно лишь учителю задавать вопросы для уточнения расположения фигуры.

Схема на IV этапе: представление чертеж.

Воображаемые построения (В.п.) - формально-логический метод построения в пространстве с отказом от реальных построений с помощью чертежных инструментов, осуществляются как бы мысленно; рисунок, их сопровождающий, носит чисто иллюстративный характер.

С математической точки зрения В.п. рассматриваются как задачи на доказательство существования фигур, определенных некоторым известными условиями. Само доказательство заключается в сведении процесса построения фигур (или их комбинаций) к конечному числу основных построений, которые определяются аксиоматически. При этом решение (доказательство) может сопровождаться, а может не сопровождаться рисунком.

Учитель обращает внимание учащихся на ряд сложностей, возникающих при осуществлении построений в пространстве (нельзя построить плоскость, многогранник и т.д.). Поэтому необходимо точно условиться: что значит выполнить то или иное построение.

Исходя из аксиом стереометрии, можно предположить возможность следующих основных построений в пространстве:

) Плоскость может быть построена, если заданы следующие элементы, определяющие ее положение в пространстве:

а) прямая и не лежащая на ней точка,

б) две пересекающиеся прямые,

в) две параллельные прямые,

г) три точки, не лежащие на одной прямой.

) Прямая в пространстве может быть построена как линия пересечения двух плоскостей.

) Все планиметрические построения выполнимы в пространстве только на некоторой заданной плоскости.

) Сфера может быть построена, если задано положение ее центра и радиуса R.

Выполнение всех остальных построений сводится к конечному числу основных.

На проекционном чертеже точки и прямые задаются вместе со своими проекциями на некоторую плоскость, которую называют основной.

Проекционные чертежи позволяют конструктивным средствами строить точки и линии пересечения изображаемых на нем фигур. Они имеют очень важное значение для развития пространственного воображения школьников.

С проекционными чертежами рекомендуется ознакомить школьников в 10 классе при изучении параллельной проекции ее свойств. Здесь учитель подводит школьников к выводу о том, что фигуры на чертеже могут задаваться ее проекцией на проекционной плоскости.

При чем, если точка или фигура совпадает со своей проекцией, то данная точка или фигура лежит на проекционной плоскости.

Проекционный чертеж может быть иллюстрирован моделью параллелепипеда, где проекционная плоскость - это плоскость нижнего основания, направление проектирования определяется боковыми ребрами, а проекция верхнего основания - нижнее основание.

Основным видом стереометрических задач на построение на проекционном чертеже являются задачи на построение сечений многогранников. В школе рассматриваются два метода построения сечений:

1)метод следов; 2) метод внутреннего проектирования

(Иногда используют их комбинацию).

В соответствии с методом следов вначале строится след секущей плоскости на проекционной, а затем последовательно находятся линии пересечения секущей плоскости с гранями многогранника.

Основным минусом этого метода является то, что след секущей плоскости может оказаться удаленным от основной части чертежа, следовательно, приходится уменьшать чертеж, что нежелательно.

Метод внутреннего проектирования основывается на соответствии между точками сечения и точками основания многогранника. Все построения - внутри него, но сложнее объяснить логику построения, да и чертеж загроможден.

§3. Основы теории геометрических построений

1 Общие аксиомы конструктивной геометрии

Фигурой в геометрии называют любую совокупность точек (содержащую по крайней мере одну точку).

Будем предполагать, что в пространстве дана некоторая плоскость, которую назовем основной плоскостью. Ограничимся рассмотрением только таких фигур, которые принадлежат этой плоскости.

Одна фигура называется частью другой фигуры, если каждая точка первой фигуры принадлежит второй фигуре. Так, например, частями прямой будут: всякий, лежащий на ней отрезок, лежащий на этой прямой луч, точка на этой прямой, сама прямая.

Соединением двух или нескольких фигур называется совокупность всех точек, принадлежащих хотя бы одной из этих фигур.

Пересечением или общей частью двух или нескольких фигур, называется совокупность всех точек, которые являются общими для этих фигур.

Разностью двух фигур Ф и Ф называется совокупность всех таких точек фигуры Ф, которые не принадлежат фигуре Ф.

Может оказаться, что пересечение (или разность) двух фигур не содержит ни одной точки. В этом случае говорят, что пересечение (или соответственно разность) данных фигур есть пустое множество точек.

Раздел геометрии, в котором изучаются геометрические построения, называют конструктивной геометрией. Основным понятием конструктивной геометрии является понятие построить геометрическую фигуру.

Если о какой-либо фигуре сказано, что она дана, то при этом естественно подразумевается, что она уже изображена, начерчена, т.е. построена. Таким образом, первое основное требование конструктивной геометрии состоит в следующем:

  1. Каждая данная фигура построена.

Заметим, что не следует смешивать понятия «данная фигура» и «фигура, заданная (или определенная) такими-то данными ее элементами».

  1. Если построены две (или более) фигуры, то построено и соединение этих фигур.

3. Если построены две фигуры, то можно установить, является ли их разность пустым множеством или нет.

Если разность двух построенных фигур не является пустым множеством, то эта разность построена.

Если две фигуры построены, то можно установить, является ли их пересечение пустым множеством или нет.

Если пересечение двух построенных фигур не пусто, то оно построено.

В следующих трех основных требованиях говорится о возможностях построения отдельных точек.

Можно построить любое конечное число общих точек двух построенных фигур, если такие точки существуют.

Можно построить точку, заведомо принадлежащую построенной фигуре.

Можно построить точку, заведомо принадлежащую построенной фигуре.

2 Задача на построение

Задачей на построение называется предложение, указывающее, по каким данным, какими инструментами, какую геометрическую фигуру требуется построить (начертить на плоскости) так, чтобы эта фигура удовлетворяла определённым условиям.

Решить задачу на построение с помощью циркуля и линейки - значит свести её к совокупности пяти элементарных построений, которые заранее считаются выполнимыми. Перечислим их.

Если построены две точки А и В, то построена прямая АВ, их соединяющая, а также отрезок АВ и любой из лучей АВ и ВА (аксиома линейки).

Если построена точка О и отрезок АВ, то построена окружность с центром в точке О и радиусом АВ, а также любая из дуг этой окружности.

Если построены две прямые, то построена точка их пересечения (если она существует).

Если построена прямая и окружность, то построена любая из точек их пересечения (если она существует).

Если построены две окружности, то построена любая из точек их пересечения (если она существует).

Решить задачу на построение - значит найти все её решения.

Последнее определение требует некоторых разъяснений.

Фигуры, удовлетворяющие условию задачи, могут различаться как формой так и размерами, так положением на плоскости. Различия в положении на плоскости принимаются или не принимаются в расчёт в зависимости от формулировки самой задачи на построение, а именно в зависимости от того, предусматривает или не предусматривает условие задачи определённое положение искомой фигуры относительно каких-либо данных фигур. Поясним это примерами.

Рассмотрим следующую простейшую задачу: построить треугольник по трём сторонам и углу между ними. Точный смысл этой задачи состоит в следующем: построить треугольник так, чтобы две стороны его были соответственно равны двум данным отрезкам, а угол между ними был равен данному углу. Здесь искомая фигура (треугольник) связана с данными фигурами (два отрезка и угол) только соотношениями равенства, расположение же искомого треугольника относительно данных фигур безразлично. В этом случае легко построить треугольник, удовлетворяющий условию задачи. Все треугольники, равные этому треугольнику, также удовлетворяют условию поставленной задачи. Однако нет никакого смысла рассматривать эти треугольники как различные решения данной задачи, ибо они отличаются один от другого только положением на плоскости, о чем в условии задачи ничего не сказано. Будем поэтому считать, что задача имеет единственное решение.

Итак, если условие задачи не предусматривает определённого расположения искомой фигуры относительно данных фигур, то условимся искать только все неравные между собой фигуры, удовлетворяющие условию задачи. Можно сказать, что задачи этого рода решаются «с точностью до равенства». Это означает, что задача считается решённой, если:

) Построено некоторое число неравных между собой фигур Ф1, Ф2, … Фn, удовлетворяющие условиям задачи

) доказано, что всякая фигура, удовлетворяющая условиям задачи, равна одной из этих фигур. При этом считается, что задача имеет n различных решений.

Если условие задачи предусматривает определённое расположение искомой фигуры относительно какой-либо данной фигуры, то полное решение состоит в построении всех фигур, удовлетворяющих условию задачи (если такие фигуры существуют) в конечном числе.

§4. Методика решения задач на построение в стереометрии

Суть решения задачи на построение состоит в том, что требуется построить наперед указанными инструментами некоторую фигуру, если дана некоторая фигура и указаны некоторые соотношения между элементами искомой фигуры и элементами данной фигуры.

Каждая фигура, удовлетворяющая условиям задачи, называется решением этой задачи.

Найти решение задачи на построение - значит свести ее к конечному числу основных построений, то есть указать конечную последовательность основных построений, после выполнения которых, искомая фигура будет уже считаться построенной в силу принятых аксиом конструктивной геометрии.

Одной из основных проблем методики обучения решению задач на построение является методика введения и изучения этапов решения конструктивных задач. Еще в IV в. до н. э. древнегреческие геометры разработали общую схему решения задач на построение, которой мы пользуемся и теперь. Процесс решения задачи разбивают на 4 этапа: анализ, построение, доказательство и исследование. Рассмотрим каждый этап более подробно на задаче.

Даны точки A (A), B (B), C (C) и D (D). Построить плоскость, проходящую через точку D (D), параллельно плоскости ABC.

4.1 Анализ

Анализ - это важный этап решения задачи, который мы понимаем как поиск способа решения задачи на построение. На этом этапе должны быть подмечены такие зависимости между данными фигурами и искомой фигурой, которые позволили бы в дальнейшем построить эту искомую фигуру (если мы знаем, как строить искомую фигуру, то никакой анализ уже не нужен).

Чтобы облегчить себе поиск связей между искомой фигурой и данными фигурами, обычно оказывается выгодным иметь перед глазами вспомогательный чертеж, чертеж-набросок, изображающий данные и искомые фигуры примерно в том расположении, которое предусмотрено условием задачи. Чертеж можно выполнить от руки, на глаз - это проект чертежа, который должен образоваться, когда задача уже решена.

На вспомогательном чертеже следует выделить данные элементы и важнейшие искомые элементы. Практически часто удобнее начинать построение вспомогательного чертежа не с данной фигуры, а с примерного изображения исходной фигуры, пристраивая к ней данные так, чтобы они находились в отношениях, указанны в условии задачи.

Если вспомогательный чертеж не подсказывает способа построения искомой фигуры, то пытаются обнаружить какую-либо часть искомой фигуры или вообще некоторую фигуру, которая может быть построена, и которой затем можно воспользоваться для построения искомой фигуры.

Учитываются следующие моменты:

) если на вспомогательном чертеже не удается непосредственно заметить необходимые для решения связи между данными и искомыми элементами, то целесообразно ввести в чертеж вспомогательные фигуры: соединить уже имеющиеся точки прямыми, отметить точки пересечения имеющихся линий, продолжить некоторые отрезки и т. д. Иногда бывает полезно проводить параллели или перпендикуляры к уже имеющимся прямым;

) если по условию задачи дана сумма или разность отрезков или углов, то эти величины следует ввести в чертеж, то есть следует изобразить их на чертеже-наброске, если их еще нет на нем;

) в процессе проведения анализа бывает полезно вспомнить теоремы и ранее решенные задачи, в которых встречаются зависимости между элементами, о которых говорится в условии рассматриваемой задачи.

В Приложении 3 приведен анализ задачи на построение: Построить треугольник, зная основание, меньший угол при основании и разность двух других сторон.

Из данного примера видно, что при отыскании решения задачи на построение, как и для арифметических задач, применяется аналитико-синтетический метод. Следуя от вопроса задачи, учитываем, какие элементы нам известны, и, наоборот, исходные данные комбинируем так, чтобы построить искомую фигуру.

Название этапа анализ не означает, что для отыскания решения применяется только аналитический метод, подобно тому, как и при доказательстве, которое иногда называют синтезом, не всегда применяется синтетический метод рассуждения. При разборе задачи, при отыскании путей ее решения анализ и синтез находятся в постоянном взаимодействии, дополняют и проверяют друг друга.

Вернемся к нашей задачи и проведем ее анализ.

1.Найдем точку S1, в которой пересекаются лежащие в проектирующей плоскости AAB прямые AB и AB, точку S2, в которой пересекаются прямые AC и AC, и точку S3, в которой пересекаются прямые AD и AD.

2.В плоскости AS1S3 построим прямую проходящую через точку D, параллельно прямой AS1 и в плоскости AS2S3 проходящую через точку D, параллельно прямой AS2.

.Через полученные прямые строим искомую плоскость.

2 Построение

Второй этап решения задач на построение состоит из двух частей:

) перечисление в определенном порядке всех элементарных построений, которые нужно выполнить, согласно анализу, для решения задачи;

) непосредственное выполнение этих построений на чертеже при помощи чертежных инструментов. Действительно, решить задачу с помощью тех или иных инструментов - значит указать конечную совокупность элементарных, допустимых для данных инструментов, построений, выполнение которых в определенной последовательности позволяет дать ответ на вопрос задачи.

Данный этап вводится при решении самой первой задачи на построение, которой обычно является задача о построении отрезка, равного данному, на данном луче с концом в начале этого луча. В беседе, сопровождающей введение этапа, необходимо отметить, в чем состоит решение любой задачи на построение и указать, что осуществление этого этапа как раз и состоит в перечислении конечного числа операций построения искомой фигуры.

Вернемся к нашей задаче и рассмотрим ее построение.

Построение:

1.AB∩AB=S1

2.AC∩AC= S2

3.AD∩AD=S3

4.DS4║AS1

5.DS5║AS2

6.DS4S5

4.3 Доказательство

После того как фигура построена, необходимо установить, удовлетворяет ли она условиям задачи, то есть показать, что фигура, полученная из данных элементов определенным построением, удовлетворяет всем условиям задачи. Значит, доказательство существенно зависит от способа построения. Одну и ту же задачу можно решать различными способами, в зависимости от намеченного при анализе плана построения, а поэтому, и доказательство в каждом случае будет свое. Доказательство представляет собой часть решения задачи, по своему логическому содержанию обратную анализу. Если в анализе устанавливается, что всякая фигура, удовлетворяющая поставленным условиям, может быть найдена таким-то и таким-то путем, то в этой, третьей части решения доказывается обратное положение. Это обратное положение в общем виде может быть сформулировано так: если некоторая фигура получена из данных элементов таким-то построением, то она действительно удовлетворяет поставленным условиям.

При решении простейших задач, когда все условия задачи находят непосредственное отражение в плане построения, нет необходимости доказывать, что фигура, полученная из данных элементов таким построением, является искомой. Например: Построить треугольник по двум сторонам и углу между ними. Здесь доказательство сводится к простой проверке, такие ли взяли стороны, как данные, и будет ли построенный угол равен данному. В подобных задачах доказательство является излишним, ибо правильность решения обеспечивается соответствием построения анализу и данным условия задачи.

Доказательство не просто зависит от анализа и построения, между ними существует взаимосвязь и взаимообусловленность. Построение проводится по плану, составленному при анализе. Таких планов можно указать несколько. Построение и доказательство являются своеобразным критерием правильности и рациональности составленного плана. Если план не осуществим имеющимися инструментами или же построение оказывается нерациональным, мы вынуждены искать новый план решения. Аналогичным образом и доказательство, и исследование влияют на анализ, предопределяя нередко выбор плана решения.

Хотя доказательство при решении задач на построение проводится аналогично доказательству теорем, с использованием аксиом, теорем и свойств геометрических фигур, между ними имеется и некоторое различие. При доказательстве теорем в большинстве случаев без труда выделяют условие и заключение. При решении задач на построение уже труднее найти данные, на основании которых можно доказать, что построенная фигура является искомой. Поэтому при решении конструктивных задач в классе целесообразно иногда специально выделять, что дано, и что требуется доказать. Например, при решении задачи: Построить ромб по двум его диагоналям предлагаем ученику записать, что дано (диагонали взаимно перпендикулярны и, пересекаясь, делятся пополам) и что требуется доказать (стороны равны). В свою очередь при решении задач дома и в контрольных работах можно не требовать оформления доказательства с выделением отдельно условия и заключения. Нет надобности требовать проведения особого доказательства в задачах, где правильность решения очевидна.

Вернемся к нашей задаче и рассмотрим ее доказательство.

Доказательство: прямые DS4 и DS5 проходят через точку D и параллельны плоскости ABC по построению.

4 Исследование

При построении обычно ограничиваются отысканием одного какого-либо решения, причем предполагается, что все шаги построения действительно выполнимы. Для полного решения задачи нужно еще выяснить следующие вопросы: 1) всегда ли (то есть при любом ли выборе данных) можно выполнить построение избранным способом; 2) можно ли и как построить искомую фигуру, если избранный способ нельзя применить; 3) сколько решений имеет задача при каждом возможном выборе данных? Рассмотрение всех этих вопросов и составляет содержание исследования.

Таким образом, исследование имеет целью установить условия разрешимости и определить число решений. Нередко школьники и даже учителя проводят исследование, произвольно выбирая те или иные случаи, причем неясно, почему рассматриваются именно такие, а не какие-либо иные случаи. Остается неясным также, все ли возможные случаи рассмотрены. Практически в большинстве случаев удается достигнуть необходимой полноты исследования, если проводить это исследование по ходу построения, что является наиболее доступным и целесообразным способом. Сущность этого приема состоит в том, чтобы перебрать последовательно все шаги, из которых слагается построение, и относительно каждого шага установить, всегда ли указанное на этом шаге построение выполнимо, а если выполнимо, то однозначно ли.

Рассмотрим исследование нашей задачи.

Исследование: данная задачи имеет решение и при том только одно, т. к. параллельно данной плоскости и не лежащую на ней прямой можно провести только одну плоскость.

Задачи

Задача №1.

Дано: SABCD-пирамида, PSB, KSC, MSA.

Построить: Сечение SABCD плоскостью МКР

Решение: Поскольку точки М, К и Р лежат на боковых ребрах пирамиды, то сразу можно построить две стороны сечения МР

Р К

М В С

О Н

А D

и РК. После этого надо найти точку Н пересечения секущей плоскости с ребром SD.

Теперь в плоскости (ВSD) мы имеем две точки секущей плоскости: О1 и Р. Значит, искомая на ребре SD точка Н будет точкой пересечения ребра SD и прямой РО1.

Точка найдена, последние две стороны сечения МН и НК легко построить. Таким образом, МКРН - искомое сечение.

Задача №2

Дано: Построить сечение призмы ABCDA1B1C1D1 - призма, PAA1, QBB1,RCC1

Найти: сечение ABCDA1B1C1D1 плоскостью проходящей через точки P, Q, R

Решение: Построим след секущей плоскости на плоскость нижнего основания призмы. Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ. Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S1, принадлежащую следу. Аналогично получаем точку S2 пересечением прямых QR и BC. Прямая S1S2 - след секущей плоскости на плоскость нижнего основания призмы. Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D. Аналогично получаем TU и RT. PQRTU - искомое сечение.

Задача №3

Дано: Построить сечение призмы ABCDA1B1C1D1 - призма, MA1B1, NAD, PDC

Найти: Сечение ABCDA1B1C1D1 плоскостью проходящей через точки M, N, P

Решение:Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проодящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда. Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения. Так как точка M также принадлежит плоскости сечения и пересекает прямую АА1 в некоторой точке Х. Точки X и N лежат в одной плоскости грани АА1D1D, соединим их и получим прямую XN. Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A1B1C1D1, параллельную прямой NP. Эта прямая пересечет сторону В1С1 в точке Y. Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение - MYZPNX.

Так же задачи на построение сечений можно решать в программе «Живая Геометрия».

Дано: ABCDA1B1C1D1-параллепипед, P CC1D1D, Q AA1D1D, R BB1. Построить: сечение ABCDA1B1C1D1 плоскостью PQR.

Решение:

Дано:Точки P, Q и R взяты на поверхности параллелепипеда ABCDA1B1C1D1 следующим образом: точка P лежит на грани CC1D1D, точка Q - на ребре B1C1, а точка R - на ребре AA1.

Построить: сечение параллелепипеда плоскостью (PQR).

Решение:

Дано: На рёбрах A1B1 и DD1 параллелепипеда ABCDA1B1C1D1 взяты соответственно точки P и S, а в гранях DD1C1C и AA1D1D соответственно точки Q и R.

Построить: сечение параллелепипеда плоскостью, проходящей через точку S параллельно плоскости PQR.

Решение:

3.Самостоятельное решение задач

Каждый ученик получает карточку с заданием. На этом же листе выполняется построение сечения и описание этого построения. Проверку заданий можно осуществить на уроке в УМК «Математика, 5-11 классы. Практикум»

Задание1-7: построить сечение, проходящее через точки M,K,L.

Задание 8: построить сечение, проходящее через точку P и прямую KL.

Задание 9: построить сечение, проходящее через точку K и прямую PQ.

Задание 1

Задание 2

Задание 3

Задание 4 Задание 5

Задание 6

Задание 7

Задание 8 Задание 9

Решения заданий в УМК «Математика, 5-11 классы. Практикум»

Заключение

Систематическое изучение геометрических построений необходимо в школьном курсе, так как в процессе изучения задач они концентрируют в себе знания из других областей математики, развивают навыки практической графики, формируют поисковые навыки решения практических проблем, приобщают к посильным самостоятельным исследованиям, способствуют выработке конкретных геометрических представлений, а также к более тщательной обработке умений и навыков.

В этой курсовой работе были рассмотрены роль и место построений в школьном курсе, а так же была рассмотрена методика решения задач на построение в стереометрии и основные геометрические построения.

Литература

стереометрия геометрическое посторенние

1.Александров, И.И. Сборник геометрических задач на построение с решениями / И.И.Александров. - М.: Учпедгиз,1954.

2.Аргунов, Б.И. Элементарная геометрия: учеб. пособие для пед. ин-тов / Б.И. Аргунов, М.Б. Балк. - М.: Просвещение, 1966.

3.Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. - Киров: Изд-во ВятГГУ, 2008. - С. 59-69.

4.Мисюркеев, И.В. Геометрические построения. Пособие для учителей / И.В.Мисюркеев. - М: Учпедгиз, 1950.

5.Понарин, Я.П. Элементарная геометрия: В 2 т. - Т.2: Стереометрия, преобразования пространства / Я.П.Понарин - М.: МЦНМО, 2006.

6.Прасолов, В.В. Задачи по стереометрии. Ч.1 / В.В. Прасолов. - М.: Наука, 1991.

7.Саранцев, Г.И. Обучение математическим доказательствам и опровержениям в школе / Г.И. Саранцев. - М.: ВЛАДОС, 2005.

8.Шарыгин, И.Ф. Задачи по геометрии (Стереометрии) / И.Ф. Шарыгин. - М.: Наука, 2009.

При построении аксонометрических проекций пользоваться коэффициентами искажения неудобно. Поэтому обычно строят рекомендованные ГОСТ 2.317-69 (СТ СЭВ 1979-79) стандартные прямоугольные изометрию и диметрию, принимая соответствующие масштабы увеличения в 1,22 раза для изометрии и в 1,06 раза для диметрии. Введение этих масштабов позволяет строить аксонометрические проекции без сокращения размеров, откладываемых по аксонометрическим осям. Для диметрической проекции размеры по оси у 0 сокращают вдвое.

А. Построение аксонометрических проекций геометрических фигур, ограниченных отрезками прямых и отсеками плоскостей.

При параллельном проецировании на плоскость прямые проецируются в прямые (см. § 6, 1а), следовательно, Для построения аксонометрического изображения прямой а достаточно определить аксонометрические проекции двух принадлежащих ей точек, которые однозначно определяют прямую а 0 - аксонометрическую проекцию прямой а.

Построение аксонометрических проекций многогранников, в частном случае многоугольников, сводится к определению аксонометрических проекций их вершин, которые затем соединяют между собой отрезками прямых линий.

На рис. 311,6 показано построение стандартной изометрической проекции шестигранной пирамиды, ортогональные проекции которой заданы на рис. 311, а. Построение выполняем в следующей последовательности: проводим прямые х, у, z, которые принимаем за оси натуральной системы координат; за начало координат принимаем точку О (O", О"). Затем проводим аксонометрические оси х 0 , у 0 , z 0 . Измерив на ортогональном чертеже натуральные координаты вершин основания пирамиды (точки 1, 2, 3, 4, 5, 6) и ее вершины (точка S), строим их аксонометрические проекции (точки 1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 6 0 , S 0). Чтобы получить изометрическую проекцию пирамиды, соединяем полученные точки отрезками прямых линий в той же последовательности, в какой они соединены на ортогональных проекциях.

Б. Построение аксонометрических проекций геометрических фигур, ограниченных кривыми линиями и поверхностями.

В общем случае аксонометрической проекцией кривой линии (или поверхности) будет также кривая линия (поверхность).

Пример построения стандартной изометрии произвольной пространственной кривой l показан на рис. 312. Построение аксонометрических


проекций точек, принадлежащих кривой l, осуществляется в последовательности, указанной ниже.

1. Относим данную линию к некоторой натуральной системе координат Oxyz.

2. Отмечаем на кривой l точки 1, 2, 3, ... и определяем их ортогональные координаты (рис. 312,а).

3. По координатам точек 1, 2, 3, ... строим их вторичные проекции 1 1 0 , 2 1 0 , З 1 0 , ... (рис. 312,6).

4. Через вторичные проекции точек проводим прямые, параллельные аксонометрической оси z 0 , и откладываем на них отрезки, равные значению соответствующих аппликат точек (1, 2, 3, ...); находим точки 1 0 , 2 0 , 3 0 , ...

5. Соединив найденные аксонометрические проекции точек 1 0 , 2 0 , 3 0 , ... плавной линией, получим аксонометрическую проекцию кривой l 0 .

В практике построения аксонометрических проекций машиностроительных деталей часто приходится строить аксонометрические проекции окружностей. В большинстве случаев плоскости окружностей бывают параллельны какой-либо из координатных плоскостей. Рассмотрим возможные варианты построения окружности в изометрической и диметрической проекциях.

Чтобы иметь более наглядное представление о расположении и величине осей эллипсов, в которые проецируются окружности, последние вписаны в грани куба. На рис. 313,а показана проекция куба в изометрии, а на рис. 313,6 - в диметрии. Окружность, вписанная в грань куба, касается его ребер в их середине. Так как касание является инвариантом параллельного проецирования, то в аксонометрических проекциях точки касания эллипсов, в которые преобразуются окружности, будут нахо диться так же в серединах ребер куба. Кроме.этих четырех точек можно указать еще четыре точки, принадлежащие концам большого и малого диаметров эллипса. В прямоугольных изометрических и диметрических проекциях направления больших осей эллипсов перпендикулярны свободным аксонометрическим осям, а малые оси эллипсов совпадают по направлению со свободными аксонометрическими осями.

Для прямоугольной (практической) изометрии величина большого диаметра эллипса равна l,22d окружности, малого диаметра - .0,71d (см. рис. 313,а). В прямоугольной диметрии большой диаметр эллипса равен l,06d, малый диаметр для эллипсов, расположенных в гранях куба, параллельных координатным плоскостям Оху и Oyz, равен 0,35d. Для эллипса, принадлежащего греши куба, параллельной плоскости Oxz, малый диаметр решен 0,95d (см. рис. 313,6).


Чтобы исключить арифметические подсчеты при определении длин отрезков, умноженных на величину масштаба искажения, следует пользоваться пропорциональным масштабом. Для его построения достаточно провести две взаимно перпендикулярные прямые а и b (рис. 314) и на одной из них от точки пересечения К отложить [КО], равный 100 единицам, а на другой - отрезки , [КII], , , , [КVI], соответственно равные 35, 50, 71, 95, 106, 122 единицам измерения. Точки I, II, ...VI соединяем с точкой О. Если теперь от точки О на прямой ОК отложить [ОВ] заданной длины l и из конца В отрезка [ОВ] восставить перпендикуляр к [ОК], то он пересечет прямые (0I), (ОII), (ОIII), (OIV), (OV), (OVI) в точках 1, 2, 3, 4, 5, 6. Полученные отрезки [В1], [В2], [ВЗ], [В4], [В5], [В6] будут равны соответственно 0,35l, 0,5l, 0,71l, 0,95l, 1,06l, 1,22l.

Если плоскость окружности занимает произвольное положение по отношению к координатным плоскостям, то построение аксонометрической проекции окруж;ности осуществляется так же, как это делается при построении аксонометрической проекции кривой (см. с. 215 п. Б, рис. 312). Построение аксонометрических проекций поверхностей, ограничивающих геометрические фигуры, можно осуществить двумя способами:

1. Способ сечений. Этот способ заключается в следующем:

1) поверхность геометрической фигуры, аксонометрическую проекцию которой требуется построить, рассекаем плоскостями γ 1 , γ 2 ,γ 3 ,..., γ n (Рис- 315);

2) определяем линии пересечения заданной фигуры Ф плоскостями γ j (l 1 , l 2 , l 3 , ..., l n);

3) строим аксонометрические проекции линий l 1 , l 2 , l 3 , ..., l n → l 0 1 , l 0 2 , l 0 3 , ..., l 0 n ; для упрощения определения, линий l j и построения их аксонометрических проекций секущие плоскости следует принимать параллельными какой-либо плоскости проекции;

4) кривая d 0 , огибающая линии l 0 1 , l 0 2 , l 0 3 , ..., l 0 n , является очерковой линией - линией видимого контура фигуры Ф 0 .

2.Способ вписывания сферических поверхностей. Целесообразность применения этого способа основывается на том, что в прямо-



угольной аксонометрии поверхность сферы проецируется на картинную плоскость в виде круга. Этот способ следует использовать в тех случаях, когда фигура ограничена поверхностью вращения. Так как в любую поверхность вращения могут быть вписаны сферические поверхности, то аксонометрическую проекцию поверхности вращения можно рассматривать как огибающую этих сфер.

Сущность способа покажем на конкретном примере. Пусть требуется построить аксонометрическую проекцию (прямоугольную изометрию) кольца (рис. 316,а). Построения выполняем в следующей последовательности:

1) строим эллипс с 0 - аксонометрическую проекцию окружности с (ACBD);

2) из произвольных точек эллипса с 0 , О 0 1 ,О 0 2 , О 0 3 , ..., О 0 n , (∀ О 0 j ; О 0 j ∈ с 0) проводим окружности b j радиусом r - аксонометрические проекции вписанных сферических поверхностей β;

3) огибающие d 0 и d 0 2 окружностей b j являются видимым очерком аксонометрической проекции кольца (рис. 316,6)

В курсе стереометрии рассматривают два вида задач на построение: воображаемые (условные) построения и построения на проекционном чертеже.

Пространственные фигуры изображаются плоским рисунком, а значит, такой рисунок во многом условен: линейные и угловые размеры на нем искажаются. Воображаемые построения проводятся мысленно. Рисунок, которым их сопровождают, носит исключительно иллюстративный характер. Отмеченные особенности стереометрических чертежей вызывают затруднения у учащихся. Школьники часто не могут их ни понять, ни начертить. А само решение стереометрических задач проходит обычно в два этапа.

1 этап – конструктивно-графический. Школьники делают чертеж по условию задачи, ищут путь решения, выполняют необходимые дополнительные построения.

2 этап – технический. В его ходе выполняется запись решения задачи.

Именно на 1 этапе реализуется процесс формирования графических умений и навыков учащихся и развитие их пространственных представлений. Однако на практике учитель больше внимания отдает 2-му этапу – оформлению решения. На уроке учитель часто заранее рисует чертеж к задаче и уже по готовому чертежу проводит ее анализ и составление плана решения. Таким образом, экономится время урока, но ученики при этом по большей части просто «срисовывают картинку» с доски, не понимая ее смысла.

Изучение изображения пространственных фигур начинается в 5-6 классах – куб и шар. В курсе стереометрии начинается с изображения тетраэдра и параллелепипеда. Вопрос об изображении геометрических фигур сводится к построению проекций этих фигур. Таким образом, в основе построения изображения геометрических фигур лежит теория проекций. Так как в школе приходится строить плоские изображения, то можно говорить о параллельной и центральной проекциях. Н.Ф.Четверухин в учебном пособии для учителей «Изображение фигур в стереометрии» сформулировал требования, которым должны удовлетворять изображения: 1. Изображение должно представлять собой одну из проекций изображаемой фигуры; 2. Изображение должно быть наглядным, т.е. вызывать пространственное представление оригинала; 3. Изображение должно быть простым для выполнения. Всем этим требованиям наиболее полно отвечает параллельная проекция. Следовательно, за изображение геометрических фигур целесообразно принимать параллельную проекцию данной фигуры или ей подобную.

Методы построения сечений, которые изучаются в школьном курсе!

Анализ учебника л.С. Атанасяна 10-11 кл. «Геометрия»

По учебнику Л.С. Атанасяна построение сечений идет в главе I «Параллельность прямых и плоскостей» в параграфе «Тетраэдр и параллелепипед» рассматриваются «Задачи на построение сечений» как 1 урок. Рассматриваются 3 задачи как примеры построения сечений в тетраэдре и параллелепипеде. В общем даны 11 задач на построение сечений из них 3 задачи на построение сечений в тетраэдре, 8 задач на построение сечений в параллелепипедах и 4 задачи не обязательные на базовом уровне.

В учебнике Л.С. Атанасяна 10-11 класс Геометрия тема «Изображение пространственных фигур» дается в приложении как один вопрос с 4 подпунктами:

    параллельная проекция фигур

    изображение фигуры

    изображение плоских фигур

    изображение пространственных фигур

В 4 подпункте рассматривается фигуры тетраэдра, параллелепипеда, пирамиды. В этом учебнике понятие изображение фигуры вводится с помощью параллельной проекции данной фигуры.

Анализ учебника И.Ф. Шарыгина.

Сечение многогранников в учебнике И.Ф. Шарыгина «Геометрия» 10-11 кл. дается как параграф «Построение на изображении» к главе II «Многогранники». В нем рассматривается вопрос «Метод следов» и вспомогательных плоскостей и рассматривается 2 примера решения задач на сечения многогранников (пирамиды). Потом идет закрепление из 11 задач, из которых 4-трудные, 1- важная задача. Также сечение рассматриваются в 4 главе «Задачи и методы стереометрии» под параграфом 1 «Вспомогательные плоскости, сечения», где рассматриваются при решении задач как вспомогательное сечение. Задачник состоит из 6 задач.