Стохастические дифференциальные уравнения примеры. § Зе. Стохастические дифференциальные уравнения

Специальность: Прикладная математика и информатика и Прикладная математика и информатика

Целью дисциплины «Стохастические дифференциальные уравнения и их применение» является получение знаний в области теории случайных процессов, знакомство студентов с численными методами решения стохастических дифференциальных уравнений, получение представления о генераторах случайных чисел, и изучение возможности распараллеливания программ, используя среду OpenMP.

Курс предполагает, что полученные теоретические знания в области теории случайных процессов и навыки параллельного программирования слушатели могут в дальнейшем использовать при решении прикладных задач нелинейной динамики сосредоточенных и распределенных систем при учете шумов и флуктуаций.

В результате освоения дисциплины обучающийся должен:

Знать:

– базовые алгоритмы вычислительной математики для решения задач стохастической динамики, условия их применимости.

Уметь :

– определять и профессионально реализовывать необходимые для решения прикладных задач стохастической динамики вычислительные алгоритмы, анализировать полученные результаты;

– профессионально разрабатывать и использовать программное обеспечение для решения прикладных задач;

Проводить процедуры корректности работы реализуемых численных методов.

Владеть :

– вычислительными методами нелинейной динамики;

– современными инструментальными вычислительными средствами.

Тема 1. Вычислительные методы для сосредоточенных динамических систем с шумовыми источниками.

Тема 2. Численное исследование неавтономных динамических систем с шумовыми источниками.

Тема 3. Численное исследование распределенных систем с шумовыми источниками.

Выполнение практических заданий на следующие темы

  • «Исследование характеристик генераторов случайных чисел»
  • «Распараллеливание в среде OpenMP»
  • «Численное моделирование вероятностных и временных характеристик джозефсоновского контакта»
  • «Индуцированные шумом эффекты изменения характеристик генерации нелинейных систем (резонансная активация, когерентный и стохастический резонанс, шумо-индуцированное увеличение времени возникновения отклика)»

Литература

а) основная литература:

  1. А.Н. Малахов, Кумулянтный анализ случайных негауссовских процессов и их преобразований, Москва, Советское радио, 1978).
  2. К.В. Гардинер, Стохастические методы в естественных науках, Москва, "Мир", 1986.
  3. В.И. Тихонов, М.А. Миронов, Марковские процессы, Москва, Советское радио, 1977.
  4. Л.А. Понтрягин, А.А. Андронов, А.А. Витт, О статистическом рассмотрении динамических систем, Журнал экспериментальной и теоретической физики. - 1933. - Т. 3, № 3. - С. 165-180.
  5. А.Н. Малахов, Флуктуации в автоколебательных системах, M.: Наука, 1968, с. 660.

б) дополнительная литература:

  1. A.N. Malakhov, A.L. Pankratov, Evolution times of probability distributions and averages - Exact solutions of the Kramers" problem, Adv. Chem. Phys., 121, 357-438 (2002).

в) программное обеспечение и Интернет-ресурсы

http://www.df.unipi.it/~mannella/papers/algorithms/SDE_on_a_computer.pdf

Описание стандарта OpenMP. http://parallel.ru/tech/tech_dev/openmp.html

Стохастическое дифференциальное уравнение (СДУ) - дифференциальное уравнение , в котором один член или более имеют стохастическую природу, то есть представляют собой стохастический процесс (другое название - случайный процесс). Таким образом, решения уравнения также оказываются стохастическими процессами. Наиболее известный и часто используемый пример СДУ - уравнение с членом, описывающим белый шум (который можно рассматривать как пример производной винеровского процесса). Однако, существуют и другие типы случайных флуктуаций, например скачкообразный процесс (более подробно см. ).

История

В литературе традиционно первое использование СДУ связывают с работами по описанию броуновского движения , сделанными независимо Марианом Смолуховским ( г.) и Альбертом Эйнштейном ( г.). Однако, СДУ были использованы чуть ранее ( г.) французским математиком Луи Бушелье в его докторской диссертации «Теория предположений». На основе идей этой работы французский физик Поль Ланжевен начал применять СДУ в работах по физике. Позднее, он и российский физик Руслан Стратонович разработали более строгое математическое обоснование для СДУ.

Терминология

В физике СДУ традиционно записывают в форме уравнения Ланжевена. И часто, не совсем точно, называют самим уравнением Ланжевена , хотя СДУ можно записать многими другими способами. СДУ в форме уравнения Ланжевена состоит из обычного нестохастического дифференциального уравнения и дополнительной части, описывающей белый шум . Вторая распространенная форма - уравнение Фоккера-Планка , которое представляет собой уравнение в частных производных и описывает эволюцию плотности вероятности во времени. Третья форма СДУ чаще используется в математике и финансовой математике, она напоминает уравнения Ланжевена, но записано с использованием стохастических дифференциалов (см. подробности ниже).

Стохастическое исчисление

Пусть , и пусть

Тогда стохастическое дифференциальное уравнение при заданных начальных условиях

для

имеет единственное (в смысле «почти наверное») и -непрерывное решение , такое что - адаптированный процесс к фильтрации , генерируемое и , , и

Применение стохастических уравнений

Физика

В физике СДУ часто записывают в форме уравнения Ланжевена. Например, систему СДУ первого порядка можно записать в виде:

где - набор неизвестных, и - произвольные функции, а - случайные функции от времени, которые часто называют шумовыми членами. Такая форма записи используется, так как существует стандартная техника преобразования уравнения со старшими производными в систему уравнений первого порядка с помощью введения новых неизвестных. Если - константы, то говорят, что система подвержена аддитивному шуму. Также рассматривают системы с мультипликативным шумом, когда . Из этих двух рассмотренных случаев аддитивный шум - проще. Решение системы с аддитивным шумом часто можно найти используя только методы стандартого математического анализа . В частности, можно использовать обычный метод композиции неизвестных функций. Однако, в случае мультипликативного шума уравнение Ланжевена плохо определено в смысле обычного математического анализа и его необходимо интерпретировать в терминах исчисления Ито или исчисления Стратоновича.

В физике основным методом решения СДУ является поиск решения в виде плотности вероятности и преобразованием первоначального уравнения в уравнение Фоккера-Планка . Уравнение Фоккера-Планка - дифференциальное уравнение в частных производных без стохастических членов. Оно определяет временную эволюцию плотности вероятности, также как уравнение Шрёдингера определяет зависимость волновой функции системы от времени в квантовой механике или уравнение диффузии задает временную эволюцию химической концентрации. Также решения можно искать численно, например с помощью метода Монте-Карло . Другие техники нахождения решений используют интеграл по путям, эта техника базируется на аналогии между статистической физикой и квантовой механикой (например, уравнение Фоккера-Планка можно преобразовать в уравнение Шрёдингера с помощью некоторого преобразования переменных), или решением обыкновенных дифференциальных уравнений для моментов плотности вероятности.

Теория вероятностей и финансовая математика

Биология

Химия

Ссылки

  • Стохастический мир - простое введение в стохастические дифференциальные уравнения

Литература

  • Adomian George Stochastic systems. - Orlando, FL: Academic Press Inc., 1983.
  • Adomian George Nonlinear stochastic operator equations. - Orlando, FL: Academic Press Inc., 1986.
  • Adomian George Nonlinear stochastic systems theory and applications to physics. - Dordrecht: Kluwer Academic Publishers Group, 1989.
  • Øksendal Bernt K. Stochastic Differential Equations: An Introduction with Applications. - Berlin: Springer, 2003. - ISBN ISBN 3-540-04758-1
  • Teugels, J. and Sund B. (eds.) Encyclopedia of Actuarial Science. - Chichester: Wiley, 2004. - P. 523–527.
  • C. W. Gardiner Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences. - Springer, 2004. - P. 415.
  • Thomas Mikosch Elementary Stochastic Calculus: with Finance in View. - Singapore: World Scientific Publishing, 1998. - P. 212. - ISBN ISBN 981-02-3543-7
  • Bachelier, L., Théorie de la speculation (in French), PhD Thesis. - NUMDAM: http://www.numdam.org/item?id=ASENS_1900_3_17__21_0 , 1900. - ISBN In English in 1971 book "The Random Character of the Stock Market" Eds. P.H. Cootner

Материал из synset

Эти материалы являются сокращённой электронной версией книги "Стохастический мир". После конвертации из LaTex появились неизбежные артефакты, которые будут постепенно устраняться. Об ошибках или опечатках, найденных в последней версии убедительная просьба сообщать, например, в закладке "обсуждение" вверху на этой странице или почтой mathсайт. Вы этим очень поможете в улучшении книги. Приветствуются также комментарии общего плана: что понравилось, а что нет. Для чтения книги в web-браузере стоит прочитать совет по настройке браузера для более комфортного просмотра формул.

С уважением, Степанов Сергей Сергеевич.

Случайные события

Стохастические уравнения

Средние значения стохастических процессов

Вероятности стохастических процессов

Стохастические интегралы

Системы уравнений

Стохастическая природа

Стохастическое общество

Краткое содержание

Случайные события

Абсолютно детерминированных событий и процессов не бывает. Вселенная разговаривает с нами на языке теории вероятностей. Предполагается, что Читатель хорошо знаком с ней, поэтому напоминаются только факты, необходимые для дальнейшего изучения предмета.

Первый раздел является вводным, он подводит к необходимости использования стохастических дифференциальных уравнений при исследовании различных систем. Затем обсуждается понятие плотности вероятностей, позволяющей вычислять наблюдаемые в среднем величины. Гауссова вероятность лежит в основе шума, воздействующего на детерминированную динамику. Стохастическая связь между случайными величинами и, наоборот, их независимость важны при обнаружении закономерностей между различными объектами и их характеристиками. Ключевым разделом главы является Модель аддитивного блуждания . Именно обобщение этой простой модели приведёт нас в следующей главе к стохастическим дифференциальным уравнениям. Последний раздел Мартингалы и бесплатный сыр содержит ряд формальных определений, которые при желании можно опустить.

Стохастические уравнения

Эта глава является ключевой. В ней вводится основной математический объект нашего интереса -- стохастические дифференциальные уравнения. Мы будем использовать максимально неформальный, интуитивный путь, считая, что получение конкретных практических результатов важнее, чем математически строгое их обоснование.

Стохастические уравнения представляют собой достаточно естественный непрерывный по времени предел дискретных случайных процессов, рассмотренных в предыдущей главе. Даже решая непрерывное уравнение, мы будем постоянно возвращаться к его дискретному аналогу, как для получения общих аналитических результатов, так и для численного моделирования. Исключительно важным результатом главы является лемма Ито, при помощи которой мы научимся находить точные решения уравнений в некоторых простых, но важных для практических приложений задачах. Затем обсуждаются способы вычисления автокорреляционной функции случайного процесса и его спектральные свойства. В заключение мы затронем тему систем уравнений, к которой более последовательно вернёмся в шестой главе.

Средние значения

Дифференциальное уравнение для случайной функции x(t) - это лишь один из возможных языков описания стохастического процесса. В ситуации, когда система эволюционирует со временем, средние значения также изменяются и подчиняются определённым дифференциальным уравнениям. Фактически, их решение является наиболее прямым способом получения практически полезных результатов.

Мы начнём эту главу с вывода динамического уравнения для средних. С его помощью будет получено простое выражение для плотности вероятности в ситуации, когда система имеет стационарный режим. Затем мы подробно проанализируем две стохастические задачи: уравнение Феллера и логистическое уравнение. В заключение будут рассмотрены метод разложения средних величин в степенной ряд по времени и квазидетерминированное приближение.

Вероятности

Ещё одним способом получения информации о поведении стохастического процесса является решение уравнений для условной плотности вероятности которым посвящена эта глава.

На простых примерах будут продемонстрированы методы решения подобных уравнений. Затем мы рассмотрим вопрос о граничных условиях, которые наиболее естественным образом учитываются при помощи уравнения Фоккера-Планка. Будет вычислено среднее время достижения границы и построен простой метод решения уравнения Фоккера-Планка при наличии граничных условий. Решения уравнений x(t) мы часто записываем при помощи гауссовой случайной переменной.

Стохастические интегралы

Как и в обычном анализе, если определено стохастическое дифференцирование, то естественно ввести и стохастическое интегрирование. Соответствующая техника даст нам ещё один инструмент получения соотношений для иногда достаточно общих случайных процессов. Это очень красивый раздел стохастической математики, который к тому же активно используется в учебной и научной литературе.

В дифференциальных уравнениях присутствуют два бесконечно малых изменения -- снос, пропорциональный dt, и волатильность шума. Соответственно, возможно два вида интегралов. В первом разделе мы рассмотрим стохастические интегралы по dt, изучим их основные свойства и найдём представление некоторых интегралов через обычные случайные величины. Во втором разделе рассматривается интеграл Ито по . Далее будут получены условия, при которых решение стохастического дифференциального уравнения единственно, и рассмотрен итерационный метод построения этого решения.

Системы уравнений

Одномерные стохастические уравнения позволяют описывать только сравнительно простые системы. Даже для обычного физического осциллятора необходимо решать систему из двух уравнений первого порядка. Реальность в общем случае -- многомерна. Она даёт нам множество примеров достаточно сложных, но исключительно интересных случайных процессов.

Как и в одномерном случае, мы начнём с дискретных процессов, обобщение которых на непрерывный случай приведёт нас к системе стохастических дифференциальных уравнений. Фактически, эта глава повторяет большинство результатов предыдущих глав. Для тех, кто уверенно владеет тензорной и матричной алгеброй, соответствующие обобщения служат лишь способом повторения уже известного материала. После вывода основных многомерных уравнений будут рассмотрены решения некоторых задач.

Стохастическая природа

В этой главе приведены примеры природных систем, которые естественным образом описываются при помощи стохастических дифференциальных уравнений. Эти системы охватывают широкий спектр приложений от физики до биологии, однако не требуют глубоких познаний в соответствующих областях. Большинство разделов не связаны друг с другом и могут быть прочитаны в любом порядке, независимо друг от друга. Первое стохастическое дифференциальное уравнение в 1908 году записал Поль Ланжевен (Paul Langevin). Именно с него начинается эта глава.

Стохастическое общество

В этой главе собраны некоторые примеры применения стохастических методов к финансовым рынкам и экономике. Волатильный характер цен и экономических индикаторов приводит к тому, что динамика соответствующих систем является существенно стохастической, и член в уравнениях Ито играет ведущую роль.

Сначала мы сделаем небольшой экскурс в финансовые рынки и эмпирические свойства цен финансовых инструментов. Затем рассмотрим теорию диверсификации и бета - коэффициенты. Стохастические методы оказываются очень полезными при изучении сложных финансовых инструментов. Примером такого инструмента является опцион. Мы рассмотрим основные его свойства и двумя различными способами выведем формулу Блэка-Шоулза. После этого будет рассмотрена простая однофакторная модель кривой доходности.