Белки — природные полимеры, состав и строение

Презентация по химии

на тему:

«Белки –

природные

полимеры»


БЕЛКИ - это азотсодержащие высокомолекулярные органические вещества со сложным составом и строением молекул.

Белок можно рассматривать как сложный полимер аминокислот.

Белки входят в состав всех живых организмов, но особо важную роль они играют в животных организмах, которые состоят из тех или иных форм белков (мышцы, покровные ткани, внутренние органы, хрящи, кровь).


Характерной особенностью белков является их многообразие, связанное с

количеством, свойствами и способах соединения входящих в их молекулу

аминокислот.

В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100 000 белков.


Растения синтезируют белки из углекислого газа СО2 и воды Н2О за счет фотосинтеза, усваивая остальные элементы белков (азот N, фосфор Р, серу S, железо Fe, магний Mg) из растворимых солей, находящихся в почве.

Животные организмы в основном получают готовые аминокислоты с пищей и на их

базе строят белки своей организма. Ряд аминокислот (заменимые аминокислоты)

могут синтезироваться непосредственно животными организмами.


Строение белков

Белки представляют собой нерегулярные полимеры, построенные из остатков аминокислот.

Остатки аминокислот в белках соединены амидной связью между амино- и карбоксильными группами. Связь между двумя аминокислотными остатками обычно называется пептидной связью, а полимеры, построенные из остатков аминокислот, соединенных пептидными связями, называют полипептидами.

Таким образом, белок представляет собой полипептид, содержащий сотни или

тысячи аминокислотных звеньев.

Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате

нековалентных взаимодействий единый комплекс.


Немного из истории..

Историческая справка.

Первая гипотеза о строении молекулы белка была предложена в 70-х годах XIX в. Это была уреидная теория строения белка. В 1903 г. немецкий ученый Э.Г.Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO.

Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. русским ученым А.Я.Данилевским. Согласно полипептидной теории белки имеют определенную структуру. В клетке находятся свободные аминокислоты, составляющие аминокислотный фонд, за счет которого происходит синтез новых белков. Этот фонд пополняется аминокислотами, постоянно поступающими в клетку вследствие расщепления белков пищи пищеварительными ферментами или собственных запасных белков.

Э.Г.Фишер

А. Я. Данилевский


Классификация

Белки подразделяют на протеины (простые белки) и протеиды (сложные белки)


Функции белков

Функции белков.

Защищают организм от микробов и вирусов, участвуя в выработке антител;

Регулируют энергобаланс, особенно при больших нагрузках или при дефиците в пище жиров и углеводов.

Обеспечивают рост, размножение и полноценное развитие организма, особенно нервной системы, регулируя раздражимость и реакции на внешние раздражители;

Входят в состав гормонов, мышц и других тканей;

В связи с витаминами и микроэлементами являются биологическими катализаторами - ферментами;

Формируют способность высшей формы движения материи - мышление;


Элементный состав

белков

Элементный состав белков

23% кислорода, 6-7% водорода, 0,3-2,5% серы.

В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро- и микроэлементы, в различных, часто очень малых количествах.

за исключением азота, концентрация которого характеризуется наибольшим

постоянством.


Структура белков

Особый характер белка каждого вида связан не только с длиной, составом и строением входящих в его молекулу полипептидных цепей, но и с тем, как эти цепи ориентируются.

В структуре любого белка существует несколько степеней организации:

Первичная структура белков

1 . Первичная структура белка - специфическая последо­вательность аминокислот в полипептидной цепи.

Даже одинаковые по длине и аминокислотному составу пептиды могут быть разными веществами потому, что последовательность аминокислот в цепи у них разная.


Вторичная структура белков

Вторичная структура белка - способ скручивания полипептидной цепи в

пространстве (за счет водородной связи между водородом амидной группы -NH- и

карбонильной группы - СО-, которые разделены четырьмя аминокислотными

фрагментами).

В одном и том же белке могут присутствовать все три способа укладки полипептидной цепи:

Вторичная структура – спираль с одинаковым расстоянием между витками.


Третичная структура белков

Третичная структура белка - реальная трехмерная конфигурация закрученной спирали полипептидной цепи в пространстве (спираль, скрученная в спираль).

Третичная структура белка обуславливает специфическую биологическую активность белковой молекулы. Третичная структура белка поддерживается за счет взаимодействия различных функциональных групп полипептидной цепи:

· дисульфидный мостик (-S-S-) между атомами серы,

· сложноэфирный мостик – между карбоксильной группой (-СО-) и

гидроксильной (-ОН),

· солевой мостик - между карбоксильной (-СО-) и аминогруппами (NH2).


Четвертичная структура белка

Четвертичная структура белка - тип взаимодействия между несколькими

полипептидными цепями.

Например, гемоглобин представляет из себя комплекс из четырех макромолекул


Физические свойства

Белки имеют большую молекулярную массу (104-107),

многие белки растворимы в воде, но образуют, как правило, коллоидные растворы, из которых выпадают при увеличении концентрации неорганических солей, добавлении солей тяжелых металлов, органических растворителей или при нагревании

Белки способны к набуханию, характеризуются оптической активностью и подвижностью в электрическом поле, некоторые растворимы в воде. Белки имеют изоэлектрическую точку.


Химические свойства

Важнейшим свойством белков является их способность проявлять как

кислотные, так и основные свойства, то есть выступать в роли амфотерных

электролитов.


Свойство а мфотерности лежит в основе буферных свойств белков и их

участии в регуляции рН крови.


Химические свойства

2. Качественные реакции на белок:

биуретовая реакция: фиолетовое окрашивание при обработке солями меди в щелочной среде (дают все белки),

ксантопротеиновая реакция: желтое окрашивание при действии

концентрированной азотной кислоты, переходящее в оранжевое под действием

выпадение черного осадка (содержащего серу) при добавлении ацетата свинца

(II), гидроксида натрия и нагревании.

  • Денатурация - разрушение вторичной и третичной структуры белка.

Необратимая денатурация

белка куриного яйца под воздействием высокой температуры


3. Гидролиз белков - при нагревании в щелочном или кислом растворе с

образованием аминокислот.

Реакцию гидролиза с образованием аминокислот в общем виде можно записать так:


Горение

Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.


Синтез белков

Изыскивая пути исусственного получения белка, ученые интенсивноиизучают механизм его синтеза в организмах. Ведь здесь он совершается в «мягких» условиях, удивительно четко и с большой скоростью. (Молекула белка в клетке образуется всего за 2-3 с.)

Выяснено, что синтез белков в организме осуществляется с участием других высокомолекулярных

веществ-нуклеиновых кислот.

В настоящее время человек уже глубоко познал механизм биосинтеза белка и приступил к искусственному получению важнейших

белков на основе тех же принципов, которые столь совершенно отработаны в

процессе развития органического мира.


Вывод

В данной работе были рассмотрены химические и физические свойства белков, классификация белков, состав и строение белков, были рассмотрены разнообразные функции белков, а также их значение.

Доказано, что белки - обязательная составная часть всех живых клеток, играют исключительно важную роль в живой природе, являются главным, наиболее ценным и незаменимым компонентом питания. Это связанно с той огромной ролью, которую они играют в процессах развития и жизни человека. Белки являются основой структурных элементов и тканей, поддерживают обмен веществ и энергии, участвуют в процессах роста и размножения, обеспечивают механизмы движений, развитие иммунных реакций, необходимы для функционирования всех органов и систем организма.

"Жизнь - это форма существования белка"


"Жизнь, есть способ существования белковых тел"

Ф. Энгельс.

Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д.

Белки (полипептиды) – биополимеры, построенные из остатков α-аминокислот, соединенных пептидными (амидными) связями. В состав этих биополимеров входят мономеры 20 типов. Такими мономерами являются аминокислоты. Каждый белок по своему химическому строению является полипептидом. Некоторые белки состоят из нескольких полипептидных цепей. В составе большинства белков находится в среднем 300-500 остатков аминокислот. Известно несколько очень коротких природных белков, длиной в 3-8 аминокислот, и очень длинных биополимеров, длиной более чем в 1500 аминокислот. Образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот:

Аминокислоты соединяются друг с другом за счёт образования новой связи между атомами углерода и азота – пептидной (амидной):

Из двух аминокислот (АК) можно получить дипептид, из трёх – трипептид, из большего числа АК получают полипептиды (белки).

Функции белков

Функции белков в природе универсальны. Белки входят в состав мозга, внутренних органов, костей, кожи, волосяного покрова и т.д. Основным источником α - аминокислот для живого организма служат пищевые белки, которые в результате ферментативного гидролиза в желудочно-кишечном тракте дают α - аминокислоты. Многие α - аминокислоты синтезируются в организме, а некоторые необходимые для синтеза белков α - аминокислоты не синтезируются в организме и должны поступать извне. Такие аминокислоты называются незаменимыми. К ним относятся валин, лейцин, треонин, метионин, триптофан и др. (см. таблицу). При некоторых заболеваниях человека перечень незаменимых аминокислот расширяется.

· Каталитическая функция - осуществляется с помощью специфических белков - катализаторов (ферментов). При их участии увеличивается скорость различных реакций обмена веществ и энергии в организме.

Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов. Среди них такие, как, например пепсин, расщепляют белки в процессе пищеварения.

· Транспортная функция - связывание и доставка (транспорт) различных веществ от одного органа к другому.

Так, белок эритроцитов крови гемоглобин соединяется в легких с кислородом, превращаясь в оксигемоглобин. Достигая с током крови органов и тканей, оксигемоглобин расщепляется и отдает кислород, необходимый для обеспечения окислительных процессов в тканях.

· Защитная функция - связывание и обезвреживание веществ, поступающих в организм или появляющихся в результате жизнедеятельности бактерий и вирусов.

Защитную функцию выполняют специфические белки (антитела - иммуноглобулины), образующиеся в организме (физическая, химическая и иммунная защита). Так, например, защитную функцию выполняет белок плазмы крови фибриноген, участвуя в свертывании крови и тем самым уменьшая кровопотери.

· Сократительная функция (актин, миозин) – в результате взаимодействия белков происходит передвижение в пространстве, сокращение и расслабление сердца, движение других внутренних органов.

· Структурная функция - белки составляют основу строения клетки. Некоторые из них (коллаген соединительной ткани, кератин волос, ногтей и кожи, эластин сосудистой стенки, кератин шерсти, фиброин шелка и др.) выполняют почти исключительно структурную функцию.

В комплексе с липидами белки участвуют в построении мембран клеток и внутриклеточных образований.

· Гормональная (регуляторная) функция - способность передавать сигналы между тканями, клетками или организмами.

Выполняют белки-регуляторы обмена веществ. Они относятся к гормонам, которые образуются в железах внутренней секреции, некоторых органах и тканях организма.

· Питательная функция - осуществляется резервными белками, которые запасаются в качестве источника энергии и вещества.

Например: казеин, яичный альбумин, белки яйца обеспечивают рост и развитие плода, а белки молока служат источником питания для новорожденного.

Разнообразные функции белков определяются α-аминокислотным составом и строением их высокоорганизованных макромолекул.

Физические свойства белков

Белки – очень длинные молекулы, которые состоят из звеньев аминокислот, сцепленных пептидными связями. Это – природные полимеры, молекулярная масса белков колеблется от нескольких тысяч до нескольких десятков миллионов. Например, альбумин молока имеет молекулярную массу 17400, фибриноген крови – 400.000, белки вирусов – 50.000.000. Каждый пептид и белок обладают строго определенным составом и последовательностью аминокислотных остатков в цепи, это и определяет их уникальную биологическую специфичность. Количество белков характеризует степень сложности организма (кишечная палочка – 3000, а в человеческом организме более 5 млн. белков).

Первый белок, с которым мы знакомимся в своей жизни, это белок куриного яйца альбумин - хорошо растворим в воде, при нагревании свертывается (когда мы жарим яичницу), а при долгом хранении в тепле разрушается, яйцо протухает. Но белок спрятан не только под яичной скорлупой. Волосы, ногти, когти, шерсть, перья, копыта, наружный слой кожи - все они почти целиком состоят из другого белка, кератина. Кератин не растворяется в воде, не свертывается, не разрушается в земле: рога древних животных сохраняются в ней так же хорошо, как и кости. А белок пепсин, содержащийся в желудочном соке, способен разрушать другие белки, это процесс пищеварения. Белок инрерферон применяется при лечении насморка и гриппа, т.к. убивает вызывающие эти болезни вирусы. А белок змеиного яда способен убивать человека.

Классификация белков

С точки зрения пищевой ценности белков, определяемой их аминокислотным составом и содержанием так называемых незаменимых аминокислот, белки подразделяются на полноценные и неполноценные . К полноценным белкам относятся преимущественно белки животного происхождения, кроме желатины, относящейся к неполноценным белкам. Неполноценные белки - преимущественно растительного происхождения. Однако некоторые растения (картофель, бобовые и др.) содержат полноценные белки. Из животных белков особенно большую ценность для организма представляют белки мяса, яиц, молока и др.

В состав многих белков помимо пептидных цепей входят и неаминокислотные фрагменты, по этому критерию белки делят на две большие группы - простые и сложные белки (протеиды). Простые белки содержат только аминокислотные цепи, сложные белки содержат также неаминокислотные фрагменты (Например, гемоглобин содержит железо ).

По общему типу строения белки можно разбить на три группы:

1. Фибриллярные белки - нерастворимы в воде, образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Белки, имеющие вытянутую нитевидную структуру. Полипептидные цепи многих фибриллярных белков расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слои.

Большинство фибриллярных белков не растворяются в воде. К фибриллярным белкам относят например, α-кератины (на их долю приходится почти весь сухой вес волос, белки шерсти, рогов, копыт, ногтей, чешуи, перьев), коллаген - белок сухожилий и хрящей, фиброин - белок шёлка).

2. Глобулярные белки - водорастворимы, общая форма молекулы более или менее сферическая. Среди глобулярных и фибриллярных белков выделяют подгруппы. К глобулярным белкам относятся ферменты, иммуноглобулины, некоторые гормоны белковой природы (например, инсулин) а также другие белки, выполняющие транспортные, регуляторные и вспомогательные функции.

3. Мембранные белки - имеют пересекающие клеточную мембрану домены, но части их выступают из мембраны в межклеточное окружение и цитоплазму клетки. Мембранные белки выполняют функцию рецепторов, то есть осуществляют передачу сигналов, а также обеспечивают трансмембранный транспорт различных веществ. Белки-транспортеры специфичны, каждый из них пропускает через мембрану только определённые молекулы или определённый тип сигнала.

Белки – неотъемлемая часть пищи животных и человека. Живой организм отличается от неживого в первую очередь наличием белков. Для живых организмов характерно огромное разнообразие белковых молекул и их высокая упорядоченность, что и определяет высокую организацию живого организма, а также способность двигаться, сокращаться, воспроизводиться, способность к обмену веществ и к многим физиологическим процессам.

Строение белков

Фишер Эмиль Герман, немецкий химик-органик и биохимик. В 1899 начал работы по химии белков. Используя созданный им в 1901 эфирный метод анализа аминокислот, Ф. впервые осуществил качественные и количественные определения продуктов расщепления белков, открыл валин, пролин (1901) и оксипролин (1902), экспериментально доказал, что аминокислотные остатки связываются между собой пептидной связью; в 1907 синтезировал 18-членный полипептид. Ф. показал сходство синтетических полинептидов и пептидов, полученных в результате гидролиза белков. Ф. занимался также изучением дубильных веществ. Ф. создал школу химиков-органиков. Иностранный член-корреспондент Петербургской АН (1899). Нобелевская премия (1902).

Называются карбоновые кислоты, в углеводородном радикале которых один или несколько атомов водорода замещены аминогруппами.

Аминокислоты представляют собой кристаллические вещества с высокими (выше 250°С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.

БЕЛКИ

Массовая доля химических элементов в белках

Ни один из известных нам живых организмов не обходится без белков. Белки служат питательными веществами, они регулируют обмен веществ, исполняя роль ферментов – катализаторов обмена веществ, способствуют переносу кислорода по всему организму и его поглощению, играют важную роль в функционировании нервной системы, являются механической основой мышечного сокращения, участвуют в передаче генетической информации и т.д. Как видно, функции белков в природе универсальны. Белки входят в состав мозга, внутренних органов, костей, кожи, волосяного покрова и т.д. Основным источником a - аминокислот для живого организма служат пищевые белки, которые в результате ферментативного гидролиза в желудочно-кишечном тракте дают a - аминокислоты. Многие a - аминокислоты синтезируются в организме, а некоторые необходимые для синтеза белков a - аминокислоты не синтезируются в организме и должны поступать извне. Такие аминокислоты называются незаменимыми. При некоторых заболеваниях человека перечень незаменимых аминокислот расширяется.

Белковый обмен в организме человека весьма сложен. В зависи­мости от состояния организма необходимое количество тех или иных белков постоянно изменяется, белки расщепляются, синтезируются, одни аминокислоты переходят в другие или распадаются, выделяя энергию. В результате жизнедеятельности организма часть белков теряется, это обычно около 25-30 г белка в сутки. Поэтому белки должны постоянно присутствовать в рационе человека в нужном количестве. Необходимое для человека количество белка в пище зависит от различных факторов: от того, находится ли человек в покое или выполняет тяжелую работу, каково его эмоциональное состояние и г.п. Рекомендуемая суточная норма потребления белка составляет 0,75-0,80 г качественного белка на 1 кг веса для взрослого челове­ка, т.е. около 56 г в сутки для среднего мужчины и 45 г для женщи­ны. Детям, особенно совсем маленьким, требуется больше белка (до 1,9 г на 1 кг веса в сутки), так как их организм интенсивно растет.

Роль белков в организме

Функции белков в организме разнообразны. Они в значительной мере обусловлены сложностью и разнообразием форм и состава самих белков.

Белки - незаменимый строительный материал. Одной из важнейших функций белковых молекул является пластическая. Все клеточные мембраны содержат белок, роль которого здесь разнообразна. Количество белка в мембранах составляет более половины массы.

Многие белки обладают сократительной функцией. Это, прежде всего, белки актин и миозин, входящие в мышечные волокна высших организмов. Мышечные волокна - миофибриллы - представляют собой длинные тонкие нити, состоящие из параллельных более тонких мышечных нитей, окруженных внутриклеточной жидкостью. В ней растворены аденозинтрифосфорная кислота (АТФ), необходимая для осуществления сокращения, гликоген - питательное вещество, неорганические соли и многие другие вещества, в частности кальций.

Велика роль белков в транспорте веществ в организме. Имея различные функциональные группы и сложное строение макромолекулы, белки связывают и переносят с током крови многие соединения. Это, прежде всего, гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок - миоглобин.

Еще одна функция белка - запасная. К запасным белкам относят ферритин - железо, овальбумин - белок яйца, казеин - белок молока, зеин - белок семян кукурузы.

Регуляторную функцию выполняют белки-гормоны.

Гормоны - биологически активные вещества, которые оказывают влияние на обмен веществ. Многие гормоны являются белками, полипептидами или отдельными аминокислотами. Одним из наиболее известных белков - гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза - железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000.

Пищевые продукты, насыщенные белками

Полимеры

Полимеры (от греч. polymeres - состоящий из многих частей, многообразный), химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Благодаря механической прочности, эластичности, электроизоляционным и другим ценным свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту.

Тип урока - комбинированный

Методы: частично-поисковый, про-блемного изложения, объясни-тельно-иллюстративный.

Цель:

Формирование у учащихся целостной системы знаний о живой природе, ее системной организации и эволюции;

Умения давать аргументированную оценку новой информации по биоло-гическим вопросам;

Воспитание гражданской ответственности, самостоятельности, инициативности

Задачи:

Образовательные : о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнонаучной картины мира; методах научного познания;

Развитие творческихспособностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;

Воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем

Личностные результаты обучения биологии :

1. воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину; осознание своей этнической принадлежности; усвоение гуманистических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;

2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;

Метапредметные результаты обучения биологии:

1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

2. овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы;

3. умение работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научно популярной литературе, биологических словарях и справочниках), анализировать и

оценивать информацию;

Познавательные : выделение существенных признаков биологических объектов и процессов; приведение доказательств (аргументация) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды; зависимости здоровья человека от состояния окружающей среды; необходимости защиты окружающей среды; овладение методами биологической науки: наблюдение и описание биологических объектов и процессов; постановка биологических экспериментов и объяснение их результатов.

Регулятивные: умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Коммуникативные: формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, понимание особенностей гендерной социализации в подростковом возрасте, общественно полезной, учебно-исследовательской, творческой и дру-гих видов деятельности.

Технологии: Здоровьесбережения, проблем-ного, раз-вивающего обучения, групповой деятельно-сти

Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.

Ход урока

Задачи

Раскрыть ведущую роль белков в строении и жизнедеятельности клетки. ,

Объяснить строение макромолекул белка, име-ющих характер информационных биополимеров.

Углубить знания школьников о связи строения молекул веществ и их функции на примере бел-ков.

Основные положения

Первичная структура белка определяется геноти-пом.

Вторичная, третичная и четвертичная структурная организация белка зависит от первичной структу-ры.

Все биологические катализаторы — ферменты — имеют белковую природу.

4.Белковые молекулы обеспечивают иммуноло-гическую защиту организма от чужеродных ве-ществ.

Вопросы для обсуждения

Чем: определяется специфичность деятельности биологических катализаторов - ментов?

Каков механизм действия рецептор точной поверхности?

Биологические полимеры — белки

Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. У жи-вотных на них приходится около 50% сухой массы клетки. В организме человека встречаются 5 млн типов белковых мо-, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и слож-ность строения они построены всего из 20 различных амино-кислот.

Аминокислоты имеют общий план строения, но отлича-ются друг от друга по строению радикала (К), которое весьма разнообразно. Например, у аминокислоты аланина радикал простой — СН3, радикал цистеина содержит серу — СН28Н, другие аминокислоты имеют более сложные радикалы.

Белки, выделенные из живых организмов животных, растений и микроорганизмов, включают несколько сотен, а иногда и тысяч комбинаций 20 основных аминокислот. Порядок их чередования самый разнообразный, что делает возможным существование огромного числа молекул белка, отличающихся друг от друга. Например, для белка, состоя-щего всего из 20 остатков аминокислот, теоретически воз-можно около 2 . 1018 вариантов различных белковых моле-кул, отличающихся чередованием аминокислот, а значит, и свойствами. Последовательность аминокислот в поли- пептидной цепи принято называть первичной структурой белка.

Однако молекула белка в виде цепи аминокислотных ос-татков, последовательно соединенных между собой пептид-ными связями, еще не способна выполнять специфические функции. Для этого необходима более высокая структурная организация. Путем образования водородных связей между остатками карбоксильных и аминогрупп разных аминокис-лот белковая молекула принимает вид спирали (а-структу- ра) или складчатого слоя — «гармошки» (Р-структура). Это вторичная структура но и ее часто не-достаточно для приобретения характерной биологической активности.

Вторичном структура белка ((3-структура) — сверху. Третичная структура белка внизу:

— ионные взаимодействия,

— водородные связи.

— дисульфидные связи,

— гидрофобные взаимодействия,

— гидратируемые группы

Часто только молекула, обладающая третичной струк-турой, может выполнять роль катализатора или какую-либо другую. Третичная структура образуется благодаря взаимо-действию радикалов, в частности радикалов аминокисло-ты цистеина, которые содержат серу. Атомы серы двух ами-нокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или 8—8, связи. Благодаря этим взаимодействиям, а также другим, менее сильным связям, белковая спираль сворачивается и приобретает фор-му шарика, или глобулы. Способ укладки полипептид- ных спиралей в глобуле называют третичной структурой белка. Многие белки, обладающие третичной структурой, мо-гут выполнять свою биологическую роль в клетке. Однако для осуществления некоторых функций организма требует-ся участие белков с еще более высоким уровнем организа-ции. Такую организацию называют четвертичной структу-рой. Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка, обладающих третичной структурной организацией. Пример такого слож-ного белка — гемоглобин. Его молекула состоит из четырех связанных между собой молекул. Другим примером может служить гормон поджелудочной железы — инсулин, вклю-чающий два компонента. В состав четвертичной структуры некоторых белков включаются помимо белковых субъеди-ниц и разнообразные небелковые компоненты. Тот же гемо-глобин содержит сложное гетероциклическое соединение, в состав которого входит железо.Свойства белка. Белки, как и другие неорганические и органические соединения, обладают рядом физико-хими-ческих свойств, обусловленных их структурной организа-цией. Это во многом обусловливает функциональную актив-ность каждой молекулы. Во-первых, белки — преимущественно водорастворимые молекулы.

Во-вторых, белковые молекулы несут большой поверхно-стный заряд. Это определяет целый ряд электрохимических эффектов, например изменение проницаемости мембран, ка-талитической активности ферментов и других функций.

В-третьих, белки термолабильны, т. е. проявляют свою активность в узких температурных рамках.

Действие повышенной температуры, а также обезвожи-вание, изменение рН и другие воздействия вызывают разру-шение структурной организации белков. Вначале разруша-ется самая слабая структура — четвертичная, затем третич-ная, вторичная и при более жестких условиях — первичная. Утрата белковой молекулой своей структурной организации называется денатурацией.

Если изменение условий среды не приводит к разруше-нию первичной структуры молекулы, то при восстанов-лении нормальных условий среды полностью воссоздается структура белка и его функциональная активность. Такой процесс носит название ренату рации. Это свойство белков полностью восстанавливать утраченную структуру широко используется в медицинской и пищевой промышленнос-ти для приготовления некоторых медицинских препара-тов, например антибиотиков, вакцин, сывороток, фермен-тов; для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства.

Функции белков. Функции белков в клетке чрезвы-чайно многообразны. Одна из важнейших — пластическая (строительная) функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также вне-клеточных структур.

Исключительно важное значение имеет каталитическая роль белков. Все биологические катализаторы — фермен-ты — вещества белковой природы, они ускоряют химиче-ские реакции, протекающие в клетке, в десятки и сотни тысяч раз.

Взаимодействие фермента (Ф) с веществом (С), в результате чего образуются продукты реакции (П)

Остановимся на этой важнейшей функции несколько подробнее. Термин «катализ», который в биохимии встре-чается не менее часто, чем в химической промышленности, где широко используются катализаторы, буквально означа-ет «развязывание», «освобождение». Сущность каталитиче-ской реакции, несмотря на огромное разнообразие катали-заторов и типов реакций, в которых они принимают участие, в основных чертах сводится к тому, что исходные вещества образуют с катализатором промежуточные соединения. Они сравнительно быстро превращаются в конечные продукты реакции, а катализатор восстанавливается в первоначаль-ном виде. Ферменты — те же катализаторы. На них распро-страняются все законы катализа. Но ферменты имеют бел-ковую природу, и это сообщает им особые свойства. Что же общего у ферментов с известными из неорганической химии катализаторами, например платиной, оксидом ванадия и дру-гими неорганическими ускорителями реакций, а что их от-личает? Один и тот же неорганический катализатор может применяться во многих различных производствах. Ферменты активны только при физиологических зна-чениях кислотности раствора, т. е. при такой концен-трации ионов водорода, которая совместима с жизнью и нормальным функционированием клетки, органа или сис-темы.

Регуляторная функция белков заключается в осуществ-лении ими контроля обменных процессов: инсулин, гормо-ны гипофиза и др.

Двигательная функция живых организмов обеспечива-ется специальными сократительными белками. Эти бел-ки участвуют во всех видах движения, к которым способны клетки и организмы: мерцание ресничек и движение жгути-ков у простейших, сокращение мышц у многоклеточных животных, движение листьев у растений и др.

Транспортная функция белков заключается в присое-динении химических элементов (например, кислорода к ге-моглобину) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела. Специ-альные транспортные белки перемещают РНК, синтезиро-ванные в клеточном ядре, в цитоплазму. Широко представ-лены транспортные белки в наружных мембранах клеток, они переносят различные вещества из окружающей среды в цитоплазму.

При поступлении в организм чужеродных белков или микроорганизмов в белых кровяных тельцах — лейкоци-тах — образуются особые белки — антитела. Они связы-

ваются с несвойственными организму веществами (антиге-нами) по принципу соответствия пространственных конфи-гураций молекул (принцип — «ключ-замок»). В результате этого образуется безвредный, нетоксичный комплекс — «ан-тиген-антитело», который впоследствии фагоцитируется и переваривается другими формами лейкоцитов — это за-щитная функция.

Белки могут служить и одним из источников энергии в клетке, т. е. выполняют энергетическую функцию. При полном расщеплении 1 г белка до конечных продуктов вы-деляется 17,6 кДж энергии. Однако белки в таком качестве используются редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, участвуют в реакциях пластического обмена для построения новых белков.

Вопросы и задания для повторения

Какие органические вещества входят в со-став клетки?

Из каких простых органических соединений состоят белки?

Что такое пептиды?

Какова первичная структура белка?

Как образуется вторичная, третичная структуры белка?

Что такое денатурация белка?

Какие функции белков Вам известны?

Выберите правильный на ваш взгляд вариант ответа.

1. Кто открыл существование клеток?

Роберт Гук

Карл Линней

2. Чем заполнена клетка?

Цитоплазмой

Оболочкой

3. Как называется плотное тело расположенное в цитоплазме?

ядро

оболочка

органоиды

4. Какой из органоидов помогает клетке дышать?

лизосома

митохондрия

мембрана

5. Какой органоид придает зеленый цвет растениям?

лизосома

хлоропласт

митохондрия

6. Какого вещества больше всего в неорганических клетках?

вода

минеральные соли

7. Какие вещества составляют органическую клетку на 20%?

Нуклеиновые кислоты

Белки

8. Каким общим названием можно объединить следующие вещества: сахар, клетчатка, крахмал?

углеводы

9. Какое из веществ дает 30 % энергии клетке?

жиры

углеводы

10. Какого вещества больше всего в клетке?

Кислород

Аминокислоты, белки. Строение белков. Уровни организации белковой молекулы

Видеоурок по биологии " Белки "

Функции белков

Ресурсы

В. Б. ЗАХАРОВ, С. Г. МАМОНТОВ, Н. И. СОНИН, Е. Т. ЗАХАРОВА УЧЕБНИК «БИОЛОГИЯ» ДЛЯ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ (10-11класс) .

А. П. Плехов Биология с основами экологии. Серия «Учебники для вузов. Специальная литература».

Книга для учителя Сивоглазов В.И., Сухова Т.С. Козлова Т. А. Биология: общие закономерности.

Хостинг презентаций

11 .04.2012г. 57 урок 10 класс

Урок на тему: Белки - природные полимеры, состав и строение.

Цели урока: 1. Ознакомить учащихся с природными полимерами-белками.

2. Изучить их строение, классификацию и свойства.

3. Рассмотреть биологическую роль и применение белков.

Оборудование и реактивы: из практической работы №7.

Ход урока:

    Повторение пройденной темы.

Отвечаем на вопросы, которые задаются на экране:

    Какие соединения называются аминокислотами?

    Какие ФГ входят в состав аминокислот?

    Как строятся названия аминокислот?

    Какие виды изомерии характерны для аминокислот?

    Какие аминокислоты называются незаменимыми? Приведите примеры.

    Какие соединения называются амфотерными? Обладают ли амфотерными свойствами аминокислоты? Ответ обоснуйте.

    Какие химические свойства характерны для аминокислот?

    Какие реакции называются реакциями поликонденсации? Характерны ли реакции поликонденсации для аминокислот?

    Какая группа атомов носит название амидной группировки?

    Какие соединения называются полиамидными? Приведите примеры полиамидных волокон. Какие аминокислоты пригодны для получения синтетических волокон?

    Какие соединения называют пептидами?

    Какая группа атомов называется пептидной?

    Изучение новой темы.

Определение белков.

Белки- это природные полимеры, обладающие высокими значениями молекулярной массы, молекулы которых построены из остатков аминокислот, соединенных пептидной связью.

Распространение белков в природе, их биологические функции и значение для жизни на земле.

Строение белков.

а) первичная структура- аминокислотная последовательность, число аминокислотных звеньев в молекуле может колебаться от нескольких десятков до сотен тысяч. Это отражается на молекулярной массе белков, изменяющейся от 6500 (инсулин) до 32 миллионов (белок вируса гриппа);

б) вторичная- в пространстве полипептидная цепь может быть закручена в спираль, на каждом витке которой находится 3,6 звена аминокислот с обращенными наружу радикалами. Отдельные витки скреплены между собой водородными связями между группами ==N -H и ==С=О различных участков цепи;

в) третичная структура белка – это способность расположения спирали в пространстве. Белковая молекула свернута в клубок – глобулу, которая сохраняет пространственную форму за счет дисульфидных мостиков –S -S . На рисунке представлена третичная структура молекулы фермента гексакиназы, катализирующего спиртовое брожение глюкозы. Хорошо видно углубление в глобуле, с помощью которого белок захватывает молекулу глюкозы и в котором она претерпевает дальнейшие химические превращения.

г) четвертичная структура белка – некоторые белки (например гемоглобин) представляет собой сочетание нескольких белковых молекул с небелковыми фрагментами, называемыми простетическими группами. Такие белки называют сложными или пептидами. Строение протеида – это и есть четвертичная структура белка. На рисунке представлено схематическое изображение четверичной структуры молекулы гемоглобина. Она представляет собой сочетание двух пар полипептидных цепей и четырех небелковых фрагментов, обозначенных красными дисками. Каждый из них – это молекула гема. Т.е. сложного комплекса органических циклов с ионом железа. Гемм имеет одинаковую структуру для всех позвоночных и обусловливает красный цвет крови.

5. Химические свойства белков

1) Денатурация

2) Гидролиз

3)Качественные реакции белков:

а) Биуретовая реакция

б) Ксантопротеиновая;

в) Качественное определение серы в белках.

г)Горение белков. При горении белки издают характерный запах жженого рога, волоса. Этот запах определяется содержанием в белках серы (цистеин, метионин, цистин). Если к раствору белка добавить раствор щелочи, нагреть до кипения и добавить несколько капель раствора ацетата свинца. Выпадает черный осадок сульфида свинца.

III. Домашнее задание П. 27 ? 1-10, Читать 27. Упр. 1-10