Длина красной волны и фиолетовой. Применение и особенности видимого света и излучения

> Видимый свет

Определение

Задача обучения

Термины

Основные пункты

Определение

Видимый свет – часть электромагнитного спектра, доступная для восприятия человеческому глазу (390-750 нм).

Задача обучения

Научиться отличать 6 диапазонов видимого спектра.

  • Оптическое окно – видимый участок в электромагнитном спектре, проходящая сквозь атмосферный слой.
  • Спектральный цвет – создается одной длиной волны света в видимом спектре или относительно узкой полосой длин волн.
  • Видимый свет – часть электромагнитного спектра (между ИК и УФ), доступная человеческому глазу.

Основные пункты

  • Видимый свет формируется из-за вибраций и вращений атомов и молекул, а также электронных транспортировок внутри них.
  • Цвета отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – самые высокие частоты и кратчайшие длины.
  • Цвета, созданные в видимом свете узкой полосы длин волн, именуют чистыми спектральными цветами: фиолетовый (380-450 нм), синий (450-495 нм), зеленый (495-570 нм), желтый (570-590 нм), оранжевый (590-620 нм) и красный (620-750 нм).
  • Видимый свет прорывается сквозь оптическое стекло, поэтому атмосферный слой не оказывает значительного сопротивления.
  • Часть электромагнитного спектра, используемая в фотосинтезирующих организмах, именуется фотосинтетически активной областью (400-700 нм).

Узнайте определение и характеристику видимого света : длина волны, диапазон электромагнитного излучения, частота, диаграмма спектров цвета, восприятие цвета.

Видимый свет

Видимый свет – часть электромагнитного спектра, доступная человеческому глазу. Электромагнитное излучение этого диапазона просто именуют светом. Глаза реагируют на длины волн видимого света 390-750 нм. По частоте это соответствует полосе в 400-790 ТГц. Адаптированный глаз обычно достигает максимальной чувствительности в 555 нм (540 ТГц) при зеленой области оптического спектра. Но сам спектр не вмещает все цвета, улавливаемые глазами и мозгом. Например, такие красочные, как розовый и пурпурный, создаются при сочетании нескольких длин волн.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличается, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Видимый свет формирует вибрации и вращения атомов и молекул, а также электронные транспортировки внутри них. Этими транспортировками пользуются приемники и детекторы.

Небольшая часть электромагнитного спектра вместе с видимым светом. Разделение между инфракрасным, видимым и ультрафиолетовым не выступает на 100% отличительным

На верхнем рисунке отображена часть спектра с цветами, которые отвечают за конкретные чистые длины волн. Красный – наиболее низкие частоты и самые длинные волны, а фиолетовый – наибольшие частоты и кратчайшие длины волн. Излучение солнечного черного тела достигает максимума в видимой части спектра, но наиболее интенсивно в красном, чем в фиолетовом, поэтому звезда кажется нам желтой.

Цвета, добытые светом узкой полосы длин волн, именуют чистыми спектральными. Не забывайте, что у каждого много оттенков, потому что спектр непрерывный. Любые снимки, предоставляющие данные с длин волн, отличаются от тех, что присутствуют в видимой части спектра.

Видимый свет и земная атмосфера

Видимый свет пробивается сквозь оптическое окно. Это «место» в электромагнитном спектре, пропускающее волны без сопротивления. В качестве примера можно вспомнить, что воздушный слой рассеивает голубой лучше красного, поэтому небеса кажутся нам синими.

Оптическое окно также именуют видимым, потому что оно перекрывает спектр, доступный человеку. Это не случайно. Наши предки развили видение, способное использовать огромное многообразие длин волн.

Благодаря наличию оптического окна мы можем наслаждаться относительно мягкими температурными условиями. Функция солнечной яркости достигает максимума в видимом диапазоне, который перемещается, не завися от оптического окна. Именно поэтому поверхность нагревается.

Фотосинтез

Эволюция сказалась не только на людях и животных, но и на растениях, которые приучились правильно реагировать на части электромагнитного спектра. Так, растительность трансформирует световую энергию в химическую. Фотосинтез использует газ и воду, создавая кислород. Это важный процесс для всей аэробной жизни на планете.

Эту часть спектра именуют фотосинтетически активной областью (400-700 нм), перекрывающейся с диапазоном человеческого зрения.

Видимый свет — это энергия той части спектра электромагнитного излучения, которую мы способны воспринимать глазами, то есть видеть. Вот так все просто.

Длина волны видимого света

А теперь сложнее. Длины волн света в видимой области спектра лежат в диапазоне от 380 до 780 нм. Что это значит? Это значит, что волны эти очень короткие и высокочастотные, а «нм» — это нанометр. Один такой нанометр равен 10 -9 метрам. А если человеческим языком, то это одна миллиардная часть метра. То есть метр — это десять дециметров, сто сантиметров, тысяча миллиметров или… Внимание! Один миллиард нанометров .

Как мы видим цвета в пределах видимого спектра света

Наши глаза не только могут воспринимать эти крошечные волны, но и различать их длины в пределах спектра. Вот так мы и видим цвет — как часть видимого спектра света. Красный свет, один из трех основных цветов света, имеет длину волны примерно 650 нм. Зеленый (второй основной) — приблизительно 510 нм. И, наконец, третий — синий — 475 нм (или около того). Видимый свет от Солнца — это своеобразный коктейль, в котором эти три цвета смешаны.

Почему небо голубое, а трава зеленая?

Вообще-то это два вопроса, а не один. И поэтому мы дадим два разных, но связанных между собой ответа. Мы видим ясное небо в полдень голубым, потому что короткие волны света более эффективно рассеиваются при столкновении с молекулами газа в атмосфере, чем длинные. Так что голубизна, которую мы видим в небе — это синий свет, рассеянный и многократно отраженный молекулами атмосферы.

Но на восходе и закате небо может приобретать красноватый цвет. Да, и такое бывает, поверьте. Это происходит потому, что когда Солнце находится близко к горизонту, свету, чтобы достичь нас, приходится проделать более долгий путь через гораздо более плотный слой атмосферы (к тому же еще и довольно пыльный), чем когда Солнце находится в зените. Все короткие волны поглощаются, и нам остается довольствоваться длинными, отвечающими за красную часть спектра.

А вот с травой все слегка по-другому. Она выглядит зеленой, потому что поглощает все длины волн, кроме зеленых. Зеленые ей, видите ли, не по душе, поэтому она их отражает обратно нам в глаза. По этой же причине любой объект имеет свой цвет — мы видим ту часть спектра света, которую он не смог поглотить. Черные предметы выглядят черными, потому что поглощают все длины волн, практически ничего при этом не отражая, а белые — наоборот, отражают весь видимый спектр света. Это также объясняет, почему черное нагревается на солнце гораздо сильнее, чем белое.

Небо голубое, трава зеленая, собака — друг человека

А что там — за видимой областью спектра?

По мере того, как волны становятся короче, цвет меняется от красного к синему, доходит до фиолетового и, наконец, видимый свет исчезает. Но сам свет не исчез — а перешел в область спектра, которая называется ультрафиолетом . Хоть эту часть спектра света мы уже не воспринимаем, но именно она заставляет светиться люминесцентные лампы, некоторые виды светодиодов, а также всякие прикольные светящиеся в темноте штучки. Дальше уже идут рентгеновское и гамма-излучение, с которыми лучше дел не иметь вообще.

С другого конца области спектра видимого света, там где заканчивается красный цвет, начинается инфракрасное излучение, которое скорее тепло, чем свет. Вполне может вас поджарить. Затем идет микроволновое излучение (очень опасное для яиц), а еще дальше — то, что мы привыкли называть радиоволнами. У них длины уже измеряются сантиметрами, метрами и даже километрами.

И как это все относится к освещению?

Очень относится! С тех пор как мы узнали многое про спектр видимого света и про то, как мы его воспринимаем, производители светового оборудования постоянно работают над улучшением качества для удовлетворения наших ежесекундно растущих потребностей. Так появились лампы «полного спектра», свет которых почти неотличим от естественного. Цвет света стали , чтобы иметь реальные цифры для сравнения и маркетинговых трюков. Стали выпускаться специальные лампы для различных нужд: например, лампы для выращивания комнатных растений , дающие больше ультрафиолета и света из красной области спектра для лучшего роста и цветения, или «тепловые лампы» различных видов, которые обосновались в бытовых обогревателях, тостерах, и гриле в «Шаурме от Ашота».

Электромагнитный спектр представляет диапазон всех частот или длин волн электромагнитного излучения от очень низких энергетических частот как радиоволны до очень высоких частот, таких как гамма-лучи. Свет это часть электромагнитного излучения, которая является видимой для человеческого глаза и называется видимый свет.

Солнечные лучи гораздо шире видимого спектра света и описываются как полный спектр, включающий диапазон длин волн, необходимых для поддержания жизни на земле и : инфракрасный, видимый и ультрафиолетовый (УФ).

Человеческий глаз реагирует только на видимый свет, который лежит между инфракрасным и ультрафиолетовым излучением имеющий крошечные длины волн. Длина волны видимого света составляет всего от 400 до 700 Нм (нанометр миллиардная метра).

Видимый спектр света включает семь цветных полос, когда солнечные лучи преломляются через призму: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

Первым человеком, открывшим что белый состоит из цветов радуги был Исаак Ньютон который в 1666 году направил солнечный луч через узкую щель и затем через призму на стену – получив все видимые цвета.

Видимый свет применение

За годы светотехническая промышленность стремительно развивала электрические и искусственные источники, которые копировали свойства солнечного излучения.

В 1960-х годов ученые придумали термин «полный спектр освещения» для описания источников, испускающих подобие полного естественного освещения, который включал ультрафиолетовый и видимый спектр необходимый для здоровья организма человека, животных и растений.

Искусственное освещение для дома или офиса подразумевает естественное освещение в непрерывном распределении спектральной мощности который представляет мощность источника в зависимости от длины волны с равномерным уровнем лучистой энергии связанный с и галогенновыми лампами.

Видимый свет — это часть электромагнитного излучения (ЭМ), как радиоволны, инфракрасное излучение, ультрафиолетовое излучение, рентгеновские лучи и микроволны. Как правило, видимый свет определяется как визуально определяемый для большинства человеческих глаз

ЭМ излучение передает волны или частицы на различных величинах волн и частотах. Такой широкий диапазон длин волн называется электромагнитным спектром .

Спектр, как правило, делится на семь диапазонов в порядке уменьшения длины волны и увеличения энергии и частоты. Общее обозначение представляет радиоволны, микроволны, инфракрасное (ИК), видимый свет, ультрафиолетовое (УФ), рентгеновские лучи и гамма-лучи.

Длина волны видимого света находится в диапазоне электромагнитного спектра между инфракрасным (ИК) и ультрафиолетовым (УФ).

Она имеет частоту от 4 × 10 14 до 8 × 10 14 циклов в секунду, или герц (Гц) и длина колебаний от 740 нанометров (нм) или 7,4 × 10 -5 см до 380 нм или 3,8 × 10 -5 см.

Что такое цвет

Пожалуй, наиболее важной характеристикой видимого света является пояснение что такое цвет . Цвет является неотъемлемым свойством и артефактом человеческого глаза. Как ни странно, но объекты «не имеют» цвета – он существует только в голове смотрящего. Наши глаза содержат специализированные клетки, образующие сетчатку глаза, которая действует как приемники, настроенные на длины волн в этой узкой полосе частот.

Излучение в нижней части видимого спектра, имеющей большую длину волны (около 740 нм) воспринимается как красный, в середине, как зеленый, и на верхнем конце спектра, с длиной волны около 380 нм, считается синий. Все остальные цвета, которые мы воспринимаем, являются смесью этих цветов.

Например, желтый цвет содержит красный и зеленый; голубой — смесь зеленого и синего, пурпурный — смесь красного и синего . Белый содержит все цвета в сочетании. Черный — это полное отсутствие видимого излучения.

Цвет и температура

Излучение энергии воспринимается как изменение цвета. Например, пламя паяльной лампы меняется от красноватого до синего и можно отрегулировать, чтобы жарче горела. Этот процесс превращения тепловой энергии в видимую энергию называется накаливание.

Лампа накаливания высвобождает часть своей тепловой энергии в виде фотонов. Около 800 градусов по Цельсию энергия, излучаемая объектом, достигает инфракрасного излучения. При увеличении температуры, энергия переходит в видимый спектр и у объекта появляется красноватое свечение. Когда объект становится жарче, цвет меняется до «белого каления» и в итоге превращается в синий.

Видимое излучение в астрономии

Видимый свет горячих объектов, таких как звезды, может быть использован для оценки их температуры.

Например, температура поверхности Солнца составляет примерно 5800 0 по Кельвину или 5527 0 по Цельсию.

Излучаемая энергия имеет пиковую длину колебаний около 550 нм, которые мы воспринимаем как видимый белый (или слегка желтоватый).

Если бы температура поверхности Солнца была прохладнее, около 3000 0 С, это бы выглядело как красноватый цвет, как звезда Бетельгейзе. Если бы это было жарче, около 12000 0 С, это будет выглядеть голубым, как звезда Ригель.

Звезда Бетельгейзе

Звезда Ригель

Астрономы также могут определить, какие объекты из чего состоят, так как каждый элемент поглощает свет в определенных длинах волн, называемых спектром поглощения. Зная спектры поглощения элементов, астрономы могут использовать спектроскопы для определения химического состава звезд, газопылевых облаков и других удаленных объектов.

В 1676 году сэр Исаак Ньютон с помощью трёхгранной призмы разложил белый солнечный свет на цветовой спектр.
Различные цвета создаются световыми волнами, которые представляют собой определённый род электро­магнитной энергии.
Человеческий глаз может воспринимать свет только при длине волн от 400 до 700 миллимикрон: 1 миллимикрон или 1 мт = 1/1 000 000 мм.

Длина волн, соответствующая отдельным цветам спект­ра, и соответствующие частоты (число колебаний в се­кунду) для каждого призматического цвета имеют свои характеристики.

Каждый цвет спектра характеризуется своей длиной волны, то есть он может быть совершенно точно задан длиной волны или частотой колебаний. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн человеческим глазом и мозгом. Каким образом он распознаёт эти волны до настоящего времени ещё полностью не известно. Мы только знаем, что различные цвета возникают в результате количест­венных различий светочувствительности.

Остается исследовать важный вопрос о корпусном цвете предметов. Если мы, например, поставим фильтр, про­пускающий красный цвет, и фильтр, пропускающий зе­лёный, перед дуговой лампой, то оба фильтра вместе дадут чёрный цвет или темноту. Красный цвет поглоща­ет все лучи спектра, кроме лучей в том интервале, кото­рый отвечает красному цвету, а зелёный фильтр задер­живает все цвета, кроме зелёного. Таким образом, не пропускается ни один луч, и мы получаем темноту. По­глощаемые в физическом эксперименте цвета называ­ются также вычитаемыми.

Цвет предметов возникает, главным образом, в процес­се поглощения волн. Красный сосуд выглядит красным потому, что он поглощает все остальные цвета светового луча и отражает только красный. Когда мы говорим: «эта чашка красная», то мы на самом деле имеем в виду, что молекулярный состав поверхно­сти чашки таков, что он поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создаётся при её освещении. Если красная бумага (поверхность, поглощающая все лучи кроме красного) освещается зелёным светом, то бумага покажется нам чёрной, потому что зелёный цвет не содержит лучей, отвечающих красному цвету, кото­рые могли быть отражены нашей бумагой. Все живописные краски являются пигментными или ве­щественными. Это впитывающие (поглощающие) крас­ки, и при их смешивании следует руководствоваться правилами вычитания. Когда дополнительные краски или комбинации, содержащие три основных цвета - жёлтый, красный и синий - смешиваются в определён­ной пропорции, то результатом будет чёрный, в то вре­мя как аналогичная смесь невещественных цветов, по­лученных в ньютоновском эксперименте с призмой дает в результате белый цвет, поскольку здесь объединение цветов базируется на принципе сложения, а не вычита­ния.

Два цвета, объединение которых даёт белый цвет, назы­ваются дополнительными цветами. Если мы удалим из спектра один цвет, например, зелё­ный, и посредством линзы соберём оставшиеся цвета - красный, оранжевый, жёлтый, синий и фиолетовый, - то полученный нами смешанный цвет окажется крас­ным, то есть цветом дополнительным по отношению к удалённому нами зелёному. Если мы удалим жёлтый цвет, - то оставшиеся цвета - красный, оранжевый, зе­лёный, синий и фиолетовый - дадут нам фиолетовый цвет, то есть цвет, дополнительный к жёлтому. Каждый цвет является дополнительным по отношению к смеси всех остальных цветов спектра. В смешанном цвете мы не можем увидеть отдельные его составляющие.

1. ОСОБЕННОСТИ ЦВЕТОВОСПРИЯТИЯ.

Сейчас известно, что цвет - это представление человека о видимой части спектра электромагнитного излучения. Свет воспринимается фоторецепторами, расположенными в задней части зрачка. Эти рецепторы преобразуют энергию электромагнитного излучения в электрические сигналы. Рецепторы сконцентрированы большей частью в ограниченной области сетчатки или ретины, которая называется ямкой. Эта часть сетчатки способна воспринимать детали изображения и цвет гораздо лучше, чем остальная ее часть. С помощью глазных мускул ямка смещается так, чтобы воспринимать разные участки окружающей среды. Обзорное поле, в котором хорошо различаются детали и цвет ограничено приблизительно 2-мя градусами.
Существует два типа рецепторов: палочки и колбочки. Палочки активны только при крайне низкой освещенности (ночное зрение) и не имеют практического значения при восприятии цветных изображений ; они более сконцентрированы по периферии обзорного поля. Колбочки ответственны за восприятие цвета и они сконцентрированы в ямке. Существует три типа колбочек, которые воспринимают длинные, средние и короткие длины волн светового излучения.

Каждый тип колбочек обладает собственной спектральной чувствительностью. Приблизительно считается, что первый тип воспринимает световые волны с длиной от 400 до 500 нм (условно "синюю " составляющую цвета ), второй - от 500 до 600 нм (условно "зеленую " составляющую) и третий - от 600 до 700 нм (условно "красную " составляющую). Цвет ощущается в зависимости от того, волны какой длины и интенсивности присутствуют в свете.

Глаз наиболее чувствителен к зеленым лучам, наименее - к синим . Экспериментально установлено, что среди излучений равной мощности наибольшее световое ощущение вызывает монохроматическое желто-зеленое излучение с длиной волны 555 нм. Спектральная чувствительность глаза зависит от внешней освещенности. В сумерках максимум спектральной световой эффективности сдвигается в сторону синих излучений , что вызвано разной спектральной чувствительностью палочек и колбочек. В темноте синий цвет оказывает большее влияние, чем красный , при равной мощности излучения, а на свету - наоборот.

Разные люди воспринимают один и тот же цвет по-разному. Восприятие цветов изменяется с возрастом, зависит от остроты зрения, от настроения и других факторов. Однако, такие различия относятся в основном к тонким оттенкам цвета , поэтому в целом можно утверждать, что большинство людей воспринимает основные цвета одинаково.

2. ЧТО ЕСТЬ ЦВЕТ?

Что такое цвет ? Физика рассматривает свет как электромагнитную волну. Волна - это просто изменение состояния среды или поля, распространяющееся в пространстве с какай-то скоростью. У любой волны есть длина - это расстояние между гребнями волны.

Те длины волн, которые способен воспринимать человеческий глаз носит название видимого света. Например, свет с наибольшей длиной волны мы воспринимаем как красный, а с наименьшей - как фиолетовый. При этом стоит отметить, что наше ухо тоже воспринимает волны, только очень большой длины волны и несколько другой природы. Звук - это колебания вещества. Например в вакууме нет частичек вещества (воздуха например). И там нет звука, звуковая волна не распространяется в вакууме.

Единицей измерения длины волны оптической области спектра излучений является нанометр (нм);

1 нм = 1 х 10 -3 мк (микрон) = 1 х 10 -6 мм (миллиметров).

Цвета , которые мы воспринимаем, различаются в зависимости от длины волны видимого света:

Цвет

Длина волны, нм

Красный

от 620 до 760

Оранжевый

от 585 до 620

Желтый

от 575 до 585

Зеленый

от 510 до 575

Голубой

от 480 до 510

Синий

от 450 до 480

Фиолетовый

от 380 до 450

Порядок расположения цветов просто запомнить по аббревиатуре слов: каждый охотник желает знать, где сидит фазан .

Резкой границы между цветами нет, но среди приведенных выше цветов отсутствует белый ...
Всё дело в том, что никакой определенной длины волны белому свету не соответствует. Тем не менее, границы диапазонов белого света и составляющих его цветов принято характеризовать их длинами волн в вакууме. Таким образом, белый свет - это сложный свет, совокупность волн длинами от 380 до 760 нм.

Причина, по которой человек способен видеть свет заключается в воздействии света определенных длин волн на глазную сетчатку.

При прохождении света через вещество, имеющее преломляющий угол, происходит разложение света на сотавляющие его цвета, при этом изменяются и скорость, и длина волны, а частота колебаний света остается неизменной.

Свет с длинами волн длиннее, чем самая длинная в спектре видимого света (красный цвет ), называется инфракрасным (от латинского слова infra - ниже; то есть ниже той части спектра, которую может воспринять глаз ). А свет с длинами волн короче наиболее коротких в видимом спектре называется ультрафиолетовым (от латинского слова ultra - более, сверх; то есть длина волны выше той, которую может воспринять глаз ).

Человеческому глазу не доступен ни инфракрасный, ни ультрафиолетовый свет, как и многие другие типы волн. Тем не менее мы можем воспринимать огромный диапазон различных цветов (диапазон волн).

3. ЦВЕТОВАЯ ГАРМОНИЯ.

В теории цвета цветовой круг содержит в себе все цвета , видимые человеком, от фиолетового до красного. Цветовой круг показывает, как цвета связаны между собой, и позволяет определять по определенным правилам гармоничные сочетания этих цветов.

Черный, белый и серый не обозначены на цветовом круге, так как, строго говоря, они не являются цветами. Это нейтральные тона .

3.1. Цветовые сочетания.

В цветовых схемах приведены гармоничные сочетание цветов. Заметьте, что цвета можно и нужно варьировать по насыщенности и светлоте (яркости) . И кстати, часто встречающаяся еще одна гармония : по насыщенности. На картинке представлены возможные варианты цветовой гармонии .


Не применяйте цвета в равных количествах. Сделайте лучше один цвет фоном , а другой пусть будет просто акцентом на нем. Интересно, что дополнительные цвета при смешении дают серый цвет (три основных цвета , кстати, тоже). Поэтому, если вы примените их рядом и в больших количествах, то в глазах зрителя будет происходить смешение до серого!

Вы можете поэксперементироватьь над этим, используя инструмент подбора цветов .

4. ОЩУЩЕНИЕ ГЛУБИНЫ.

Важную роль в создании цветовой композиции играет разделение цветов на теплые и холодные . Это разделение легко заметить на цветовом круге (см. рисунки выше). На этом круге выделяется "теплая" красно-желтая область и "холодная" синяя область , разделенная вертикальной линией. Это разделение трудно объяснить на уровне физики - разделение на "два лагеря" происходит, скорее, на уровне подсознания.

С детства мы привыкли, что солнце, огонь, углы и все источники тепла имеют красно-желтые оттенки , а снег, вода, небо - сине-голубые и сине-зеленые оттенки . Это закрепляется у нас в подсознании, и диктует нам восприятие цвета . Но есть также "нарушители" этого разбиения. Так, светло-бежевая луна, бордовые цвета являются холодными цветами, а светло-голубое свечение нагретых тел имеет теплый цвет .

Яркие, теплые тона создают эффект движения в сторону смотрящего и кажутся ближе. Теплые цвета привлекают внимание и хорошо подходят для выделения важных элементов публикации.

Холодные цвета кажутся удаляющимися и создают эффект движения в сторону от смотрящего. В комбинации, холодные цвета могут вызвать ощущение отчужденности и изоляции, а может, наоборот, быть успокаивающим и ободряющим.

Эффект движения, вызванный сочетанием теплых и холодных цветов , используется дизайнерами. Для фона ими выбирается холодные оттенки , а для объектов на переднем плане - теплые . Так, если Вы посмотрите на фотографии , сделанные на презентациях и пресс-конференциях, Вы увидите докладчиков на голубом фоне . Такой фон придает значительность и важность фигуре докладчика. Этот прием можно порекомендовать начинающим дизайнерам.

Как правило, лучше работают цветовые решения, основанные на доминировании холодной или теплой гаммы цветов, а не на равномерном смешении оттенков . При этом в комбинациях, где преобладают теплые тона , для оформления выделений и усиления контраста могут использоваться холодные оттенки , и наоборот.