Две оси симметрии. Анализ полученных данных. Осевая симметрия как математическое понятие

Точки М и М1 называются симметричными относительно заданной прямой L , если эта прямая является серединным перпендикуляром к отрезку МM1 (рис 1). Каждая точка прямой L симметрична сама себе. Преобразование плоскости, при котором каждая точка отображается на симметричную ей точку относительно данной прямой L , называется осевой симметрией с осью L и обозначается SL : SL (M) = M1 .

Точки М и М1 взаимно симметричны относительно L , поэтому SL (M1 )=M . Следовательно, преобразование, обратное осевой симметрии, есть та же осевая симметрия: SL -1 = SL , SL ° SL = E . Иначе говоря, осевая симметрия плоскости является инволютивным преобразованием.

Образ данной точки при осевой симметрии можно просто построить, пользуясь только одним циркулем. Пусть L - ось симметрии, A и B - произвольные точки этой оси (рис 2). Если и SL (M) = M1 , то по свойству точек серединного перпендикуляра к отрезку имеем: AM = AM1 и BM = BM1 . Значит, точка M1 принадлежит двум окружностям: окружности с центром A радиуса AM и окружности с центром B радиуса BM (M - данная точка). Фигура F и её образ F1 при осевой симметрии называются симметричными фигурами относительно прямой L (рис 3).

Теорема. Осевая симметрия плоскости есть движение.

Если А и В - любые точки плоскости и SL (A) = A1 , SL (B) = B1 , то надо доказать, что A1 B1 = AB . Для этого введем прямоугольную систему координат OXY так, чтобы ось OX совпала с осью симметрии. Точки А и В имеют координаты А(x1 ,-y1 ) и B(x1 ,-y2 ) .Точки А1 и В1 имеют координаты A1 (x1 ,y1 ) и B1 (x1 ,y2 ) (рис 4 - 8). По формуле расстояния между двумя точками находим:

Из этих соотношений ясно, что АВ=А1 В1 , что и требовалось доказать.

Из сравнения ориентаций треугольника и его образа получаем, что осевая симметрия плоскости есть движение второго рода .

Осевая симметрия отображает каждую прямую на прямую. В частности, каждая из прямых, перпендикулярных оси симметрии, отображается этой симметрией на себя.


Теорема. Прямая, отличная от перпендикуляра к оси симметрии, и её образ при этой симметрии пересекаются на оси симметрии или ей параллельны.

Доказательство. Пусть дана прямая, не перпендикулярная оси L симметрии. Если m ? L= P и SL (m)=m1 , то m1 ?m и SL (P)=P , поэтому Pm1 (рис 9). Если же m || L , то m1 || L , так как в противном случае прямые m и m1 пересекались бы в точке прямой L , что противоречит условию m ||L (рис 10).


В силу определения равных фигур, прямые, симметричные относительно прямой L , образуют с прямой L равные углы (рис 9).

Прямая L называется осью симметрии фигуры F , если при симметрии с осью L фигура F отображается на себя: SL (F) =F . Говорят, что фигура F симметрична относительно прямой L .

Например, всякая прямая, содержащая центр окружности, является осью симметрии этой окружности. Действительно, пусть М - произвольная точка окружности щ с центром О , ОL , SL (M)= M1 . Тогда SL (O) = O и OM1 =OM , т. е. M1 є щ . Итак, образ любой точки окружности принадлежит этой окружности. Следовательно, SL (щ)=щ .

Осями симметрии пары непараллельных прямых служат две перпендикулярные прямые, содержащие биссектрисы углов между данными прямыми. Осью симметрии отрезка является содержащая его прямая, а также серединный перпендикуляр к этому отрезку.

Свойства осевой симметрии

  • 1. При осевой симметрии образом прямой является прямая, образом параллельных прямых являются параллельные прямые
  • 3. Осевая симметрия сохраняет простое отношение трех точек.
  • 3. При осевой симметрии отрезок переходит в отрезок, луч - в луч, полуплоскость - в полуплоскость.
  • 4. При осевой симметрии угол переходит в равный ему угол.
  • 5. При осевой симметрии с осью d всякая прямая, перпендикулярная оси d остается на месте.
  • 6. При осевой симметрии ортонормированный репер переходит в ортонормированный репер. При этом точка М с координатами х и у относительно репера R переходит в точку M` с теми же самыми координатами х и у, но относительно репера R`.
  • 7. Осевая симметрия плоскости переводит правый ортонормированный репер в левый и, наоборот, левый ортонормированный репер - в правый.
  • 8. Композиция двух осевых симметрий плоскости с параллельными осями есть параллельный перенос на вектор, перпендикулярный данным прямым, длина которого в два раза больше расстояния между данными прямыми

«Симметрия вокруг нас» - Все виды осевой симметрии. Вращения. Греческое слово симметрия означает «пропорциональность», «гармония». Произвольная. Центральная относительно точки. Симметрия в пространстве. Вращения (поворотная). В геометрии есть фигуры, которые имеют. Симметрия. Осевая. Один вид симметрии. Вокруг нас. Центральная.

«В мире симметрии» - Орнаменты, фризы имеют в своей основе периодически повторяющийся узор. Симметричны формы жука, червяка, гриба, листа, цветка и др. Большинство зданий зеркально симметричны. Во всем ли в жизни должна быть симметрия? Зачем надо знать о симметрии, изучая технические науки? Что такое симметрия? Симметрия в природе и технике.

«Симметрия в искусстве» - Центрально- осевая симметрия в архитектуре. II.1. Пропорция в архитектуре. Палаццо Спада (Рим). По характеру своих творческих возможностей периодичность - универсальное явление. III. Ле-Корбюэье. Ритм является одним из основных элементов выразительности мелодии. Р. Декарт. Ж. А. Фабр. Геометрические методы изображения пространственных фигур:

«Точка симметрии» - Фигуры, не имеющие осей симметрии. Точка О называется центром симметрии. Две точки А и А1 называются симметричными относительно О, если О середина отрезка АА1. Равнобочная трапеция имеет только осевую симметрию. Симметрия в природе. Прямоугольник и ромб, не являющиеся квадратами, имеют две оси симметрии.

«Математическая симметрия» - Однако у сложных молекул, как правило, отсутствует симметрия. Палиндромы. Осевая. Центральная симметрия. Осевая симметрия. Типы симметрии. Симметрия в биологии. Вращательная симметрия. Симметрия в искусствах. ИМЕЕТ МНОГО ОБЩЕГО С ПОСТУПАТЕЛЬНОЙ СИММЕТРИЕЙ В МАТЕМАТИКЕ. Спиральная симметрия. Поступательная.

«Виды симметрии» - Центральная симметрия является движением. Зеркальный двойник оказывается "вывернутым" вдоль направления перпендикулярного к плоскости зеркала. Осевая симметрия также является движением. Теорема. Параллельный перенос. Центральная симметрия. Виды движения. Понятие движения. Параллельный перенос – один из видов движения.

Всего в теме 11 презентаций

Рассмотрим теперь оси симметрии сторон треугольника. Напомним, что осью симметрии отрезка является перпендикуляр, восставленный к отрезку в его середине.

Любая точка такого перпендикуляра одинаково удалена от концов отрезка. Пусть теперь - перпендикуляры, проведенные через середины сторон ВС и АС треугольника ABC (рис. 220) к этим сторонам, т. е. оси симметрии этих двух сторон. Точка их пересечения Q одинаково удалена от вершин В и С треугольника, так как лежит на оси симметрии стороны ВС, точно так же она и одинаково удалена от вершин А и С. Следовательно, она одинаково удалена от всех трех вершин треугольника, в том числе от вершин А и В. Значит, она лежит на оси симметрии третьей стороны АВ треугольника. Итак, оси симметрии трех сторон треугольника пересекаются в одной точке. Эта точка одинаково удалена от вершин треугольника. Следовательно, если провести окружность радиусом, равным расстоянию этой точки от вершин треугольника, с центром в найденной точке, то она пройдет через все три вершины треугольника. Такая окружность (рис. 220) называется описанной окружностью. Обратно, если представить себе окружность, проходящую через три вершины треугольника, то ее центр обязан находиться на равных расстояниях от вершин треугольника и потому принадлежит каждой из осей симметрии сторон треугольника.

Поэтому у треугольника имеется только одна описанная окружность: вокруг данного треугольника можно описать окружность, и притом только одну; центр ее лежит в точке пересечения трех перпендикуляров, восставленных к сторонам треугольника в их серединах.

На рис. 221 показаны окружности, описанные вокруг остроугольного, прямоугольного и тупоугольного треугольников; центр описанной окружности лежит в первом случае внутри треугольника, во втором - на середине гипотенузы треугольника, в третьем - вне треугольника. Это проще всего следует из свойств углов, опирающихся на дугу окружности (см. п. 210).

Так как любые три точки, не лежащие на одной прямой, можно считать вершинами треугольника, то можно утверждать, что через три любые точки, не принадлежащие прямой, проходит единственная окружность. Поэтому две окружности имеют не более двух общих точек.

Осью симметрии называется прямая линия, при повороте вокруг которой на некоторый определённый угол фигура совмещается сама с собой .

Наименьший угол поворота, приводящий фигуру к самосовмещению, называется элементарным углом поворота оси . Элементарный угол поворота оси  содержится целое число раз в 360 :

где n – целое число.

Число n, показывающее сколько раз элементарный угол поворота оси содержится в 360 0 , называется порядком оси.

В геометрических фигурах могут присутствовать оси любых порядков, начиная от оси первого порядка и кончая осью бесконечного порядка.

Элементарный угол поворота оси первого порядка (n = 1) равен 360 0 . Так как каждая фигура, будучи повернута вокруг любого направления на 360 0 , совмещается сама с собой, то всякая фигура обладает бесконечным количеством осей первого порядка. Такие оси не являются характерными, поэтому они обычно не упоминаются.

Ось бесконечного порядка отвечает бесконечно малому элементарному углу поворота. Эта ось присутствует во всех фигурах вращения в качестве оси вращения.

Примерами осей третьего, четвертого, пятого, шестого и т. д. порядков являются перпендикуляры к плоскости рисунка, проходящие через центры правильных многоугольников, треугольников, квадратов, пятиугольников и т.п.

Таким образом, в геометрии существует бесконечный ряд осей различных порядков.

В кристаллических же многогранниках возможны не любые оси симметрии, а только оси первого, второго, третьего, четвертого и шестого порядка.

Оси симметрии пятого и выше шестого порядка в кристаллах невозможны. Это положение является одним из основных законов кристаллографии и называется законом симметрии кристаллов.

Как и др. геометрические законы кристаллографии, закон симметрии кристаллов объясняется решетчатым строением кристаллического вещества. Действительно, раз симметрия кристалла есть проявление симметрии его внутреннего строения, то в кристаллах возможны только такие элементы симметрии, которые не противоречат свойствам пространственной решетки.

Докажем, что ось пятого порядка не удовлетворяет законам пространственной решетки и тем самым докажем ее невозможность в кристаллических многогранниках.

Предположим, что ось пятого порядка в пространственной решетке возможна. Пусть эта ось будет перпендикулярна плоскости чертежа, пересекая ее в точке О (рис.2.9). В частном случае точка О может совпадать с одним из узлов решетки.

Рис. 2.9. Ось симметрии пятого порядка невозможна в пространственных решетках

Возьмем ближайший от оси узел решетки А 1 , лежащий в плоскости чертежа. Так как вокруг оси пятого порядка все повторяется пять раз, то ближайших к ней узлов в плоскости чертежа должно быть всего пять А 1 ,А 2 ,А 3 ,А 4 ,А 5 . Располагаясь на одинаковых расстояниях от точки О в вершинах правильного пятиугольника, они совмещаются друг с другом при повороте вокруг О на 360/5=72°.

Эти пять узлов, лежащие в одной плоскости, образуют плоскую сетку пространственной решетки и поэтому к ним приложимы все основные свойства решетки. Если узлы А 1 и А 2 принадлежат ряду плоской сетки с промежутком А 1 А 2 , то через любой узел решетки можно провести ряд, параллельный ряду А 1 А 2 . Проведем такой ряд через узел А 3 . Этот ряд, проходящий и через узел А 5 , должен иметь промежуток, равный А 1 А 2 , т. к. в пространственной решетке все параллельные ряды обладают одинаковой плотностью.

Следовательно, на расстоянии А 3 А x = А 1 А 2 от узла А 3 должен находиться еще один узел А x . Однако дополнительный узел А x оказывается лежащим ближе к точке О, чем узел А 1 , взятый по условию ближайшим к оси пятого порядка.

Таким образом, сделанное нами допущение о возможности оси пятого порядка в пространственных решетках привело нас к явному абсурду и поэтому является ошибочным.

Поскольку существование оси пятого порядка несовместимо с основными свойствами пространственной решетки, то такая ось невозможна и в кристаллах.

Аналогичным образом доказывается невозможность существования в кристаллах осей симметрии выше шестого порядка и, наоборот, возможность в кристаллах осей второго, третьего, четвертого и шестого порядка, присутствие которых не противоречит свойствам пространственных решеток.

Для обозначения осей симметрии употребляется буква L, а порядок оси указывается маленькой цифрой, располагаемой справа от буквы (например, L 4 - ось четвертого порядка).

В кристаллических многогранниках оси симметрии могут проходить через центры противоположных граней перпендикулярно к ним, через середины противоположных ребер перпендикулярно к ним (только L 2) и через вершины многогранника. В последнем случае симметричные грани и ребра одинаково наклонены к данной оси.

Кристалл может иметь несколько осей симметрии одного порядка, количества которых указывается коэффициентом перед буквой. Например, в прямоугольном параллелепипеде присутствует 3L 2 , т. е. три оси симметрии второго порядка; в кубе имеются 3L 4 , 4L 3 и 6L 2 , т. е. три оси симметрии четвертого порядка, четыре оси третьего порядка и шесть осей второго порядка и т. д.

Сегодня мы с вами поговорим о явлении, с которым каждому из нас приходится постоянно встречаемся в жизни: о симметрии. Что такое симметрия?

Приблизительно мы все понимаем значение этого термина. Словарь гласит: симметрия – это соразмерность и полное соответствие расположения частей чего-нибудь относительно прямой или точки. Симметрия бывает двух видов: осевая и лучевая. Сначала рассмотрим осевую. Это, скажем так,«зеркальная» симметрия, когда одна половина предмета полностью тождественна второй, но повторяет ее как отражение. Поглядите на половинки листа. Они зеркально симметричны. Симметричны и половины человеческого тела (анфас) – одинаковые руки и ноги, одинаковые глаза. Но не станем заблуждаться, на самом деле в органическом (живом) мире абсолютной симметрии не встретить! Половинки листа копируют друг друга далеко не в совершенстве, то же относится к человеческому телу (присмотритесь сами); так же обстоит дело и с другими организмами! Кстати, стоит добавить, что любое симметричное тело симметрично относительно зрителя только в одном положении. Стоит, скажем, повернуть лист, или поднять одну руку и что же? – сами видите.

Подлинной симметрии люди добиваются в произведениях своего труда (вещах) - одежде, машинах… В природе же она свойственна неорганическим образованиям, например, кристаллам.

Но перейдем к практике. Начинать со сложных объектов вроде людей и животных не стоит, попробуем в качестве первого упражнения на новом поприще дорисовать зеркальную половинку листа.

Рисуем симметричный предмет - урок 1

Следим, чтобы получилось как можно более похоже. Для этого будем буквально строить нашу половинку. Не подумайте, что так легко, тем более с первого раза, одним росчерком провести зеркально-соответствующую линию!

Разметим несколько опорных точек для будущей симметричной линии. Действуем так: проводим карандашом без нажима несколько перпендикуляров к оси симметрии - средней жилке листа. Четыре-пять пока хватит. И на этих перпендикулярах отмеряем вправо такое же расстояние, какое на левой половине до линии края листика. Советую пользоваться линейкой, не очень-то надейтесь на глазок. Нам, как правило, свойственно уменьшать рисунок - на опыте замечено. Отмерять расстояния пальцами не порекомендуем: слишком большая погрешность.

Полученные точки соединим карандашной линией:

Теперь придирчиво смотрим - действительно ли половины одинаковы. Если всё правильно - обведём фломастером, уточним нашу линию:

Лист тополя дорисовали, теперь можно замахнуться и на дубовый.

Нарисуем симметричную фигуру - урок 2

В этом случае сложность заключается в том,что обозначены жилки и они не перпендикулярны оси симметрии и придётся не только размеры но ещё и угол наклона точно соблюдать. Ну что ж - тренируем глазомер:

Вот и симметричный лист дуба нарисовался, вернее, мы его построили по всем правилам:

Как нарисовать симметричный предмет - урок 3

И закрепим тему - дорисуем симметричный лист сирени.

У него тоже интересная форма - сердцевидная и с ушками у основания придётся попыхтеть:

Вот и начертили:

Поглядите на получившуюся работу издали и оцените насколько точно нам удалось передать требуемое сходство. Вот вам совет: поглядите на ваше изображение в зеркале, и оно вам укажет, есть ли ошибки. Другой способ: перегните изображение точно по оси (правильно перегибать мы с вами уже научились) и вырежьте листик по изначальной линии. Посмотрите на саму фигуру и на отрезанную бумагу.