Идеальным газом называется газ у которого. Введение

Удовлетворяющий следующим условиям:

1) собственный объём молекул газа пренебрежимо мал по сравнению с объёмом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

2. Какими параметрами характеризуется состояние газа? Дайте молекулярно-кинетическое толкование параметров р,Т.

Состояние данной массы газа m характеризуют параметры: давление p, объём V, температура T.

3. Запишите формулу, связывающую температуры по шкале Кельвина и по шкале Цельсия? Каков физический смысл абсолютного нуля?

Связь между термодинамической температурой T и температурой по стоградусной шкале Цельсия имеет вид T = t + 273,15. При абсолютном нуле энергия молекул равна нулю.

4. Запишите уравнение состояния идеального газа.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Клапейрона - Менделеева) - формула, устанавливающая зависимость между давлением , молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид: , где p - давление, Vμ - молярный объём, T - абсолютная температура, R - универсальная газовая постоянная.

5. Какой процесс называется изотермическим? Запишите и сформулируйте закон Бойля-Мариотта и начертите график зависимости давления от объема.

Для данной массы газа при постоянной температуре произведение давления газа на его объём есть величина постоянная , при . Процесс, протекающий при постоянной температуре , называется изотермическим.

6. Какой процесс называется изохорическим? Запишите и сформулируйте закон Шарля. Начертите график зависимости давления от температуры.

Давление данной массы газа при постоянном объёме изменяется линейно с температурой , при .

Процесс, протекающий при постоянном объёме, называется изохорным.

7. Какой процесс называется изобарическим? Запишите и сформулируйте закон Гей-Люссака. Начертите график зависимости объема от температуры.

Объём данной массы газа при постоянном давлении изменяется линейно с температурой: , при . Процесс, протекающий при постоянном давлении, называется изобарным.

8. Какой процесс называется адиабатическим? Запишите уравнение Пуассона и представьте его графически. (см. приложение № 2)

Адиабатический процесс – это процесс, протекающий без теплообмена с окружающей средой , следовательно .

Работа в ходе адиабатического расширения осуществляется за счет убыли внутренней энергии.

Уравнение Пуассона , где - показатель адиабаты.

9. Запишите и сформулируйте первый закон термодинамики. Дайте понятие внутренней энергии , работы, количества тепла.

Количество теплоты, полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил.

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе и не зависит от способа , которым осуществляется этот переход.

10. Запишите выражение для работы расширения газа. Как ее представить графически на рV диаграмме.

11. Примените первый закон термодинамики ко всем процессам, рассматриваемым в данной лабораторной работе и проанализируйте вытекающие из него следствия.
12. Дайте определение удельной и молярной теплоемкостей и запишите соотношение между ними.

Удельная теплоёмкость вещества – величина равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К .

С=сM.
13. Выведите уравнение Майера. Какая из теплоемкостей С P или C V больше и почему?

Связь между молярными и теплоёмкостями (уравнения Майера) .

Связь между удельными теплоёмкостями

14. Что понимают под числом степеней свободы? Запишите связь между γ и числом степеней свободы i.

Степеней свободы число в механике, число независимых между собой возможных перемещений механической системы. Число степеней свободы зависит от числа материальных частиц , образующих систему, и числа и характера наложенных на систему механических связей. Для свободной частицы число степеней свободы равно 3, для свободного твёрдого тела - 6, для тела, имеющего неподвижную ось вращения , число степеней свободы равно 1 и т.д. Для любой голономной системы (системы с геометрическими связями) число степеней свободы равно числу s независимых между собой координат, определяющих положение системы, и даётся равенством 5 = 3n - к, где n

16. Нарисуйте и поясните на рV диаграмме последовательно все процессы, происходящие с газом.

17. Какова причина изменения температуры воздуха в баллоне при накачивании воздуха в баллон и при выпуске его из баллона?

18. Выведите расчетную формулу для определения отношения теплоемкостей γ.

19. Расскажите порядок выполнения работы.

Масса и размеры молекул.

Средний диаметр молекулы ≈ 3 · 10 -10 м.

Средний объём пространства, занимаемого молекулой ≈ 2,7 · 10 -29 м 3 .

Средняя масса молекулы ≈ 2,4 · 10 -26 кг.

Идеальный газ.

Идеальным называют газ, молекулы которого можно считать материальными точками и взаимодействие которых друг с другом осуществляется только путём столкновений.

Теплообмен.

Теплообмен - процесс обмена внутренней энергией соприкасающихся тел, имеющих разные температуры. Энергия, переданная телом или системой тел в процессе теплообмена, есть количество теплоты Q

Нагревание и охлаждение.

Нагревание и охлаждение возникают благодаря получению одним телом количества теплоты Q нагр и потери другим количества теплоты Q охл. В замкнутой системе

Количество теплоты:

m - масса тела, Δt - измение температуры при нагревании (охлаждении), c - удельная теплоёмкость - энергия, необходимая для нагревания тела массой в 1 кг на 1° C.

Единица удельной теплоёмкости - 1 Дж/кг.

Плавление и кристаллизация

λ - удельная теплота плавления, измеряется в Дж/кг.

Парообразование и конденсация:

r - удельная теплота парообразования, измеряется в Дж/кг.

Сгорание

k - удельная теплота сгорания (теплоотводная способность), измеряется в Дж/кг.

Внутренняя энергия и работа.

Внутренняя энергия тела может измениться не только за счёт теплопередачи, но и за счёт совершения работы:

Работа, совершаемая самой системой, положительна, внешними силами - отрицательна.

Основы молекулярно-кинетической теории идеального газа

Основное уравнение молекулярно-кинетической теории идеального газа:

p - давление, n - концентрация молекул, m 0 - масса молекулы.

Температура.

Температурой называется скалярная физическая величина, характеризующая интенсивность теплового движения молекул изолированной системы при тепловом равновесии и пропорциональная средней кинетической энергии поступательного движения молекул.

Температурные шкалы.

ВНИМАНИЕ!!! В молекулярной физике температура берётся в градусах по Кельвину. При любой температуре t по Цельсию, значение температуры T по Кельвину выше на 273 градуса:

Связь температуры газа с кинетической энергией движения его молекул:

k - постоянная Больцмана; k = 1,38 · 10 -23 Дж/К.

Давление газа:

Уравнение состояния идеального газа:

N = n · V - общее число молекул.

Уравнение Менделеева-Клайперона:

m - масса газа, M - масса 1 моля газа, R - универсальная газовая постоянная:

ОПРЕДЕЛЕНИЕ

Идеальный газ - это наиболее простая модель системы, состоящей из большого количества частиц.

Это газ, который состоит из материальных точек, имеющих конечную массу, но не имеющих объема. Данные частицы не могут взаимодействовать на расстоянии. Столкновения частиц идеального газа описываются при помощи законов абсолютно упругого соударения шаров. Следует отметить, что имеются в виду законы столкновения именно шаров, так как точечные частицы испытывают только лобовые столкновения, которые не могут изменять направления скоростей на разные углы.

Идеальный газ существует только в теории. В реальной жизни он не может существовать в принципе, так как точечные молекулы и отсутствие их взаимодействия на расстоянии аналогично их существованию вне пространства, то есть их не существованию. Ближе всех по своим свойствам к модели идеального газа приближаются газы при малом давлении (разреженные газы) и (или) высокой температуре. Модель идеального газа подходит для изучения методов исследования систем многих частиц, знакомства с соответствующими понятиями.

В промежутках между столкновениями молекулы идеального газа движется по прямым. Законы столкновений и соударений о стенки сосудов, в которых находится газ, известны. Следовательно, если знать положения и скорости всех частиц идеального газа в какой-то момент времени, то можно найти их координаты и скорости в любой другой момент времени. Эта информация наиболее полно описывает состояние системы частиц. Однако количество частиц столь велико, что динамическое описание системы многих частиц непригодно для теории и бесполезно для практики. Это означает, что для изучения систем многих частиц информация должна быть обобщена, и ее относят не к отдельным частицам, а к их большим совокупностям.

Давление идеального газа

При помощи модели идеального газа удалось качественно и количественно объяснить давление газа на стенки сосуда, в котором он находится. Газ оказывает давление на стенки сосуда потому, что его молекулы взаимодействуют со стенками как упругие тела по законам классической механики. Количественно давление (p) идеального газа получили равным:

где — средняя кинетическая энергия поступательного движения молекул газа; — концентрация молекул газа (N - число молекул газа в сосуде; V - объем сосуда).

Законы идеальных газов

Идеальным называют газы, которые строго подчиняются законам Бойля - Мариотта и Гей - Люссака.

Закон Бойля - Мариотта. Для постоянной массы (m) идеального газа при постоянной температуре (T) произведение давления (p) газа на его объем (V) является постоянной величиной для любых состояний рассматриваемого вещества:

Закон Гей-Люссака. Для постоянной массы газа при неизменном давлении выполняется соотношение:

В поведении реальных газов наблюдают отступления от законов Бойля — Мариотта и Гей-Люссака, и эти отступления различны для разных газов.

Для идеального газа выполняется закон Шарля. Который говорит о том, что для постоянной массы газа, при постоянном объеме, отношение давления газа к температуре, не изменяется:

Для связи параметров идеального газа, часто используют уравнение состояния, которое носит имена двух ученых Клапейрона и Менделеева:

где — молярная масса газа; - универсальная газовая постоянная.

Закон Дальтона. Давление смеси идеальных газов (p) равно сумме парциальных давлений () рассматриваемых газов:

При этом уравнение состояния смеси идеальных газов имеет вид (2), как будто газ является химически однородным.

Примеры решения задач

ПРИМЕР 1

Задание Какие процессы в неизменной массе идеального газа представляют графики (рис.1)?

Решение Рассмотрим процесс изображенный графиком под номером 1. Мы видим, что произведение , по условию газ идеальный, масса газа постоянная, следовательно, это изотермический процесс.

Перейдем ко второму графику. Из графика мы можем сделать вывод о том, что:

где С - некоторая постоянна величина. Разделим правую и левую части выражения (1.1) имеем:

Мы получили, что давление постоянно. Так как , имеем изобарный процесс.

Ответ 1- изотермический процесс. 2- изобарный процесс.

ПРИМЕР 2

Задание Как будет изменяться давление идеального газа в процессе при котором масса газа постоянна, объем газа увеличивают, а температуру уменьшают?
Решение За основу решения задачи примем уравнение Клапейрона - Менделеева:

Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном .

Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:

  • все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
  • частицы находятся в непрерывном тепловом движении;
  • между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.

Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.

Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.

Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.

Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.

Существует еще одно состояние вещества – плазма. Плазма - частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.

Модель идеального газа. Связь между давлением и средней кинетической энергией.

Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.

Идеальный газ это газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)

Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.

Свойства идеального газа:

  1. расстояние между молекулами много больше размеров молекул;
  2. молекулы газа очень малы и представляют собой упругие шары;
  3. силы притяжения стремятся к нулю;
  4. взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
  5. молекулы этого газа двигаются беспорядочно;
  6. движение молекул по законам Ньютона.

Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V , давление p и температура T .

Объем газа обозначается V . Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м 3 .

Давление физическая величина, равная отношению силы F , действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента .

p = F / S Единица давления в СИ паскаль [Па]

До настоящего времени употребляются внесистемные единицы давления:

техническая атмосфера 1 ат = 9,81-104 Па;

физическая атмосфера 1 атм = 1,013-105 Па;

миллиметры ртутного столба 1 мм рт. ст.= 133 Па;

1 атм = = 760 мм рт. ст. = 1013 гПа.

Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени дей­ствует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.

Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.

Используя модель идеального газа, можно вычислить давление газа на стенку сосуда .

В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υ x скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υ y скорости, параллельная стенке, остается неизменной.

Приборы, измеряющие давление, называют манометрами. Манометры фиксиру­ют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.

Жидкостные манометры:

  1. открытый – для измерения небольших давлений выше атмосферного
  2. закрытый - для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума

Металлический манометр – для измерения больших давлений.

Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.

Основное уравнение молекулярно-кинетической теории идеального газа.

Основное уравнение МКТ : давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул

p = 1/3· m n·v 2

m 0 - масса одной молекулы газа;

n = N/V – число молекул в единице объема, или концентрация молекул;

v 2 - средняя квадратичная скорость движения молекул.

Так как средняя кинетическая энергия поступательного движения молекул E = m 0 *v 2 /2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m 0 · v 2)/2 = 2/3·E·n

p = 2/3·E·n

Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.

Так как m 0 ·n = m 0 ·N/V = m/V = ρ, где ρ – плотность газа, то имеем p = 1/3· ρ· v 2

Объединенный газовый закон.

Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.

Важнейшими термодинамическими параметрами газа являются его объем V , давление р и температура Т.

Всякое изменение состояния газа называется термодинамическим процессом.

В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.

Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом .

Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.

p = nkT

Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V , давлением p , температурой T и количеством вещества ν. Для этого нужно использовать равенства

где n – концентрация молекул, N – общее число молекул, V – объем газа

Тогда получим или

Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит

При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона .

Уравнение Клайперона можно записать в другой форме.

p = nkT,

учитывая, что

Здесь N – число молекул в сосуде, ν – количество вещества, N А – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:

Произведение постоянной Авогадро N А на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R .

Ее численное значение в СИ R = 8,31 Дж/моль·К

Соотношение

называется уравнением состояния идеального газа .

В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева .`

Для одного моля любого газа это соотношение принимает вид: pV=RT

Установим физический смысл молярной газовой постоянной . Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.

Запишем уравнение pV =RT для нагретого газа: p (V + ΔV) = R (T + 1)

и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R

ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:

pS = F – сила давления.

Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.

Таким образом, R = A .

Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.

Основной объект молекулярно-кинетической теории газов – так называемый «идеальный газ». Под идеальным газом понимается разреженная среда из многих (очень большого числа) частиц, не взаимодействующих друг с другом иначе, как посредством редких столкновений. Каждая из частиц среды движется хаотически и независимо от других. Каждая из частиц обладает обычным для классической механики набором физических параметров, как то: массой и скоростью. А также производными от этих величин – энергией и импульсом. Размеры частиц считаются пренебрежимо малыми, по отношению к остальным характерным размерам рассматриваемой физической системы. Более точно идеальный газ характеризуется следующими свойствами, непосредственно вытекающими из данного определения:

  • Коль скоро частицы практически не взаимодействуют друг с другом, то их потенциальная энергия пренебрежимо мала по сравнению с их кинетической энергией. Это относится и к фундаментальным силам, наподобие сил гравитации, которые не включаются в рассмотрение.
  • Соударения частиц считаются упругими, т.е. такими же, как столкновения абсолютно твердых сфер, наподобие биллиардных шаров. При столкновении друг с другом частицы не «липнут» друг к другу. А это значит, что промежутком времени, занимаемым процессом столкновения, можно пренебречь.
  • Идеальный газ рассматривается вкупе с некоторым объемом им занимаемым. Совокупный объем частиц принимается пренебрежимо малым по сравнению с объемом ими занимаемым.

Итог: речь идет об очень разреженной среде без сопротивления и любых других внешних взаимодействий, состоящей из упругих частиц пренебрежимо малого размера (молекул, атомов).

Макроскопические характеристики идеального газа

Идеальный газ в сосуде, рассматриваемый в целом (то есть как макроскопический объект), обладает определенным набором макроскопических характеристик, не зависящих от поведения отдельных его частиц. Данные характеристики – производные от средних значений энергий отдельных частиц идеального газа. К числу таких показателей можно отнести температуру и давление идеального газа.

  • Температура идеального газа – есть мера средней кинетической энергии молекул идеального газа.
  • Давление идеального газа — есть мера средней кинетической энергии ударов по небольшой, абсолютно упругой площадке, помещенной в газ.

Уже из определения температуры и давления должно быть понятно, что эти параметры зависят друг от друга. Действительно, в случае, если стенкам сосуда дают возможность свободно расширяться, то имеет место закон пропорциональности: p~ T, где p – давление и T – температура.

Законы поведения идеального газа

В зависимости от условий, налагаемых на объем сосуда, величину давления или величину температуры – можно получить различные частные закономерности поведения идеального газа:

  • Закон Бойля-Мариотта (постоянной считается температура).
  • Закон Гей-Люссака (постоянным считается давление).
  • Закон Шарля (постоянен объем).

Имеются и другие соотношения. Соответствующие формулы можно посмотреть на картинке ниже: