Как садится космический корабль, спускаясь с орбиты и насколько точно он может приземляться. Космические корабли «Союз

Команда «Атланты»


Вопрос 1. Почему конструкторы предлагают покрывать спускаемые отсеки космического корабля слоем легкоплавкого материала?

Спускаемый аппарат – это устройство, предназначенное для осуществления мягкой посадки на Землю или другое тело Солнечной системы, чтобы предохранить человека или научную аппаратуру от больших перегрузок и тепловых потоков при прохождении атмосферного торможения.

Спускаемые аппараты космических кораблей по своей конструкции образуют две большие группы. Это спускаемые аппараты для посадки на планеты, имеющие атмосферу типа земной и плотнее, и спускаемые аппараты, предназначенные для посадки на тела Солнечной системы, не имеющие атмосферы. В состав первых в качестве обязательного условия входит теплозащитное покрытие для сохранения спускаемого аппарата от перегрева при торможении в верхних слоях атмосферы. На конечном участке торможения для осуществления мягкой посадки спускаемого аппарата, как правило, используется парашютная система.

Помимо разрушения спускаемого аппарата, происходит разогрев падающего тела до чудовищных температур вследствие превращения огромной кинетической энергии в тепло. Кинетическая энергия движущегося тела возрастает от увеличения скорости не линейно, а пропорционально квадрату скорости. Например, при нагреве металлов до плавления с последующим их кипением до полного испарения на каждый килограмм массы потребуется 8 МДж для железа, 6,5 МДж - для меди, 7,16 МДж - для магния, 11,6 МДж - для алюминия.

Конструкторы космических кораблей столкнулись с задачей обеспечения безопасного возвращения космонавтов на Землю. Один из путей решения: торможение космического аппарата, затрачивая немалую энергию, и обеспечение достаточно эффективной теплозащиты космического корабля от его нагрева при торможении в атмосфере планеты. Естественным желанием здесь было уменьшить количество затрачиваемой энергии на торможение или же в связи с большими потоками энергии сделать теплозащиту сравнительно небольшой массы, однако, естественно, не за счет снижения безопасности полета космонавтов при спуске на Землю.

Эта проблема легко разрешается, если ограничиться задачей спасти не весь космический аппарат, а только его часть, которая получила название спускаемого аппарата. В этом отдельном отсеке вполне можно разместить необходимую аппаратуру для исследования других планет, а также космонавтов и материалы, доставляемые на Землю после пилотируемого полета.

Большая часть кинетической энергии спускаемого аппарата, перешедшей в тепловую при торможении в атмосфере, должна рассеиваться во внешней среде, и лишь небольшая часть ее может быть поглощена массой конструкции или воспринята теплозащитными системами аппарата. При пологих траекториях спуска в атмосфере уровень перегрузок и интенсивность нагрева ниже, однако, из-за увеличения длительности снижения возрастает общая доля тепловой энергии, подводимой к поверхности аппарата.

Тепловая энергия при торможении космического аппарата поступает в атмосферу с его поверхности двумя основными путями - за счет конвекции в пограничном слое и за счет излучения фронта ударной волны. Лобовые наружные слои теплозащиты сублимируют, т.е. испаряются, и потоком воздуха уносятся, создавая светящийся след в атмосфере. Высокая температура в ударной волне ионизирует молекулы воздуха в атмосфере - возникает плазма. Плазменное покрывало охватывает большую часть спускаемого аппарата и как экраном закрывает несущийся в атмосфере спускаемый аппарат и тем самым лишает связи с космонавтами или с радиокомплексом автоматического аппарата при посадке. Причем в земных условиях ионизация образуется, как правило, на высотах 120–15 км при максимуме в интервале 80–40 км.

Почти вся энергия, сообщенная ракетой-носителем космическому аппарату, должна рассеяться в атмосфере при его торможении. Однако определенная часть этой энергии ведет к нагреву спускаемого аппарата при его движении в атмосфере. Без достаточной защиты металлическая его конструкция сгорает при входе в атмосферу и аппарат прекращает свое существование. Тепловая защита должна быть хорошим изолятором тепловой энергии, т.е. обладать малой способностью к теплопередаче и быть жаростойкой. Таким требованиям отвечают отдельные сорта искусственных материалов - пластмасс. Спускаемый аппарат покрывают теплозащитным экраном, как правило, из этих искусственных материалов, состоящим из нескольких слоев. Причем внешний слой состоит обычно из относительно прочных пластмасс с графитовым заполнением как наиболее тугоплавким материалом, а следующий термоизоляционный слой - чаще всего из пластика со стекловолокнистым наполнением. Для уменьшения массы теплоизоляции, как правило, отдельные ее слои делают сотовыми, пористыми, но обладающими достаточно высокой прочностью.

Теплозащитное покрытие должно иметь достаточно значительную толщину, чтобы сохранить металлическую конструкцию спускаемого аппарата. А это уже составляет значительный процент массы от допустимой величины для спускаемого аппарата. Так, для спускаемого аппарата корабля «Восток», имевшего массу 2460 кг, масса теплозащиты составляла 800 кг, его корпус имел форму шара диаметром 2,3 м и изготовлялся из алюминиевых сплавов. Снаружи весь корпус, кроме иллюминаторов, покрывался теплозащитным экраном, поверх которого был нанесен слой теплоизоляции, необходимый для нормального функционирования корабля в период орбитального полета.

Существует абляционная защита (от англ. ablation - абляция; унос массы) - технология защиты космических кораблей, теплозащита на основе сублимации легкоплавкого материала. Часть обшивки ракет иногда делают из пористого материала, к которому подводят под давлением легко испаряющуюся жидкость. В качестве покрытий применяются различные смолы с тугоплавкими наполнителями, пористые тугоплавкие металлы с легкоплавкими наполнителями, графит.

Легкоплавкие сплавы - металлические сплавы, имеющие низкую температуру плавления, не превышающую температуру плавления олова. Для получения легкоплавких сплавов используются свинец, висмут, олово, кадмий, таллий, ртуть, индий, галлий и иногда цинк. При покрытии спускаемого аппарата легкоплавкими материалами тепло расходуется на нагревание твердого материала, плавление, нагревание жидкости, парообразование. Таким образом, тепло отводится от аппарата.


Вопрос 2. Можно ли пользоваться на космической станции маятниковыми часами?
Пружинный маятник в наручных часах будет работать без изменений. Физический и математический маятники вместо колебаний будут вращаться вокруг точки подвеса.

Явление невесомости возникает в любой локальной (т.е. имеющей небольшие пространственные размеры) системе отсчета при ее свободном падении (движении только под действием гравитационных сил). Примером такой системы является орбитальная станция: влияние на ее движение трения о верхние слои атмосферы мало, а размеры станции малы по сравнению с расстояниями, на которых гравитационное поле Земли изменяется заметным образом.

Внутри станции возникает невесомость и могут быть легко воспроизведены эксперименты с падающим маятником. Это объясняет удивительные явления, наблюдаемые на орбитальной станции. Маятниковые часы замирают, капли воды не падают, а медленно «плавают» внутри кабины, карандаш, закрученный рукой космонавта, продолжает вертеться на месте «в воздухе». Вообще исчезают понятия пола и потолка, «верха» и «низа».

В невесомости пропадают лишь силы давления тел друг на друга, но притяжение Земли продолжает действовать на все тела. В невесомости следует использовать пружинные часы, так как маятниковые и песочные не будут работать при нулевом весе.

Маятниковые часы получили такое название потому, что регулятором в них является маятник. Их изготовляют напольные, настенные и специальные (астрономические и электропервичные).

В зависимости от вида двигателя маятниковые часы бывают гиревые и пружинные. Гиревой двигатель применяется в напольных и настенных, а пружинный двигатель - в настенных и настольных часах. Маятниковые часы выпускаются разных размеров и конструкций, простые и сложные, например, с такими дополнительными устройствами, как бой, календарь. Самой простой конструкцией маятниковых часов являются ходики.

Механизм маятниковых часов-ходиков является одним широко известным примером механической автоколебательной системы. В этом устройстве колебания маятника поддерживается периодическим подталкиванием с помощью зубцов храпового колеса, соединенного с висящей гирей. Принцип работы этого механизма типичен для автоколебательных систем − работа постоянной внешней силы (силы тяжести, действующей на гирю) периодически компенсирует потери механической энергии маятника.

Первые упоминания о башенных колесных часах в Европе приходятся на границу XIII и XIV веков. Первые часовые механизмы приводились в движение энергией опускающегося груза. Приводной механизм состоял из гладкого деревянного вала и намотанного на него пенькового каната с каменной, а позднее металлической гирей на конце. Благодаря силе тяжести гири, канат начинал разматываться и вращал вал. На вал было насажено большое или главное зубчатое колесо, находившееся в сцеплении с зубчатыми колесами передаточного механизма. Таким образом, вращение от вала передавалось механизму часов.

Ко второй половине XV века относятся самые первые упоминания об изготовлении часов с пружинным двигателем, который открыл путь к созданию миниатюрных часов. Источником движущей энергии в пружинных часах служила заведенная и стремящаяся развернуться пружина, которая представляла собой эластичную, тщательным образом закаленную стальную ленту, свернутую вокруг вала внутри барабана. Внешний конец пружины закреплялся за крючок в стенке барабана, внутренний − соединялся с валом барабана. Стремясь развернуться, пружина приводила во вращение барабан и связанное с ним зубчатое колесо, которое в свою очередь передавало это движение системе зубчатых колес до регулятора включительно.

Впервые мысль применить маятник в простейших приборах для измерения времени пришла великому итальянскому ученому Галилео Галилею. Сохранилось предание, что в 1583 году девятнадцатилетний Галилей, находясь в Пизанском соборе, обратил внимание на раскачивание люстры. Он заметил, отсчитывая удары пульса, что время одного колебания люстры остается постоянным, хотя размах делается все меньше и меньше.


Вопрос 3. Можно ли в невесомости пить воду из стакана?

До первых полетов в космос ученым было во многом загадкой, как организовать в состоянии невесомости прием пищи. Было известно, что жидкость либо соберется в шар, либо растечется по стенкам, смачивая их. Было предложено готовить пищу в виде питательной пасты-паштета, помещать ее в тюбики, из которых космонавт должен выдавливать ее прямо в рот. Воду предлагалось космонавту высасывать из сосуда.

Жидкости в условиях невесомости «не хотят» заполнять стаканы, кастрюли и другую посуду. Они «не желают» покорно принимать форму сосуда, в который налиты. Нет, жидкости порхают в воздухе, собравшись в аккуратные шаровые капли! Вот почему космонавтам нельзя пить из стаканов и есть суп из тарелок. Им приходится выдавливать жидкость прямо себе в рот из тубы, похожей на тюбик с зубной пастой, только побольше.

Практика в основном подтвердила эти предположения, но и внесла некоторые существенные поправки. Питаться из тюбиков оказалось удобно, но, соблюдая аккуратность, можно есть пищу и в ее земном виде. Космонавты брали с собой жареное мясо, ломти хлеба. На корабле «Восход» было организовано для экипажа четырехразовое питание. А при полете Быковского телезрители видели, как он ел зеленый лук, пил воду из пластмассового флакончика и с особым удовольствием ел воблу. К тому же вода ведет себя странно в космосе, все время разделяясь на капли величиной с грецкий орех, которые прилипали к коже.

Пить воду в космосе – задача не из простых. Так как вода не вытекает в условиях микрогравитации, всю жидкость из контейнеров пьют через трубочку. Без нее космонавтам пришлось бы "откусывать" небольшие кусочки пузыря плавающей воды.

Но на МКС создали чашку, позволяющую пить в невесомости. Американский астронавт, который находился на МКС, создал чашку, позволяющую пить в условиях невесомости. Автор изобретения Дональд Петит сообщил, что похожая технология используется при создании топливных баков для космических аппаратов, летающих в невесомости: в сечении чашка напоминает каплю - наличие острого ребра и позволяет человеку из нее пить.

Устройство работает на основе явления взаимодействия жидкости с поверхностью, которое на Земле отвечает за промокание, растекание жидкости по поверхности, а также за ее движение по капиллярам. В невесомости этот эффект позволяет кофе и другим напиткам не только оставаться в чашке, но и подниматься жидкости по желобу вверх к потребителю. Петит надеется, что его изобретение внесет разнообразие в быт космонавтов.
4 вопрос. Кто из космонавтов первым побывал в открытом космосе?

Первым в открытое космическое пространство 18 марта 1965 г. из космического корабля «Восход 2» вышел подполковник ВВС СССР (ныне генерал майор, летчик космонавт СССР) Алексей Архипович Леонов (род. 20 мая 1934 г.) Он удалился от корабля на расстояние до 5 м и провел в открытом космосе вне шлюзовой камеры 12 мин 9 с. Тем самым была открыта новая эра покорения пространства.

Скафандр «Беркут», использованный для первого выхода, был вентиляционного типа и расходовал около 30 л кислорода в минуту при общем запасе в 1666 л, рассчитанном на 30 минут пребывания космонавта в открытом космосе. Из-за разности давлений скафандр раздувался и сильно мешал движениям космонавта, что, в частности, сильно затруднило Леонову возвращение на «Восход-2».

Общее время первого выхода составило 23 минуты 41 секунд (из них вне корабля 12 минут 9 секунд), и по его итогам был сделан вывод о возможности человека выполнять различные работы в открытом космосе.

Первым американским астронавтом, вышедшим в открытый космос, стал Эдвард Уайт, выполнивший выход во время полёта на корабле «Джемини IV» 3 июня 1965 года. Поскольку корабли серии «Джемини» не имели шлюзовой камеры, для выхода экипажу пришлось полностью разгерметизировать кабину корабля. Общее время первого выхода составило 36 минут.

Первой женщиной, вышедшей в космос, была Светлана Евгеньевна Савицкая. Выход состоялся 25 июля 1984 года с борта орбитальной космической станции «Салют-7».

Первой американкой, побывавшей в открытом космосе, стала Кэтрин Салливэн, совершившая выход в космос 11 октября 1984 года во время полёта STS-41G на корабле «Челленджер».

Выход в открытый космос европейского космонавта состоялся 9 декабря 1988 года. Его совершил француз Жан-Лу Кретьен во время своего трёхнедельного пребывания на советской космической станции «Мир».

Первый выход в открытый космос без страховочного фала выполнил астронавт США Брюс МакКэндлесс 7 февраля 1984 года во время полёта «Челленджера» STS-41B.

Самым длительным выходом в открытый космос стал выход американки Сьюзан Хелмс 11 марта 2001, длившийся 8 часов 53 минуты.

Рекорд по количеству выходов (16) и по общей продолжительности пребывания (82 часа 22 минуты) в открытом космическом пространстве принадлежит российскому космонавту Анатолию Соловьёву.

Первым китайским тайконавтом, вышедшим в открытый космос, стал Чжай Чжиган, выполнивший выход во время полёта на корабле «Шэньчжоу-7» 27 сентября 2008 года. Общее время первого выхода составило 21 минуту.

2.50: "Спуск СА с высот от 90-до 40 км обнаруживается и сопровождается радиолокационными станциями" .

Запомните эти данные по радиолокации.

Мы вернёмся к ним, когда будем обсуждать, чем и как мог следить за "Аполлонами" СССР 50 лет назад и почему он этого так и не сделал.

Живое видео

Включите титры на русском языке.

Пилотируемая посадка космического аппарата

Введение

Сразу стоит оговориться, что организация пилотируемого полета довольно сильно отличается от беспилотных миссий, но в любом случае все работы по проведению динамических операций в космосе можно разделить на два этапа: проектный и оперативный, только в случае пилотируемых миссий эти этапы, как правило, занимают значительно больше времени. В этой статье рассматривается в основном оперативную часть, так как работы по баллистическому проектированию спуска ведутся непрерывно и включают в себя различные исследования по оптимизации всевозможных факторов, влияющих на безопасность и комфорт экипажа при посадке.

За 40 суток

Проводятся первые прикидочные расчеты спуска с целью определения районов посадки. Зачем это делается? В настоящее время штатный управляемый спуск российских кораблей может производиться только в 13 фиксированных районов посадки, расположенных в Республике Казахстан. Этот факт накладывает массу ограничений, связанных в первую очередь с необходимостью предварительного согласования с нашими иностранными партнерами всех динамических операций. Основные сложности возникают при посадке осенью и весной – это связано с сельскохозяйственными работами в районах посадки. Этот факт необходимо учитывать, ведь кроме обеспечения безопасности экипажа, необходимо также обеспечивать безопасность местного населения и поисково-спасательной службы (ПСС). Помимо штатных районов посадки, существуют еще области посадки при срыве на баллистический спуск, которые также должны быть пригодны для приземления.

За 10 суток

Уточняются предварительные расчеты по траекториям спуска с учетом последних данных о текущей орбите МКС и характеристиках пристыкованного корабля. Дело в том, что с момента старта до спуска проходит достаточно большой промежуток времени, и массо-центровочные характеристики аппарата меняются, кроме того, большой вклад вносит тот факт, что вместе с космонавтами на Землю возвращаются полезные грузы со станции, которые могут существенно изменить положение центра масс спускаемого аппарата. Тут необходимо пояснить, почему это важно: форма космического корабля «Союз» - напоминает фару, т.е. никаких аэродинамических органов управления у него нет, но для получения необходимой точности посадки необходимо осуществлять управление траекторией в атмосфере. Для этого в «Союзе» предусмотрена газодинамическая система управления, но она не способна компенсировать все отклонения от номинальной траектории, поэтому в конструкцию аппарата искусственно добавляется лишний балансировочный груз, цель которого сместить центр давления из центра масс, что позволит управлять траекторией спуска, переворачиваясь по крену. Уточненные данные по основной и резервной схемам отправляются в ПСС. По этим данным производится облет всех расчетных точек и выносится заключение о возможности приземления в эти районы.

За 1 сутки

Окончательно уточняется траектория спуска с учетом последних измерений положения МКС, а также прогноза ветровой обстановки в основном и резервных районах посадки. Это необходимо делать из-за того что на высоте порядка 10км раскрывается парашютная система. К этому моменту времени система управления спуском уже сделала свою работу и никак скорректировать траекторию не может. По-сути, на аппарат действует только ветровой снос, который нельзя не учитывать. На рисунке ниже показан один из вариантов моделирования ветрового сноса. Как видно после ввода парашюта траектория сильно меняется. Ветровой снос иногда может составлять до 80% от допустимого радиуса круга рассеивания, поэтому точность метеопрогноза очень важна.

В сутки спуска:
В обеспечении спуска космического аппарата на землю кроме баллистической и поисково-спасательной службы участвует еще много подразделений таких как:

  • служба управления транспортными кораблями;
  • служба управления МКС;
  • служба, отвечающая за здоровье экипажа;
  • телеметрическая и командная службы и др.

Только после доклада о готовности всех служб, руководителями полета может быть принято решение о проведении спуска по намеченной программе.
После этого происходит закрытие переходного люка и расстыковка корабля от станции. За проведение расстыковки отвечает отдельная служба. Тут необходимо заранее рассчитать направление расстыковки, а также импульс, который необходимо приложить к аппарату, чтобы не допустить столкновение со станцией.

При расчете траектории спуска схема расстыковки также учитывается. После расстыковки корабля еще есть некоторое время до включения тормозного двигателя. В это время происходит проверка всего оборудования, проводятся траекторные измерения, и уточняется точка посадки. Это последний момент, когда еще что-то можно уточнить. Затем включается тормозной двигатель. Это один из самых важных этапов спуска, поэтому он контролируется постоянно. Такие меры необходимы для того, чтобы в случае нештатной ситуации понять по какому сценарию идти дальше. При штатной отработке импульса через некоторое время происходит разделение отсеков корабля (спускаемый аппарат отделяется от бытового и приборно-агрегатного отсеков, которые затем сгорают в атмосфере).

Если при входе в атмосферу система управления спуском решает, что она не в состоянии обеспечить приземление спускаемого аппарата в точке с требуемыми координатами, то корабль «срывается» в баллистический спуск. Так как это все происходит уже в плазме (нет радиосвязи), то установить по какой траектории движется аппарат можно только после возобновления радиосвязи. Если произошел срыв на баллистический спуск, необходимо быстро уточнить предполагаемую точку посадки и передать ее поисково-спасательной службе. В случае же штатного управляемого спуска корабль еще в полете начинают «вести» специалисты ПСС и мы можем увидеть в прямом эфире спуск аппарата на парашюте и даже, если повезет, работу двигателей мягкой посадки (как на рисунке).

После этого уже можно всех поздравлять, кричать ура, открывать шампанское, обниматься и т.д. Официально баллистическая работа завершается только после получения GPS координат точки посадки. Это нужно для послеполетной оценки промаха, по которому можно оценить качество нашей работы.
Фотографии взяты с сайта: www.mcc.rsa.ru

Точность посадки космического корабля

Сверхточные посадки или "утраченные технологии" НАСА

Оригинал взят у в

В дополнение к

Оригинал взят у в

В который уже раз повторяю, что прежде чем вольно рассуждать о глубочайшей древности, где 100500 воинов невозбранно совершали лихие марш-броски по произвольно взятой местности, полезно потренироваться "на кошках" ©"Операция Ы", например на событиях всего лишь полувековой давности - "полетах американцев на Луну".

Защитнички НАСА что-то густо пошли. И месяца не прошло с , как весьма раскрученный блогер Зеленыйкот, оказавшийся на деле рыжим, выступил на тему :


"Пригласили на GeekPicnic рассказать о космических мифах. Разумеется я взял самый ходовой и популярный: миф о лунном заговоре. За час подробно разобрали наиболее часто встречающиеся заблуждения и самые распространенные вопросы: почему не видно звезд, почему развевается флаг, где скрывается лунный грунт, как смогли потерять пленки с записью первой высадки, почему не делают ракетные двигатели F1 и другие вопросы. "

Написал ему свой комментарий :

"Мелко, Хоботов!В топку опровержения "флаг дрыгается - нет звезд - фотки подделаны"!
Лучше объясните только одно: как американцы "при возвращении с Луны" со второй космической скорости совершали посадку с точностью +-5 км, недостижимой до сих пор даже с первой космической скорости, с околоземной орбиты?
Опять "утраченные технологии НАСА"? Б-г-г "Ответа пока не получил, да и сомневаюсь что будет что-то вменяемое, это же не хиханьки-хаханьки о флаге и космической форточке.

Поясняю в чем засада. А.И. Попов в статье " " пишет: "По данным НАСА , «лунные» «Аполлоны» №№ 8,10-17 приводнились с отклонениями от расчётных точек в 2,5; 2,4; 3; 3,6; 1,8; 1; 1,8; 5,4; и 1,8 км соответственно; в среднем ± 2 км. То есть круг попадания для «Аполлонов» был якобы исключительно мал – 4 км в диаметре.

Наши проверенные «Союзы» даже сейчас, 40 лет спустя совершают посадку раз в десять менее точно илл.1), хотя траектории спуска «Аполлонов» и «Союзов» по своей физической сути одинаковы.":

подробнее см. в :

"...современная точность приземления "Союза" обеспечивается за счёт предусмотренного в 1999 году при проектировании усовершенствованного «Союза - ТМС» снижения высоты ввода в действие парашютных систем для повышения точности приземления (15–20 км по радиусу круга суммарного разброса точек посадки).

С конца 1960-х и до 21 века точность посадки "Союзов" при нормальном, штатном спуске была в пределах ± 50-60 км от расчетной точки как это и предусматривалось в 1960-х.

Естественно, бывали и нештатные ситуации, например в 1969 году приземление " " с Борисом Волыновым на борту произошло с недолетом до расчетной точки на 600 км.

До "Союзов", в эпоху "Востоков" и "Восходов" отклонения от расчетной точки бывали и покруче.

Апрель 1961 г Ю. Гагарин совершает 1 виток вокруг Земли. Из-за сбоя в системе торможения Гагарин приземлился не в запланированной области в районе космодрома Байконур, а на 1800 км западнее, в Саратовской области.

Март 1965 г. П.Беляев, А. Леонов 1 день 2 часа 2 мин первый мире выход человека в открытый космос автоматика отказала, Посадка произошла в заснеженной тайге в 200 км от Перми, далеко от населённых пунктов. Космонавты пробыли двое суток в тайге, пока их не обнаружили спасатели («На третьи сутки нас оттуда вытащили.»). Это произошло из-за того, что вертолёт не мог приземлиться поблизости. Место посадки для вертолёта было оборудовано на следующий день в 9 км от места, где приземлились космонавты. Ночёвка осуществлялась в построенном на месте посадки бревенчатом доме. Космонавты и спасатели добирались до вертолёта на лыжах"

Прямой спуск как у "Союзов" был бы из-за перегрузок несовместим с жизнью космонавтов "Аполлона" ведь они должны были бы погасить вторую космическую скорость, а более безопасный спуск по двухнырковой схеме дает разброс по точке посадки в сотни и даже тысячи километров:

То есть, если бы "Аполлоны" приводнялись с нереальной даже по сегодняшним меркам точностью по прямой однонырковой схеме, то космонавты должны были либо сгореть из-за отсутствия качественной абляционной защиты, либо умереть/получить тяжелые травмы от перегрузок.

Но многочисленная теле- кино- и фотосъемка неизменно фиксировала что будто бы спустившиеся со второй космической скорости астронавты в "Аполлонах" не просто живы, а очень даже веселенькие живчики.

И это при всем при том, что американцы в то же самое время не могли нормально запустить даже обезьянку даже на низкую околоземную орбиту см. .

Рыжий Зеленыйкот Виталий Егоров, столь рьяно защищающий миф "американцы на Луне" - платный пропагандист, специалист по связям с общественностью частной космической компании “Даурия Аэроспейс”, которая окопалась в Технопарке «Сколково» в Москве и фактически существует на американские деньги (выделено мною):

"Компания основана в 2011 году. Лицензия Роскосмоса на осуществление космической деятельности получена в 2012 году. До 2014 года имела подразделения в Германии и США. В начале 2015 года производственная деятельность была практически свернута везде кроме России. Компания занимается созданием небольших космических аппаратов (спутников) и продажей комплектующих для них. Также Dauria Aerospace привлекла инвестиции 20 миллионов долларов от венчурного фонда I2bf в 2013 году . Два своих спутника компания продала американской в конце 2015 года, тем самым получив первый доход от своей деятельности ."

"В одной из своих очередных «лекций» Егоров высокомерно бравировал, улыбаясь своей дежурной обворожительной улыбкой, тем, что американский фонд «I2BF Holdings Ltd. Цель I2BF-RNC Strategic Resources Fund» под патронажем НАСА вложил в компанию «ДАУРИЯ АЭРОСПЕЙС» 35 миллионов долларов.

Выходит, что господин Егоров не просто субъект Российской Федерации, а полноценный иностранный резидент, деятельность которого финансируется из американских фондов, с чем я и поздравляю всех добровольных российских спонсоров краудфандинга «БУМСТАРТЕР», вложивших свои кровные денежки в проект иностранной компании, который носит вполне определенный идеологический характер. "

Каталог всех статей журнала:

Добавляйтесь в друзья и подписывайтесь на обновления. Всем взаимофренд

Так ли просто засунуть человека в банку или об устройстве пилотируемых космических кораблей 3 января, 2017

Космический корабль. Наверняка многие из вас, услышав это словосочетание, представляют себе нечто огромное, сложное и густонаселенное, целый город в космосе. Так когда-то представлял себе космические корабли и я, да и многочисленные фантастические фильмы и книги этому активно способствуют.

Наверное, это хорошо, что авторов фильмов ограничивает только фантазия в отличие от инженеров-конструкторов космической техники. Хотя бы в кино мы можем насладиться гигантскими объемами, сотнями отсеков и тысячами человек экипажа...

Настоящий космический корабль размерами вовсе не впечатляет:

На фотографии советский космический корабль Союз-19, снятый американскими астронавтами из корабля Аполлон. Видно, что корабль довольно маленький, а учитывая, что обитаемый объем занимает далеко не весь корабль, очевидно, что там должно быть довольно тесно.

Оно и не удивительно: большие размеры - это большая масса, а масса - враг номер один в космонавтике. Поэтому конструкторы космических кораблей стараются сделать их как можно легче, нередко, в ущерб комфорту экипажа. Обратите внимание, как тесно в корабле Союз:

Американские корабли в этом плане особо не отличаются от русских. Например, вот фотография Эда Уайта и Джима Мак-Дивита в космическом корабле Джемини.

Хоть какой-то свободой передвижений могли похвастаться разве что экипажи кораблей Спейс Шаттл. В их распоряжении были два относительно просторных отсека.

Полетная палуба (фактически кабина управления):

Средняя палуба (это бытовой отсек со спальными местами, туалетом, кладовой и шлюзовой камерой):

Аналогичный по габаритам и планировке советский корабль Буран, к сожалению, ни разу не летал в пилотируемом режиме, как и ТКС, который до сих пор обладает рекордным обитаемым объемом среди всех когда-либо проектировавшихся кораблей.

Но обитаемый объем - далеко не единственное требование, предъявляемое космическому кораблю. Доводилось мне слышать высказывания наподобие такого: "Засунули человека в алюминиевую банку и отправили крутиться вокруг Земли-матушки". Данная фраза, конечно же, некорректна. Так чем же космический корабль отличается от простой металлической бочки?

А тем, что космический корабль должен:
- Обеспечивать экипажу пригодную для дыхания газовую смесь,
- Удалять из обитаемого объема выдыхаемые экипажем углекислый газ и пары воды,
- Обеспечивать приемлемый для экипажа температурный режим,
- Иметь герметичный объем, достаточный для жизнедеятельности экипажа,
- Обеспечивать возможность управления ориентацией в пространстве и (опционально) возможность осуществления орбитальных маневров,
- Иметь необходимые для жизнедеятельности экипажа запасы пищи и воды,
- Обеспечивать возможность безопасного возврата экипажа и грузов на землю,
- Быть как можно легче,
- Иметь систему аварийного спасения, позволяющую вернуть экипаж на землю при аварийной ситуации на любом этапе полета,
- Быть очень надежным. Любой один отказ оборудования не должен приводить к отмене полета, любой второй отказ не должен угрожать жизни экипажа.

Как видите, это уже не простая бочка, а сложный технологичный аппарат, напичканный множеством разнообразной аппаратуры, имеющий двигатели и запас топлива к ним.

Вот для примера макет советского космического корабля первого поколения Восток.

Он состоит из герметичной сферической капсулы и конического приборно-агрегатного отсека. Такую компоновку, при которой большинство приборов вынесено в отдельный негерметичный отсек, имеют почти все корабли. Это необходимо для экономии массы: при размещении всех приборов в герметичном отсеке, этот отсек получился бы довольно большим, а поскольку ему нужно удерживать внутри себя атмосферное давление и выдерживать значительные механические и тепловые нагрузки во время входа в плотные слои атмосферы при спуске на землю, стенки его должны быть толстыми, прочными, что делает всю конструкцию очень тяжелой. А негерметичному отсеку, который при возврате на землю отделится от спускаемого аппарата и сгорит в атмосфере, прочные тяжелые стенки не нужны. Спускаемый аппарат без лишних при возврате приборов получается меньше и соответственно легче. Сферическая форма ему придается тоже для уменьшения массы, ведь из всех геометрических тел одинакового объема сфера имеет самую маленькую площадь поверхности.

Единственный космический корабль, где вся аппаратура была помещена в герметичную капсулу, - американский Меркурий. Вот его фото в ангаре:

В этой капсуле мог поместиться один человек и то с трудом. Поняв неэффективность такой компоновки, американцы свою следующую серию кораблей Джемини делали уже с отделяемым негерметичным приборно-агрегатным отсеком. На фотографии это задняя часть корабля белого цвета:

Кстати, в белый цвет этот отсек покрашен не просто так. Дело в том, что стенки отсека пронизаны множеством трубок, по которым циркулирует вода. Это система отвода избыточного тепла, получаемого от Солнца. Вода забирает тепло изнутри обитаемого отсека и отдает его на поверхность приборно-агрегатного отсека, откуда тепло излучается в пространство. Чтобы эти радиаторы меньше грелись под прямыми солнечными лучами, их покрасили в белый цвет.

На кораблях Восток радиаторы были расположены на поверхности конического приборно-агрегатного отсека и закрывались заслонками, похожими на жалюзи. Открывая разное количество заслонок, можно было регулировать теплоотдачу радиаторов, а значит и температурный режим внутри корабля.

На кораблях Союз и их грузовых аналогах Прогресс система отвода тепла аналогична Джемини. Обратите внимание на цвет поверхности приборно-агрегатного отсека. Разумеется, белый:)

Внутри приборно-агрегатного отсека расположены маршевые двигатели, маневровые двигатели малой тяги, запас топлива для всего этого добра, аккумуляторы, запасы кислорода и воды, часть бортовой электроники. Снаружи обычно устанавливают антенны радиосвязи, антенны сближения, различные датчики ориентации и солнечные батареи.

В спускаемом аппарате, который одновременно служит кабиной космического корабля, расположены только те элементы, которые нужны при спуске аппарата в атмосфере и мягкой посадки, а также то, что должно быть в прямом доступе для экипажа: пульт управления, радиостанция, аварийный запас кислорода, парашюты, кассеты с гидроксидом лития для удаления углекислого газа, двигатели мягкой посадки, ложементы (кресла для космонавтов), аварийно-спасательные комплекты на случай приземления в нерасчетной точке, ну и, разумеется, сами космонавты.

В кораблях Союз есть еще один отсек - бытовой:

В нем находится то, что нужно в длительном полете, но без чего можно обойтись на этапе выведения корабля на орбиту и при приземлении: научные инструменты, запасы пищи, Ассенизационно-санитарное устройство (туалет), скафандры для внекорабельной деятельности, спальные мешки и прочие бытовые предметы.

Известен случай с космическим кораблем Союз ТМ-5, когда для экономии топлива бытовой отсек отстрелили не после выдачи тормозного импульса на сход с орбиты, а до. Только вот тормозного импульса не было: отказала система ориентации, потом не удавалось запустить двигатель. В результате космонавтам пришлось еще на сутки задержаться на орбите, а туалет остался в отстреленном бытовом отсеке. Сложно передать, какие неудобства испытали космонавты за эти сутки, пока, наконец, им не удалось благополучно приземлиться. После этого случая решили забить на такую экономию топлива и бытовой отсек отстреливать вместе с приборно-агрегатным после торможения.

Вот, сколько всяких сложностей оказалось в "банке". Мы еще отдельно пройдемся по каждому типу космических кораблей СССР, США и Китая в следующих статьях. Следите за обновлениями.

Космические корабли «Союз»

«Союз» — наименование серии советских космических кораблей для полетов по орбите вокруг Земли; программа их разработки (с 1962 года) и запусков (с 1967 года; беспилотных модификаций — с 1966 года). Космические корабли «Союз» предназначены для решения широкого круга задач в околоземном космическом пространстве: отработки процессов автономной навигации, управления, маневрирования, сближения и стыковки; изучения воздействий условий длительного космического полета на организм человека; проверки принципов использования пилотируемых кораблей для исследований Земли в интересах народного хозяйства и выполнения транспортных операций для связи с орбитальными станциями; проведения научно-технических экспериментов в космическом пространстве и другого.

Масса полностью заправленного и укомплектованного корабля от 6,38 т (первоначальные варианты) до 6,8 т, численность экипажа 2 человека (3 человека — в модификациях до 1971 года), максимально достигнутая продолжительность автономного полета 17,7 суток (с экипажем 2 человека), длина (по корпусу) 6,98-7,13 м, диаметр 2,72 м, размах панелей солнечных батарей 8,37 м, объем двух жилых отсеков по гермокорпусу 10,45 м3, свободный — 6,5 м3. Космический корабль «Союз» состоит из трех основных отсеков, которые механически соединяются между собой и разделяются с помощью пиротехнических устройств. В состав корабля входят: система ориентации и управления движением в полете и при спуске; система двигателей причаливания и ориентации; сближающе-корректирующая двигательная установка; системы радиосвязи, электропитания, стыковки, радионаведения и обеспечения сближения и причаливания; система приземления и мягкой посадки; система жизнеобеспечения; система управления бортовым комплексом аппаратуры и оборудования.

Спускаемый аппарат — масса 2,8 т, диаметр 2,2 м, длина 2,16 м, объем по внутренним обводам обитаемого отсека 3,85 м3, — служит для размещения экипажа на участке выведения «Союза» на орбиту, при управлении корабля в полете по орбите, во время спуска в атмосфере, парашютирования, приземления. Герметичный корпус спускаемого аппарата, выполненный из алюминиевого сплава, имеет коническую форму, в нижних и верхних частях переходящую в сферу. Для удобства монтажа аппаратуры и оборудования внутри спускаемого аппарата лобовая часть корпуса выполнена съемной. Снаружи корпус имеет теплоизоляцию, конструктивно состоящую из лобового экрана (отстреливаемого на участке парашютирования), боковой и донной теплозащиты, форма аппарата и положение центра масс обеспечивают управляемый спуск с аэродинамическим качеством (~0,25). В верхней части корпуса имеется люк (диаметр «в свету» 0,6 м) для сообщения с обитаемым орбитальным отсеком и выхода экипажа из спускаемого аппарата после приземления. Спускаемый аппарат оснащен тремя иллюминаторами, из которых два имеют трехстекольную конструкцию и один — двухстекольную (в месте установки визира-ориентатора). В корпусе размещены два герметичных, закрытых отстреливаемыми крышками парашютных контейнера. На лобовой части корпуса установлены 4 двигателя мягкой посадки. Скорость приземления на основной парашютной системе с учетом импульса двигателей мягкой посадки не более 6 м/с. Спускаемый аппарат рассчитан па посадку в любое время года на грунты различного типа (в т. ч. скальные) и открытые водоемы. При посадке на водоемы экипаж может находиться в аппарате «на плаву» до 5 суток.

В спускаемом аппарате размещены пульт космонавтов, ручки управления космическим кораблем, приборы и оборудование основных и вспомогательных систем корабля, контейнеры для возвращаемой научной аппаратуры, резервный запас (продукты, снаряжение, медикаменты и другое), обеспечивающий жизнедеятельность экипажа в течение 5 суток после приземления, средства радиосвязи и пеленгации на участках спуска и после посадки и т.д. Внутри корпус и оборудование спускаемого аппарата покрыты теплоизоляцией в сочетании с декоративной обшивкой. При выведении «Союза» на орбиту, спуске на Землю, проведении операций по стыковке и расстыковке члены экипажа находятся в скафандрах (введены после 1971 года). Для обеспечения полета по программе ЭПАС в спускаемом аппарате был предусмотрен пульт управления совместимыми (работающими на одинаковых частотах) радиостанциями и внешними огнями, а для передачи цветного телевизионного изображения были установлены специальные светильники.

Обитаемый орбитальный (бытовой) отсек — масса 1,2-1,3 т, диаметр 2,2 м, длина (со стыковочным агрегатом) 3,44 м, объем по внутренним обводам герметичного корпуса 6,6 м3, свободный объем 4 м3 — используется в качестве рабочего отсека при проведении научных экспериментов, для отдыха экипажа, перехода его в другой космический корабль и для выхода в космическое пространство (выполняет роль шлюзовой камеры). Герметичный корпус орбитального отсека, выполненный из магниевого сплава, представляет собой две полусферические оболочки диаметром 2,2 м, соединенные цилиндрической вставкой высотой 0,3 м. Отсек имеет два обзорных иллюминатора. В корпусе расположены два люка, один из которых соединяет орбитальный отсек с спускаемым аппаратом, а другой (диаметр «в свету» 0,64 м) служит для посадки экипажа в космический корабль на стартовой позиции и для выхода в космос. В отсеке расположены пульт управления, приборы и агрегаты основных и вспомогательных систем корабля, бытовое оборудование, научная аппаратура. При отработке и обеспечении стыковки автоматических и пилотируемых модификаций космических кораблей в случае использования их в качестве транспортных кораблей в верхней части орбитального отсека устанавливается стыковочный агрегат, выполняющий следующие функции: поглощение (демпфирование) энергии соударения кораблей; первичную сцепку; выравнивание и стягивание кораблей; жесткое соединение конструкций кораблей (начиная с «Союз-10» — с созданием герметичного стыка между ними); расстыковку и разделение космических кораблей. В корабле «Союз» нашли применение три типа стыковочных устройств:
первый, выполненный по схеме «штырь-конус»; второй, также выполненный по этой схеме, но с созданием герметичного стыка между состыковавшимися кораблями для обеспечения перехода экипажа из одного корабля в другой;
(третий в эксперименте по программе ЭПАС), представляющий собой новое, технически более совершенное устройство — андрогинный периферийный агрегат стыковки (АПАС). Конструктивно стыковочное устройство первых двух типов состоит из двух частей: активного стыковочного агрегата, устанавливаемого на одном из кораблей и снабженного механизмом для осуществления всех действий по стыковке, и пассивного стыковочного агрегата, устанавливаемого на другом космическом корабле.

Приборно-агрегатный отсек массой 2,7-2,8 т предназначен для размещения аппаратуры и оборудования основных систем космического корабля, обеспечивающих орбитальный полет. Он состоит из переходной, приборной и агрегатной секций. В переходной секции, выполненной в виде форменной конструкции, соединяющей спускаемый аппарат с приборной секцией, установлено 10 двигателей причаливания и ориентации с тягой 100 Н каждый, топливные баки и система подачи однокомпонентного топлива (перекиси водорода). Герметичная приборная секция объемом 2,2 м3, имеет форму цилиндра диаметром 2,1 м, высотой 0,5 м с двумя съемными крышками. В приборной секции размещены приборы систем ориентации и управления движением, управления бортовым комплексом аппаратуры и оборудования корабля, радиосвязи с Землей и программно-временного устройства, телеметрии, единого электропитания. Корпус агрегатной секции выполнен в виде цилиндрической оболочки, переходящей в коническую и заканчивающейся базовым шпангоутом, предназначенным для установки корабля на ракету-носитель. Снаружи агрегатной секции расположен большой радиатор-излучатель системы терморегулирования, 4 двигателя причаливания и ориентации, 8 двигателей ориентации. В агрегатной секции размещена сближающе-корректирующая двигательная установка КТДУ-35, состоящая из основного и дублирующего двигателей с тягой по 4,1 кН, топливных баков и системы подачи двухкомпонентного топлива. Около базового шпангоута установлены антенны радиосвязи и телеметрии, ионные датчики системы ориентации и часть батарей системы единого электропитания корабля. Солнечные батареи (на кораблях, используемых в качестве транспортных кораблей для обслуживания орбитальных станций «Салют», не устанавливаются) выполнены в виде двух «крыльев» из 3-4 створок каждое. На концевых створках батарей размещены антенны радиосвязи, телеметрии и цветные бортовые огни ориентации (в эксперименте по программе ЭПАС).

Все отсеки космического корабля снаружи закрыты экранно-вакуумной теплоизоляцией зеленого цвета. При выведении на орбиту — на участке полета в плотных слоях атмосферы корабль закрыт сбрасываемым головным обтекателем, оснащенным двигательной установкой системы аварийного спасения.

Система ориентации и управления движением корабля может работать как в автоматическом режиме, так и в режиме ручного управления. Бортовая аппаратура получает энергию от централизованной системы электропитания, включающей солнечные, а также автономные химические батареи и буферные батареи. После стыковки космического корабля с орбитальной станцией солнечные батареи могут использоваться в общей системе электропитания.

Система жизнеобеспечения включает блоки регенерации атмосферы спускаемого аппарата и орбитального отсека (близкой по своему составу воздуху Земли) и терморегулирования, запасы пищи и воды, ассенизационно-санитарное устройство. Регенерация обеспечивается веществами, поглощающими углекислый газ с одновременным выделением кислорода. Специальные фильтры поглощают вредные примеси. На случай возможной аварийной разгерметизации жилых отсеков для экипажа предусмотрены скафандры. При работе в них условия для жизнедеятельности создаются подачей в скафандр воздуха от бортовой системы наддува.

Система терморегулирования поддерживает температуру воздуха в жилых отсеках в пределах 15-25 °С и относит. влажность в пределах 20-70%; температуру газа (азот) в приборной секции 0-40°С.

Комплекс радиотехнических средств предназначен для определения параметров орбиты космического корабля, приема команд с Земли, двухсторонней телефонной и телеграфной связи с Землей, передачи на Землю телевизионных изображений обстановки в отсеках и внешней обстановки, наблюдаемой ТВ камерой.

За 1967 — 1981 гг. выведено на орбиту искусственного спутника Земли 38 пилотируемых космических кораблей «Союз».

«Союз-1», пилотируемый В.М.Комаровым, был запущен 23.4.1967 с целью испытаний корабля и отработки систем и элементов его конструкции. При спуске (на 19-м витке) «Союз-1» благополучно прошел участок торможения в плотных слоях атмосферы и погасил первую космическую скорость. Однако вследствие ненормальной работы парашютной системы на высоте ~7 км спускаемый аппарат снижался с большой скоростью, что привело к гибели космонавта.

Космический корабль «Cоюз-2» (беспилотный) и «Союз-3» (пилотируемый Г.Т.Береговым) совершили совместный полет для проверки работы систем и конструкции, отработки сближения и маневрирования. По окончании совместных экспериментов корабли совершили управляемый спуск с использованием аэродинамического качества.

На кораблях «Союз-6», «Союз-7», «Союз-8» проведен групповой полет. Выполнена программа научно-технических экспериментов, включая испытания способов сварки и резки металлов в условиях глубокого вакуума и невесомости, проведены отработка навигационных операций, взаимное маневрирование, осуществлены взаимодействие кораблей между собой и с наземными командно-измерительными пунктами, одновременное управление полетом трех космических кораблей.

Для кораблей «Союз-23» и «Союз-25» была запланирована стыковка с орбитальной станцией типа «Салют». Вследствие неправильной работы аппаратуры измерения параметров относительного движения (корабль «Союз-23»), отклонения от заданного режима работы на участке ручного причаливания («Союз-25») стыковка не состоялась. На этих кораблях проводилась отработка маневрирования, сближения с орбитальными станциями типа «Салют».

В ходе длительных космических полетов проведен большой комплекс исследований Солнца, планет и звезд в широком диапазоне спектра электромагнитных излучений. Впервые («Союз-18») выполнено комплексное фото- и спектрографическое исследование полярных сияний, а также редкого явления природы — серебристых облаков. Проведены комплексные исследования реакций организма человека на действия факторов длительного космического полета. Испытаны различные средства профилактики неблагоприятного действия невесомости.

В ходе 3-месячного полета «Союз-20» совместно с «Салютом-4» проводились ресурсные испытания.

На базе космических кораблей «Союз» созданы грузовой транспортный космический корабль ГТК «Прогресс», а на основе опыта эксплуатации кораблей «Союз» — существенно модернизированный корабль «Союз Т».

Запуски космических кораблей «Союз» осуществлялись 3-ступенчатой ракетой-носителем «Союз».

Программа космических кораблей «Союз».

Космический корабль «Союз-1». Космонавт — В.М.Комаров. Позывной — «Рубин». Запуск — 23.04.1967 г., посадка — 24.04.1967 г. Цель — испытание нового корабля. Планировалась стыковка с кораблем «Союз-2» с тремя космонавтами на борту, переход через открытый космос двух космонавтов, и посадка уже с тремя космонавтами на борту. Из-за отказа ряда систем на корабле «Союз-1» запуск «Союз-2» был отменен.(Эта программа была выполнена в 1969 году кораблем
«Союз-4» и «Союз-5»). При возвращении на Землю из-за нерасчетной работы парашютной системы космонавт Владимир Комаров погиб.

Космический корабль «Союз-2» (беспилотный). Запуск — 25.10.1968 г., посадка — 28.10.1968 г. Цель: проверка доработанной конструкции корабля, проведение совместных экспериментов с пилотируемым «Союз-3» (сближение и маневрирование).

Космический корабль «Союз-3». Космонавт — Г.Т.Береговой. Позывной — «Аргон». Запуск — 26.10.1968 г., посадка — 30.10.1968 г. Цель: проверка доработанной конструкции корабля, сближение и маневрирование с беспилотным «Союз-2».

Космический корабль «Союз-4». Первая стыковка на орбиту двух пилотируемых кораблей — создание первой экспериментальной орбитальной станции. Командир — В.А.Шаталов. Позывной — «Амур». Запуск — 14.01.1969 г. 16.01. 1969 г. в ручном режиме состыковался с пассивным кораблем «Союз-5» (масса связки двух кораблей — 12924 кг), из которого два космонавта А.С.Елисеев и Е.В.Хрунов перешли через открытый космос в «Союз-4» (время пребывания в открытом космосе — 37 минут). Через 4,5 часа корабли расстыковались. Посадка — 17.01.1969 г. с космонавтами В.А.Шаталовым, А.С.Елисеевым, Е.В.Хруновым.

Космический корабль «Союз-5». Первая стыковка на орбите двух пилотируемых кораблей — создание первой экспериментальной орбитальной станции. Командир — Б.В.Волынов, члены экипажа: А.С.Елисеев, Е.В.Хрунов. Позывной — «Байкал». Запуск — 15.01.1969 г. 16.01.1969 г. состыковался с активным кораблем «Союз-4» (масса связки — 12924 кг), затем А.С.Елисеев и Е.В.Хрунов через открытый космос перешли в «Союз-4» (время пребывания в открытом космосе — 37 минут). Через 4,5 часа корабли расстыковались. Посадка — 18.01.1969 г. с космонавтом Б.В.Волыновым.

Космический корабль «Союз-6». Выполнение первого в мире технологического эксперимента. Групповое взаимное маневрирование двух и трех космических кораблей (С кораблями «Союз-7» и «Союз-8»). Экипаж: командир Г.С.Шонин и бортинженер В.Н.Кубасов. Позывной — «Антей». Запуск — 11.10.1969 г. Посадка — 16.10.1969 г.

Космический корабль «Союз-7». Выполнение группового взаимного маневрирования двух и трех кораблей («Союз-6» и «Союз-8»). Экипаж: командир А.В.Филипченко, члены экипажа: В.Н.Волков, В.В.Горбатко. Позывной — «Буран». Запуск — 12.10.1969 г., посадка — 17.10.1969 г.

Космический корабль «Союз-8». Групповое взаимное маневрирование двух и трех кораблей («Союз-6» и «Союз-7»). Экипаж: командир В.А.Шаталов, бортинженер А.С.Елисеев. Позывной — «Гранит». Запуск — 13.10.1969 г., посадка — 18.10.1969 г.

Космический корабль «Союз-9». Первый длительный полет (17,7 суток). Экипаж: командир А.Г.Николаев, бортинженер — В.И.Севастьянов. Позывной — «Сокол». Запуск — 1.06.1970 г., посадка — 19.06.1970 г.

Космический корабль «Союз-10». Первая стыковка с орбитальной станцией «Салют». Экипаж: командир В.А.Шаталов, члены экипажа: А.С.Елисеев, Н.Н.Рукавишников. Позывной — «Гранит». Запуск — 23.04.1971 г. Посадка — 25.04.1971 г. Выполнена стыковка с орбитальной станцией «Салют»(24.04.1971 г.), но экипаж не смог открыть переходные люки в станцию, 24.04.1971 г. космический корабль отделился от орбитальной станции и возвратился досрочно.

Космический корабль «Союз-11». Первая экспедиция на орбитальную станцию «Салют». Экипаж: командир Г.Т.Добровольский, члены экипажа: В.Н.Волков, В.И.Пацаев. Запуск — 6.06.1971 г. 7.06.1971 г. корабль состыковался с орбитальной станцией «Салют». 29.06.1971 г. «Союз-11» отстыковался от орбитальной станции. 30.06.1971 г. — осуществлена посадка. Из-за разгерметизации спускаемого аппарата на большой высоте все члены экипажа погибли (полет осуществлялся без скафандров).

Космический корабль «Союз-12». Проведение испытаний усовершенствованных бортовых систем корабля. Проверка системы спасения экипажа в случае аварийной разгерметизации. Экипаж: командир В.Г.Лазарев, бортинженер О.Г.Макаров. Позывной — «Урал». Запуск — 27.09.1973 г., посадка — 29.09.1973 г.

Космический корабль «Союз-13». Выполнение астрофизических наблюдений и спектрографирования в ультрафиолетовом диапазоне с помощью системы телескопов «Орион-2» участков звездного неба. Экипаж: командир П.И.Климук, бортинженер В.В.Лебедев. Позывной — «Кавказ». Запуск — 18.12.1973 г., посадка — 26.12.1973 г.

Космический корабль «Союз-14». Первая экспедиция на орбитальную станцию «Салют-3». Экипаж: командир П.Р.Попович, бортинженер Ю.П.Артюхин. Позывной — «Беркут». Запуск — 3.07.1974 г., стыковка с орбитальной станцией — 5.07.1974 г., отделение — 19.07.1974 г., посадка — 19.07.1974 г.

Космический корабль «Союз-15». Экипаж: командир Г.В.Сарафанов, бортинженер Л.С.Демин. Позывной — «Дунай». Запуск — 26.08.1974 г., посадка 28.08.1974 г. Планировалась стыковка с орбитальной станцией «Салют-3» и продолжение научных исследований на ее борту. Стыковка не состоялась.

Космический корабль «Союз-16». Испытание бортовых систем модернизированного корабля «Союз» в соответствии с программой ЭПАС. Экипаж: командир А.В.Филипченко, бортинженер Н.Н.Рукавишников. Позывной — «Буран». Запуск — 2.12.1974 г., посадка — 8.12.1974 г.

Космический корабль «Союз-17». Первая экспедиция на орбитальную станцию «Салют-4». Экипаж: командир А.А.Губарев, бортинженер Г.М.Гречко. Позывной — «Зенит». Запуск — 11.01.1975 г., стыковка с орбитальной станцией «Салют-4» — 12.01.1975 г., отделение и мягкая посадка — 9.02.1975 г.

Космический корабль «Союз-18-1». Суборбитальный полет. Экипаж: командир В.Г.Лазарев, бортинженер О.Г.Макаров. Позвной — не зарегистрирован. Запуск и посадка — 5.04.1975 г. Планировалось продолжение научных исследований на орбитальной станции «Салют-4». Из-за отклонений в работе 3-й ступени ракеты-носителя, была выдана команда на прекращение полета. Космический корабль совершил посадку в нерасчетном районе юго-западнее г.Горно-Алтайска

Космический корабль «Союз-18». Вторая экспедиция на орбитальную станцию «Салют-4». Экипаж: командир П.И.Климук, бортинженер В.И.Севастьянов. Позывной — «Кавказ». Запуск — 24.05.1975 г., стыковка с орбитальной станцией «Салют-4» — 26.05.1975 г., отделение, спуск и мягкая посадка — 26.07.1975 г.

Космический корабль «Союз-19». Первый полет по советско-американской программе ЭПАС. Экипаж: командир — А.А.Леонов, бортинженер В.Н.Кубасов. Позывной — «Союз». Запуск — 15.07.1975 г., 17.07.1975 г. —
стыковка с американским космическим кораблем «Аполлон». 19.07.1975 г. корабли расстыковались, выполняя эксперимент «Солнечное затмение», затем (19.07) осуществлена повторная стыковка и окончательная расстыковка двух космических кораблей. Посадка — 21.07.1975 г. Во время совместного полета осуществлялись взаимные переходы космонавтов и астронавтов, выполнена большая научная программа.

Космический корабль «Союз-20». Беспилотный. Запуск — 17.11.1975 г., стыковка с орбитальной станцией «Салют-4» — 19.11.1975 г., отделение, спуск и посадка — 16.02.1975 г. Осуществлялись ресурсные испытания бортовых систем корабля.

Космический корабль «Союз-21». Первая экспедиция на орбитальную станцию «Салют-5». Экипаж: командир Б.В.Волынов, бортинженер В.М.Жолобов. Позывной — «Байкал». Запуск — 6.07.1976 г., стыковка с орбитальной станцией «Салют-5» — 7.07.1976 г., расстыковка, спуск и посадка — 24.08.1976 г.

Космический корабль «Союз-22». Отработка принципов и методов многозонального фотографирования участков земной поверхности. Экипаж: командир В.Ф.Быковский, бортинженер В.В.Аксенов. Позывной — «Ястреб». Запуск — 15.09.1976 г., посадка — 23.09.1976 г.

Космический корабль «Союз-23». Экипаж: командир В.Д.Зудов, бортинженер В.И.Рождественский. Позывной — «Радон». Запуск — 14.10.1976 г. Посадка — 16.10.1976 г. Планировалась работа на орбитальной станции «Салют-5». Из-за нерасчетного режима работы системы сближения космических кораблей стыковка с «Салют-5» не состоялась.

Космический корабль «Союз-24». Вторая экспедиция на орбитальную станцию «Салют-5». Экипаж: командир В.В.Горбатко, бортинженер Ю.Н.Глазков. Позывной — «Терек». Запуск — 7.02.1977 г. Стыковка с орбитальной станцией «Салют-5» — 8.02.1976 г. Расстыковка, спуск и посадка — 25.02.1977 г.

Космический корабль «Союз-25». Экипаж: командир В.В.Коваленок, бортинженер В.В.Рюмин. Позывной — «Фотон». Запуск — 9.10.1977 г. Посадка — 11.10.1977г. Планировалась стыковка с новой орбитальной станцией «Салют-6» и осуществление на ней программы научных исследований. Стыковка не состоялась.

Космический корабль «Союз-26». Доставка экипажа 1-й основной экспедиции на орбитальную станцию «Салют-6». Экипаж: командир Ю.В.Романенко, бортинженер Г.М.Гречко. Запуск — 10.12.1977 г. Стыковка с «Салют-6» — 11.12.1977 г. Расстыковка, спуск и посадка — 16.01.1978 г. с экипажем 1-й экспедиции посещения в составе: В.А.Джанибеков, О.Г.Макаров (впервые произошел обмен космическими кораблями, входящими в комплекс «Салют-6»).

Космический корабль «Союз-27». Доставка на орбитальную станцию «Салют-6» 1-й экспедиции посещения. Экипаж: командир В.А.Джанибеков, бортинженер О.Г.Макаров. Запуск — 10.01.1978 г. Стыковка с орбитальной станцией «Салют-6» — 11.01.1978 г. Отделение, спуск и посадка 16.03.1978 г. с экипажем 1-й основной экспедиции в составе: Ю.В.Романенко, Г.М.Гречко.

Космический корабль «Союз-28». Доставка на орбитальную станцию «Салют-6» 1-го международного экипажа (2-й экспедиции посещения). Экипаж: командир — А.А.Губарев, космонавт-исследователь — гражданин Чехословакии В.Ремек. Запуск — 2.03.1978 г. Стыковка с «Салют-6» — 3.03.1978 г. Расстыковка, спуск и посадка — 10.03.1978 г.

Космический корабль «Союз-29». Доставка на орбитальную станцию «Салют-6» экипажа 2-й основной экспедиции. Экипаж: командир — В.В.Коваленок, бортинженер — А.С.Иванченков. Запуск — 15.06.1978 г. Стыковка с «Салют-6» — 17.06.1978 г. Расстыковка, спуск и посадка 3.09.1978 г. с экипажем 4-й экспедиции посещения в составе: В.Ф.Быковский, З.Йен (ГДР).

Космический корабль «Союз-30». Доставка на орбитальную станцию «Салют-6» и возвращение экипажа 3-й экспедиции посещения (второго международного экипажа). Экипаж: командир П.И.Климук, космонавт-исследователь, гражданин Польши М.Гермашевский. Запуск — 27.06.1978 г. Стыковка с «Салют-6» — 28.06.1978 г. Расстыковка, спуск и посадка — 5.07.1978 г.

Космический корабль «Союз-31». Доставка на орбитальную станцию «Салют-6» экипажа 4-й экспедиции посещения (3-го международного экипажа). Экипаж: командир — В.Ф.Быковский, космонавт-исследователь, гражданин ГДР З.Йен. Запуск — 26.08.1978 г. Стыковка с орбитальной станцией «Салют-6» — 27.08.1978 г. Расстыковка, спуск и посадка — 2.11.1978 г. с экипажем 2-й основной экспедиции в составе: В.В.Коваленок, А.С.Иванченков.

Космический корабль «Союз-32». Доставка на орбитальную станцию «Салют-6» 3-й основной экспедиции. Экипаж: командир В.А.Ляхов, бортинженер В.В.Рюмин. Запуск — 25.02.1979 г. Стыковка с «Салют-6» — 26.02.1979 г. Расстыковка, спуск и приземление 13.06.1979 г. без экипажа в автоматическом режиме.

Космический корабль «Союз-33». Экипаж: командир Н.Н.Рукавишников, космонавт-исследователь, гражданин Болгарии Г.И.Иванов. Позывной — «Сатурн». Запуск — 10.04.1979 г. 11.04.1979 г. в связи с отклонениями от штатного режима в работе сближающе-корректирующей установки стыковка с орбитальной станцией «Салют-6» отменена. 12.04.1979 г. корабль совершил спуск и посадку.

Космический корабль «Союз-34». Запуск 6.06.1979 г. без экипажа. Стыковка с орбитальной станцией «Салют-6» — 8.06.1979 г. 19.06.1979г. расстыковка, спуск и посадка с экипажем 3-й основной экспедиции в составе: В.А.Ляхов, В.В.Рюмин. (Спускаемый аппарат экспонируется в ГМИК им.К.Э.Циолковского).

Космический корабль «Союз-35». Доставка на орбитальную станцию «Салют-6» 4-й основной экспедиции. Экипаж: командир Л.И.Попов, бортинженер В.В.Рюмин. Запуск — 9.04.1980 г. Стыковка с «Салют-6» — 10.04.1980 г. Расстыковка, спуск и посадка 3.06.1980 г. с экипажем 5-й экспедиции посещения (4-го международного экипажа в составе: В.Н.Кубасов, Б.Фаркаш.

Космический корабль «Союз-36». Доставка на орбитальную станцию «Салют-6» экипажа 5-й экспедиции посещения (4-го международного экипажа). Экипаж: командир В.Н.Кубасов, космонавт-исследователь, гражданин Венгрии Б.Фаркаш. Запуск — 26.05.1980 г. Стыковка с «Салют-6» — 27.05.1980 г. Расстыковка, спуск и посадка 3.08.1980 г. с экипажем 7-й экспедиции посещения в составе: В.В.Горбатко, Фам Туан (Вьетнам).

Космический корабль «Союз-37». Доставка на орбитальную станцию экипажа 7-й экспедиции посещения (5-го международного экипажа). Экипаж: командир В.В.Горбатко, космонавт-исследователь, гражданин Вьетнама Фам Туан. Запуск — 23.07.1980 г. Стыковка с «Салют-6» — 24.07.1980 г. Расстыковка, спуск и посадка — 11.10.1980 г. с экипажем 4-й основной экспедиции в составе: Л.И.Попов, В.В.Рюмин.

Космический корабль «Союз-38». Доставка на орбитальную станцию «Салют-6» и возвращение экипажа 8-й экспедиции посещения (6-го международного экипажа). Экипаж: командир Ю.В.Романенко, космонавт-исследователь, гражданин Кубы М.А.Тамайо. Запуск — 18.09.1980 г. Стыковка с «Салют-6» — 19.09.1980 г. Расстыковка, спуск и посадка 26.09.1980г.

Космический корабль «Союз-39». Доставка на орбитальную станцию «Салют-6» и возвращение 10-й экспедиции посещения (7-го международного экипажа). Экипаж: командир В.А.Джанибеков, космонавт-исследователь, гражданин Монголии Ж.Гуррагча. Запуск — 22.03.1981 г. Стыковка с «Салют-6» — 23.03.1981 г. Расстыковка, спуск и посадка — 30.03.1981 г.

Космический корабль «Союз-40». Доставка на орбитальную станцию «Салют-6» и возвращение экипажа 11-й экспедиции посещения (8-го международного экипажа). Экипаж: командир Л.И.Попов, космонавт-исследователь, гражданин Румынии Д.Прунариу. Запуск — 14.05.1981 г. Стыковка с «Салют-6» — 15.05.1981 г. Расстыковка, спуск и посадка 22.05.1981 г.