Какие функции называются тригонометрическими. Выражения через комплексные переменные. Определение тригонометрических функций через ряды

Определения

Определения тригонометрическим функциям даются с помощью тригонометрической окружности, под которой понимается окружность единичного радиуса с центром в начале координат.

Рассмотрим два радиуса этой окружности: неподвижный (где точка) и подвижный (где точка). Пусть подвижный радиус образует с неподвижным угол.

Число, равное ординате конца единичного радиуса, образующего угол с неподвижным радиусом, называется синусом угла : .

Число, равное абсциссе конца единичного радиуса, образующего угол с неподвижным радиусом, называется косинусом угла : .

Таким образом, точка, являющаяся концом подвижного радиуса, образующего угол, имеет координаты.

Тангенсом угла называется отношение синуса этого угла к его косинусу: , .

Котангенсом угла называется отношение косинуса этого угла к его синусу: , .

Геометрический смысл тригонометрических функций

Геометрический смысл синуса и косинуса на тригонометрической окружности понятен из определения: это абсцисса и ординат точки пересечения подвижного радиуса, составляющего угол с неподвижным радиусом, и тригонометрической окружности. То есть, .

Рассмотрим теперь геометрический смысл тангенса и котангенса. Треугольники подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

Также подобен по трем углам (,), тогда имеет место отношение. С другой стороны, в, следовательно.

С учетом геометрического смысла тангенса и котангенса вводят понятие оси тангенсов и оси котангенсов.

Осями тангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вверх, вторая касается окружности в точке и направлена вниз.

Осями котангенсов называются оси, одна из которых касается тригонометрической окружности в точке и направлена вправо, вторая касается окружности в точке и направлена влево.

Свойства тригонометрических функций

Рассмотрим некоторые основные свойства тригонометрических функций. Остальные свойства будут рассмотрены в разделе, посвященном графикам тригонометрических функций.

Область определения и область значений

Как уже было сказано ранее, синус и косинус существуют для любых углов, т.е. областью определения этих функций является множество действительных чисел. По определению тангенс не существует для углов , а котангенс для углов, .

Поскольку синус и косинус являются ординатой и абсциссой точки на тригонометрической окружности, их значения лежат в промежутке. Областью значения тангенса и котангенса является множество действительных чисел (в этом нетрудно убедиться, глядя на оси тангенсов и котангенсов).

Четность/нечетность

Рассмотрим тригонометрические функции двух углов (который соответствует подвижному радиусу) и (который соответствует подвижному радиусу). Поскольку, значит точка имеет координаты. Поэтому, т.е. синус - функция нечетная; , т.е. косинус - функция четная; , т.е. тангенс нечетен; , т.е. котангенс также нечетен.

Промежутки знакопостоянства

Знаки тригонометрических функций для различных координатных четвертей следуют из определения этих функций. Следует отметить, что поскольку тангенс и котангенс являются отношениями синуса и косинуса, они положительны, когда синус и косинус угла имеют одинаковые знаки и отрицательны когда разные.

Периодичность


Периодичность синуса и косинуса основана на том факте, что углы, отличающиеся на целое количество полных оборотов, соответствуют одному и тому же взаимному расположению подвижного и неподвижного лучей. Соответственно и координаты точки пересечения подвижного луча и тригонометрической окружности будут одинаковы для углов, отличающихся на целое количество полных оборотов. Таким образом, периодом синуса и косинуса является и, где.

Очевидно, что также является периодом для тангенса и котангенса. Но существует ли меньший период для этих функций? Докажем, что наименьшим периодом для тангенса и котангенса является.

Рассмотрим два угла и. Оп геометрическому смыслу тангенса и котангенса, . По стороне и прилежащим к ней углам равны треугольники и, значит равны и их стороны, значит и. Аналогичным образом можно доказать, то, где. Таким образом, периодом тангенса и котангенса является.

Тригонометрические функции основных углов

Формулы тригонометрии

Для успешного решения тригонометрических задач необходимо владеть многочисленными тригонометрическими формулами. Тем не менее, нет необходимости заучивать все формулы. Знать наизусть нужно лишь самые основные, а остальные формулы нужно уметь при необходимости вывести.

Основное тригонометрическое тождество и следствия из него

Все тригонометрические функции произвольного угла связаны между собой, т.е. зная одну функции всегда можно найти остальные. Эту связь дают формулы, рассматриваемые в данном разделе.

Теорема 1 (Основное тригонометрическое тождество) . Для любого справедливо тождество

Доказательство состоит в применении теоремы Пифагора для прямоугольного треугольника с катетами, и гипотенузой.

Справедлива и более общая теорема.

Теорема 2 . Для того, чтобы два числа можно было принять за косинус и синус одного и того же вещественного угла, необходимо и достаточно, чтобы сумма их квадратов была равна единице:

Рассмотрим следствия из основного тригонометрического тождества.

Выразим синус через косинус и косинус через синус:

В данный формулах знак плюс или минус перед корнем выбирается в зависимости от четверти, в которой лежит угол.

Подставляя полученные выше формулы в формулы, определяющие тангенс и котангенс, получаем:

Разделив основное тригонометрическое тождество почленно на или получим соотвественно:

Эти соотношения можно переписать в виде:

Следующие формулы дают связь между тангенсом и котангенсом. Поскольку при, а при, то имеет место равенство:

Формулы приведения

С помощью формул приведения можно выразить значения тригонометрических функций произвольных углов через значения функций острого угла. Все формулы приведения могут быть обобщены с помощью следующего правила.

Любая тригонометрическая функция угла, по абсолютной величине равна той же функции угла, если число - четное, и ко-функции угла, если число - нечетное. При этом если функция угла, положительна, когда - острый положительный угол, то знаки обеих функций одинаковы, если отрицательна, то различны.

Формулы суммы и разность углов

Теорема 3 . Для любых вещественных и справедливы следующие формулы:

Доказательство остальных формул основано на формулах приведения и четности/нечетности тригонометрических функций.

Что и требовалось доказать.

Теорема 4 . Для любых вещественных и, таких, что

1. , справедливы следующие формулы

2. , справедливы следующие формулы

Доказательство. По определению тангенса

Последнее преобразование получено делением числителя и знаменателя этой дроби на.

Аналогично для котангенса (числитель и знаменатель в этом случае делятся на):

Что и требовалось доказать.

Следует обратить внимание на тот факт, что правые и левые части последних равенств имеют разные области допустимых значений. Поэтому применение этих формул без ограничений на возможные значения углов может привести к неверным результатам.

Формулы двойного и половинного угла

Формулы двойного угла позволяют выразить тригонометрические функции произвольного угла через функции угла в два раза меньше исходного. Эти формулы являются следствиями формул суммы двух углов, если положить в них углы равными друг другу.

Последнюю формулу можно преобразовать с помощью основного тригонометрического тождества:

Таким образом, для косинуса двойного угла существует три формулы:

Следует отметить, что данная формула справедлива только при

Последняя формула справедлива при, .

Аналогично функциям двойного угла могут быть получены функции тройного угла. Здесь данные формулы приводятся без доказательства:

Формулы половинного угла являются следствиями формул двойного угла и позволяют выразить тригонометрические функции некоторого угла через функции угла в два раза больше исходного.

1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

11. График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

12. График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

13. График функции тангенс
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

14. График функции котангенс
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

15. График функции секанс
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪.

При определении функции у = cos φ (для всех φ) заметим сначала, что cos φ = sin (π/2 - φ) для 0 ≤ φ ≤ π/2, которое следует непосредственно из определения тригонометрических функций sin φ и cos φ. Так как функция у = sin φ уже нами определена при всех φ, мы положим по определению, что это равенство и задает функцию у = cos φ при всех φ. Из этого определения нетрудно получить и график функции у = cos φ, которая, очевидно, будет четной и периодической, так как ее график получается из графика функции у = sin φ путем параллельного переноса влево на отрезок длиной π/2, как единого целого графика функции у = sin φ (рис. 5).

Простейший анализ (с помощью графика) показывает, что помимо отмеченной выше справедливы также следующие так называемые формулы приведения:

sin (φ + nπ) = ± sin φ, cos (φ + nπ) = ± соs φ,

sin (φ + nπ/2) = ± cos φ, cos (φ + nπ/2) = ∓ sin φ,

В формулах первой строки n может быть любым целым числом, причем верхний знак соответствует n = 2k, нижний знак - значению n = 2k + 1, а в формулах второй строки n может быть только нечетным числом, причем верхний знак берется при n = 4k + 1, а нижний - при n = 4k - 1, k - целое.

С помощью основных тригонометрических функций sin φ и cos φ можно определить другие тригонометрические функции - тангенс и котангенс:

tg φ = sin φ / cos φ,

ctg φ = cos φ / sin φ;

при этом тангенс определен только для таких значений φ, для которых cos φ ≠ 0, т. е. для φ ≠ π/2 + nπ, n = 0, ±1, + 2, ..., а функция котангенс - для таких φ, для которых sin φ ≠ 0, т.е. φ ≠ nπ, n = 0, ±1, ±2, .... Эти функции для острых углов могут быть также представлены геометрически направленными отрезками прямых (рис. 6):

tg φ = |AВ|, ctg φ = |CD|.

Подобно синусу и косинусу, функции тангенс и котангенс для острых углов могут рассматриваться как отношения катетов: противолежащего к прилежащему для тангенса и прилежащего к противолежащему для котангенса. Графики функций у = tg φ и у = ctg φ показаны на рис. 7 и 8; как видно, эти функции являются нечетными, периодическими и имеют в качестве периода числа nπ, n = +1, ±2, ....

Важнейшие тригонометрические формулы - формулы сложения:

sin (φ 1 ± φ 2) = sin φ 1 cos φ 2 ± cos φ 1 sin φ 2 ,

cos (φ 1 ± φ 2) = cos φ 1 cos φ 2 ∓ sin φ 1 sin φ 2 ,

tg(φ 1 ± φ 2) = (tg φ 1 ± tg φ 2)/(1 ∓ tg φ 1 tg φ 2)

знаки в левых и правых частях формул согласованы, т.е. верхнему знаку слева соответствует верхний знак справа. Из них, в частности, выводятся формулы для кратных аргументов:

sin 2φ = 2 sin φ cos φ,

cos 2φ = cos 2 φ - sin 2 φ,

tg 2 φ = 2tg φ (1 - tg 2 φ).

Сумму и разность тригонометрических функций можно представить в виде произведения тригонометрических функций (знаки в первой и четвертой формулах согласованы):

sin φ 1 sin φ 2 = 2sin ((φ 1 ± φ 2)/2) cos ((φ 1 ∓ φ 2)/2),

cos φ 1 + cos φ 2 = 2cos ((φ 1 + φ 2)/2) cos ((φ 1 - φ 2)/2),

cos φ 1 - cos φ 2 = -2sin ((φ 1 + φ 2)/2) sin ((φ 1 - φ 2)/2),

tg φ 1 ± tg φ 2 = sin (φ 1 ± φ 2)/(cos φ 1 cos φ 2).

Произведение тригонометрических функций выражается через сумму следующим образом:

sin φ 1 cos φ 2 = 1/2 ,

sin φ 1 sin φ 2 = 1/2 ,

cos φ 1 cos φ 2 = 1/2 .

Производные тригонометрических функций выражаются через тригонометрические функции (здесь и всюду в дальнейшем мы заменим переменную φ на х):

(sin х)" = cos х, (cos х)" = -sin х,

(tgx)" = 1/cos 2 x, (ctgx)"= -1/sin 2 x.

При интегрировании тригонометрических функций получаются тригонометрические функции или их логарифмы (0 < х < π/2, С - абсолютная постоянная):

∫sin x dx = -cos х + С, ∫cos x dx = sin x + С,

∫tg xdx = -ln cos x + C, ∫ctg x dx = ln sin x + С.

Основные тригонометрические функции u = cos х и v = sin х, как мы видели, связаны следующими соотношениями:

и" = -v, v" = u.

Дифференцируя вторично эти равенства, получаем:

и" = -v"= -u, v" = u"= -V.

Таким образом, функции u и v от переменной х могут рассматриваться как решения одного и того же (дифференциального) уравнения у" + у = 0.

Это уравнение, а точнее - его обобщение, содержащее положительную постоянную k 2 , у" + k 2 у = 0 (решениями которого, в частности, служат функции cos kx и sin kx), постоянно встречается при изучении колебаний, т.е. при изучении конструкций механизмов, совершающих или производящих колебательные движения.

Функция cos x может быть представлена в виде бесконечного ряда 1 - х 2 /2! + х 4 /4! - х 6 /6!.... Если взять несколько первых членов этого ряда, мы получим приближения функции cos x с помощью многочленов. На рис. 9 показано, как графики этих многочленов с ростом их степени все лучше приближают функцию cosx.

Название «синус» происходит от латинского sinus - «перегиб», «пазуха» - представляет собой перевод арабского слова «джива» («тетива лука»), которым обозначали синус индийские математики. Латинское слово tangens означает «касательная» (см. рис. 6; АВ-касательная к окружности). Названия «косинус» и «котангенс» представляют собой сокращения терминов complementi sinus, complementi tangens («синус дополнения», «тангенс дополнения»), выражающих тот факт, что cos φ и ctg φ равны соответственно синусу и тангенсу аргумента, дополнительного к φ до π/2: cos φ = sin (π/2 - φ), ctg φ = tg(π/2 - φ).

ЕГЭ на 4? А не лопнешь от счастья?

Вопрос, как говорится, интересный... Можно, можно сдать на 4! И при этом не лопнуть... Главное условие - заниматься регулярно. Здесь - основная подготовка к ЕГЭ по математике. Со всеми секретами и тайнами ЕГЭ, о которых Вы не прочитаете в учебниках... Изучайте этот раздел, решайте больше заданий из различных источников - и всё получится! Предполагается, что базовый раздел "С тебя и тройки хватит!" у вас затруднений не вызывает. Но если вдруг... По ссылочкам-то ходите, не ленитесь!

И начнём мы с великой и ужасной темы.

Тригонометрия

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Эта тема доставляет массу проблем ученикам. Считается одной из самых суровых. Что такое синус и косинус? Что такое тангенс и котангенс? Что такое числовая окружность? Стоит задать эти безобидные вопросы, как человек бледнеет и пытается увести разговор в сторону… А зря. Это простые понятия. И ничем эта тема не сложнее других. Просто нужно с самого начала чётко уяснить ответы на эти самые вопросы. Это очень важно. Если уяснили – тригонометрия вам понравится. Итак,

Что такое синус и косинус? Что такое тангенс и котангенс?

Начнём с глубокой древности. Не волнуйтесь, все 20 веков тригонометрии мы пройдём минут за 15. И, незаметно для себя, повторим кусочек геометрии из 8 класса.

Нарисуем прямоугольный треугольник со сторонами а, в, с и углом х . Вот такой.

Напомню, что стороны, которые образуют прямой угол, называются катетами. а и в – катеты. Их два. Оставшаяся сторона называется гипотенузой. с – гипотенуза.

Треугольник и треугольник, подумаешь! Что с ним делать? А вот древние люди знали, что делать! Повторим их действия. Измерим сторону в . На рисунке специально клеточки нарисованы, как в заданиях ЕГЭ бывает. Сторона в равна четырём клеточкам. Ладно. Измерим сторону а. Три клеточки.

А теперь поделим длину стороны а на длину стороны в . Или, как ещё говорят, возьмём отношение а к в . а/в = 3/4.

Можно наоборот, поделить в на а. Получим 4/3. Можно в поделить на с. Гипотенузу с по клеточкам не посчитать, но она равна 5. Получим в/с = 4/5. Короче, можно делить длины сторон друг на друга и получать какие-то числа.

Ну и что? Какой смысл в этом интересном занятии? Пока никакого. Бестолковое занятие, прямо скажем.)

А теперь сделаем вот что. Увеличим треугольник. Продлим стороны в и с , но так, чтобы треугольник остался прямоугольным. Угол х , естественно, не меняется. Чтобы это увидеть, наведите курсор мышки на картинку, или коснитесь её (если у вас - планшет). Стороны а, в и с превратятся в m, n, k , и, понятное дело, длины сторон изменятся.

А вот их отношения – нет!

Отношение а/в было: а/в = 3/4, стало m/n = 6/8 = 3/4. Отношения других соответствующих сторон также не изменятся . Можно как угодно менять длины сторон в прямоугольном треугольнике, увеличивать, уменьшать, не меняя угла х отношения соответствующих сторон не изменятся . Можно проверить, а можно поверить древним людям на слово.

А вот это уже очень важно! Отношения сторон в прямоугольном треугольнике никак не зависят от длин сторон (при одном и том же угле). Это настолько важно, что отношения сторон заслужили свои специальные названия. Свои имена, так сказать.) Знакомьтесь.

Что такое синус угла х ? Это отношение противолежащего катета к гипотенузе:

sinx = а/с

Что такое косинус угла х ? Это отношение прилежащего катета к гипотенузе:

с osx = в/с

Что такое тангенс угла х ? Это отношение противолежащего катета к прилежащему:

tgx = а/в

Что такое котангенс угла х ? Это отношение прилежащего катета к противолежащему:

ctgx = в/а

Всё очень просто. Синус, косинус, тангенс и котангенс – это некоторые числа. Безразмерные. Просто числа. Для каждого угла – свои.

Зачем я так занудно всё повторяю? Затем, что это надо запомнить . Железно запомнить. Запоминание можно облегчить. Фраза «Начнём издалека…» знакома? Вот и начинайте издалека.

Синус угла – это отношение дальнего от угла катета к гипотенузе. Косинус – отношение ближнего к гипотенузе.

Тангенс угла – это отношение дальнего от угла катета к ближнему. Котангенс – наоборот.

Уже проще, правда?

Ну а если запомнить, что в тангенсе и котангенсе сидят только катеты, а в синусе и косинусе гипотенуза появляется, то всё станет совсем просто.

Всю эту славную семейку – синус, косинус, тангенс и котангенс называют ещё тригонометрическими функциями .


А теперь вопрос на соображение.

Почему мы говорим синус, косинус, тангенс и котангенс угла? Речь-то идёт об отношениях сторон, вроде... При чём здесь угол?

Смотрим на вторую картинку. Точно такую же, как и первая.

Наведите мышку на картинку. Я изменил угол х . Увеличил его с х до Х. Все отношения поменялись! Отношение а/в было 3/4, а соответствующее отношение t/в стало 6/4.

И все остальные отношения стали другими!

Стало быть, отношения сторон никак не зависят от их длин (при одном угле х), но резко зависят от этого самого угла! И только от него. Поэтому термины синус, косинус, тангенс и котангенс относятся к углу. Угол здесь - главный.

Надо железно уяснить, что угол неразрывно связан со своими тригонометрическими функциями. У каждого угла есть свой синус и косинус. И почти у каждого - свой тангенс и котангенс. Это важно. Считается, что если нам дан угол, то его синус, косинус, тангенс и котангенс нам известны ! И наоборот. Дан синус, или любая другая тригонометрическая функция – значит, мы знаем угол.

Существуют специальные таблицы, где для каждого угла расписаны его тригонометрические функции. Таблицы Брадиса называются. Они очень давно составлены. Когда ещё не было ни калькуляторов, ни компьютеров...

Конечно, тригонометрические функции всех углов запомнить нельзя. Вы обязаны знать их только для нескольких углов, об этом дальше будет. Но заклинание «знаю угол – значит, знаю его тригонометрические функции» - работает всегда!

Вот мы и повторили кусочек геометрии из 8-го класса. Оно нам надо для ЕГЭ? Надо. Вот вам типичная задачка из ЕГЭ. Для решения которой достаточно 8-го класса. Дана картинка:

Всё. Больше никаких данных нет. Надо найти длину катета ВС.

Клеточки слабо помогают, треугольник как-то неправильно расположен.... Специально, поди… Из информации есть длина гипотенузы. 8 клеток. Ещё зачем-то дан угол.

Вот здесь надо сразу вспоминать про тригонометрию. Есть угол, значит, мы знаем все его тригонометрические функции. Какую функцию из четырёх в дело пустить? А посмотрим-ка, что нам известно? Нам известны гипотенуза, угол, а найти надо прилежащий к этому углу катет! Ясно дело, косинус нужно в дело запускать! Вот и запускаем. Просто пишем, по определению косинуса (отношение прилежащего катета к гипотенузе):

cosC = ВС/8

Угол С у нас 60 градусов, его косинус равен 1/2. Это знать надо, безо всяких таблиц! Стало быть:

1/2 = ВС/8

Элементарное линейное уравнение. Неизвестное – ВС . Кто подзабыл, как решать уравнения , прогуляйтесь по ссылке, остальные решают:

ВС = 4

Когда древние люди поняли, что у каждого угла имеется свой комплект тригонометрических функций, у них возник резонный вопрос. А не связаны ли как-нибудь синус, косинус, тангенс и котангенс между собой? Так, чтобы зная одну функцию угла, можно было найти остальные? Не вычисляя сам угол?

Вот такие они были неугомонные...)

Связь между тригонометрическими функциями одного угла.

Конечно, синус, косинус, тангенс и котангенс одного и того же угла связаны между собой. Всякая связь между выражениями задаётся в математике формулами. В тригонометрии формул - колоссальное количество. Но здесь мы рассмотрим самые основные. Эти формулы так и называются: основные тригонометрические тождества. Вот они:

Эти формулы надо знать железно. Без них вообще в тригонометрии делать нечего. Из этих основных тождеств вытекают ещё три вспомогательных тождества:

Сразу предупреждаю, что три последние формулы быстро выпадают из памяти. Почему-то.) Можно, конечно, вывести эти формулы из первых трёх. Но, в трудную минуту... Сами понимаете.)

В стандартных заданиях, типа тех, что приведены ниже, есть способ обойтись без этих незапоминающихся формул. И резко уменьшить ошибки по забывчивости, да и в вычислениях тоже. Этот практический приём - в Разделе 555, урок "Связь между тригонометрическими функциями одного угла."

В каких заданиях и как используются основные тригонометрические тождества? Самое популярное задание - найти какую-нибудь функцию угла, если дана другая. В ЕГЭ такое задание из года в год присутствует.) Например:

Найти значение sinx, если х - острый угол, а cosx=0,8.

Задачка почти элементарная. Ищем формулу, где имеются синус и косинус. Вот она эта формула:

sin 2 x + cos 2 x = 1

Подставляем сюда известную величину, а именно, 0,8 вместо косинуса:

sin 2 x + 0,8 2 = 1

Ну и считаем, как обычно:

sin 2 x + 0,64 = 1

sin 2 x = 1 - 0,64

Вот, практически и всё. Мы вычислили квадрат синуса, осталось извлечь квадратный корень и ответ готов! Корень из 0,36 будет 0,6.

Задачка почти элементарная. Но словечко "почти" здесь не зря стоит... Дело в том, что ответ sinx= - 0,6 тоже подходит... (-0,6) 2 тоже 0,36 будет.

Два разных ответа получаются. А нужен один. Второй - неправильный. Как быть!? Да как обычно.) Внимательно прочитать задание. Там зачем-то написано: ...если х - острый угол... А в заданиях каждое слово смысл имеет, да... Эта фраза - и есть дополнительная информация к решению.

Острый угол - это угол меньше 90°. А у таких углов все тригонометрические функции - и синус, и косинус, и тангенс с котангенсом - положительные. Т.е. отрицательный ответ мы здесь просто отбрасываем. Имеем право.

Собственно, восьмиклассникам такие тонкости не нужны. Они работают только с прямоугольными треугольниками, где углы могут быть только острые. И не знают, счастливые, что бывают и отрицательные углы, и углы в 1000°... И у всех этих кошмарных углов есть свои тригонометрические функции и с плюсом, и с минусом...

А вот старшеклассникам без учёта знака - никак. Многие знания умножают печали, да...) И для правильного решения в задании обязательно присутствует дополнительная информация (если она необходима). Например, она может быть дана такой записью:

Или как-нибудь иначе. В примерах ниже увидите.) Для решения таких примеров нужно знать, в какую четверть попадает заданный угол х и какой знак имеет нужная тригонометрическая функция в этой четверти.

Эти азы тригонометрии рассмотрены в уроках что такое тригонометрический круг, отсчёт углов на этом круге, радианная мера угла. Иногда требуется знать и таблицу синусов косинусов тангенсов и котангенсов.

Итак, отметим самое главное:

Практические советы:

1. Запомните определения синуса, косинуса, тангенса и котангенса. Очень пригодится.

2. Чётко усваиваем: синус, косинус, тангенс и котангенс накрепко связаны с углами. Знаем одно - значит, знаем и другое.

3. Чётко усваиваем: синус, косинус, тангенс и котангенс одного угла связаны между собой основными тригонометрическими тождествами. Знаем одну функцию - значит, можем (при наличии необходимой дополнительной информации) вычислить все остальные.

А теперь порешаем, как водится. Сначала задания в объёме 8-го класса. Но и старшеклассникам тоже можно...)

1. Вычислить значение tgА, если ctgА = 0,4.

2. β - угол в прямоугольном треугольнике. Найти значение tgβ, если sinβ = 12/13.

3. Определить синус острого угла х, если tgх = 4/3.

4. Найти значение выражения:

6sin 2 5° - 3 + 6cos 2 5°

5. Найти значение выражения:

(1-cosx)(1+cosx), если sinх = 0,3

Ответы (через точку с запятой, в беспорядке):

0,09; 3; 0,8; 2,4; 2,5

Получилось? Отлично! Восьмиклассники могут уже пройти за своими пятёрками.)

Не всё получилось? Задания 2 и 3 как-то не очень...? Не беда! Есть один красивый приём для подобных заданий. Всё решается, практически, вообще без формул! Ну и, следовательно, без ошибок. Этот приём в уроке: "Связь между тригонометрическими функциями одного угла" в Разделе 555 описан. Там же разобраны и все остальные задания.

Это были задачки типа ЕГЭ, но в урезанном варианте. ЕГЭ - лайт). А сейчас почти такие же задания, но в полноценном егэшном виде. Для обременённых знаниями старшеклассников.)

6. Найти значение tgβ, если sinβ = 12/13, а

7. Определить sinх, если tgх = 4/3, а х принадлежит интервалу (- 540°; - 450°).

8. Найти значение выражения sinβ·cosβ, если ctgβ = 1.

Ответы (в беспорядке):

0,8; 0,5; -2,4.

Здесь в задаче 6 угол задан как-то не очень однозначно... А в задаче 8 и вовсе не задан! Это специально). Дополнительная информация не только из задания берётся, но и из головы.) Зато уж если решили - одно верное задание гарантировано!

А если не решили? Гм... Ну, тут Раздел 555 поможет. Там решения всех этих заданий подробно расписаны, трудно не разобраться.

В этом уроке дано очень ограниченное понятие тригонометрических функций. В пределах 8-го класса. А у старших остаются вопросы...

Например, если угол х (смотрите вторую картинку на этой странице) - сделать тупым!? Треугольник-то вообще развалится! И как быть? Ни катета не будет, ни гипотенузы... Пропал синус...

Если бы древние люди не нашли выход из этого положения, не было бы у нас сейчас ни мобильников, ни TV, ни электричества. Да-да! Теоретическая основа всех этих вещей без тригонометрических функций - ноль без палочки. Но древние люди не подвели. Как они выкрутились - в следующем уроке.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.