Нечеткое определение. Раздел Fuzzy Logic Toolbox. С.Д.Штовба. Введение в теорию нечетких множеств и нечеткую логику

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Нечеткое множество представляет собой совокупность элементов произвольной природы, относительно которых нельзя с полной определенностью утверждать – принадлежит ли тот или иной элемент рассматриваемой совокупности данному множеству или нет. Другими словами, нечеткое множество отличается от обычного множества тем, что для всех, или части его элементов не существует однозначного ответа на вопрос: «Принадлежит или не принадлежит тот или иной элемент рассматриваемому нечеткому множеству»

Для построения нечетких моделей систем само понятие нечеткого множества следует определить строго, чтобы исключить неоднозначность толкования тех или иных его свойств. Наиболее естественным и интуитивно понятным является задание области значений подобной функции как интервал действительных чисел, заключенных между 0 и 1 (включая и сами эти значения).

Математическое определение нечеткого множества. Формально нечеткое множество определяется как множество упорядоченных пар или кортежей вида:, гдеявляется элементом некоторого универсального множества, или универсума, а– функция принадлежности, которая ставит в соответствие каждому из элементовнекоторое действительное число из интервала, т.е. данная функция определяется в форме отображения:

При этом значение для некоторогоозначает, что элементопределенно принадлежит нечеткому множеству, а значениеозначает, что элементопределенно не принадлежит нечеткому множеству.

Формально конечное нечеткое множество в общем случае имеет вид:

Универсум - это множество, содержащее в рамках некоторого контекста все возможные элементы. Формально удобно считать, что функция принадлежности универсума как нечеткого множества тождественно равна единице для всех без исключения элементов:.

Пустое нечеткое множество , или множество, которое не содержит ни одного элемента, обозначаетсяи формально определяется как такое нечеткое множество, функция принадлежности которого тождественно равна нулю для всех без исключения элементов:

Формальное определение нечеткого множества не накладывает никаких ограничений на выбор конкретной функции принадлежности для его представления. Однако на практике удобно использовать те из них, которые допускают аналитическое представление в виде некоторой простой математической функции. Это упрощает не только соответствующие численные расчеты, но и сокращает вычислительные ресурсы, необходимые для хранения отдельных значений этих функций принадлежности.

Функция принадлежности – математическая функция, определяющая степень, с которой элементы некоторого множества принадлежат заданному нечеткому множеству. Данная функция ставит в соответствие каждому элементу нечеткого множества действительное число из интервалаЗадать конкретное нечеткое множество означает определить соответствующую ему функцию принадлежности.

При построении функций принадлежности для нечетких множеств следует придерживаться некоторых правил, которые предопределяются характером неопределенности, имеющей место при построении конкретных нечетких моделей.

С практической точки зрения с каждым нечетким множеством удобно ассоциировать некоторое свойство, которое характеризует рассматриваемую совокупность объектов универсума. При этом по аналогии с классическими множествами рассматриваемое свойство может порождать некоторый предикат, который вполне естественно назвать нечетким предикатом. Данный нечеткий предикат может принимать не одно из двух значений истинности («истина» или «ложь»), а целый континуум значений истинности, которые для удобства выбираются из интервала При этом значению «истина» по-прежнему соответствует число 1, а значению «ложь» - число 0.

Содержательно это означает следующее: чем в большей степени элемент обладает рассматриваемым свойством, тем более близко к 1 должно быть значение истинности соответствующего нечеткого предиката. И наоборот, чем в меньшей степени элементобладает рассматриваемым свойством, тем более близко к 0 должно быть значение истинности этого нечеткого предиката. Если элементопределенно не обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «ложь» (или число 0). Если же элементопределенно обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «истина» (или число 1).

Тогда в общем случае задание нечеткого множества с использованием специального свойства эквивалентно заданию такой функции принадлежности, которая содержательно представляет степень истинности соответствующего одноместного нечеткого предиката.

Понятие нечеткого отношения наряду с понятием самого нечеткого множества следует отнести к фундаментальным основам всей теории нечетких множеств. На основе нечетких отношений определяется целый ряд дополнительных понятий, используемых для построения нечетких моделей сложных систем.

В общем случае нечетким отношением, заданном на множествах (универсумах) , называется некоторое фиксированное нечеткое подмножество декартова произведения этих универсумов. Другими словами, если обозначить произвольное нечеткое отношение через, то по определению, где- функция принадлежности данного нечеткого отношения, которая определяется как отображение. Черезобозначен кортеж изэлементов, каждый из которых выбирается из своего универсума:

Нечеткая логика, которая служит основой для реализации методов нечеткого управления, более естественно описывает характер человеческого мышления и ход его рассуждений, чем традиционные формально-логические системы. Именно поэтому изучение и использование математических средств, для представления нечеткой исходной информации позволяет строить модели, которые наиболее адекватно отражают различные аспекты неопределенности, постоянно присутствующей в окружающей нас реальности.

Нечеткая логика предназначена для формализации человеческих способностей к неточным или приближенным рассуждениям, которые позволяют более адекватно описывать ситуации с неопределенностью. Классическая логика по своей сути игнорирует проблему неопределенности, поскольку все высказывания и рассуждения в формальных логических системах могут иметь только значение «истина» (И ,1) или значение «ложь» (Л ,0). В отличие от этого в нечеткой логике истинность рассуждений оценивается в некоторой степени, которая может принимать и другие отличныезначения. Нечеткая логика использует основные понятия теории нечетких множеств для формализации неточных знаний и выполнения приближенных рассуждений в той или иной предметной области.

В предложенной Л.Заде варианте нечеткой логики множество истинностных значений высказываний обобщается до интервала действительных значений , что позволяет высказыванию принимать любое значение истинности из этого интервала. Это численное значение является количественной оценкой степени истинности высказывания, относительно которого нельзя с полной уверенностью заключить о его истинности или ложности. Использование в качестве множества истинностных значений интервалапозволяет построить логическую систему, в рамках которой оказалось возможным выполнять рассуждения с неопределенностью и оценивать истинность высказываний.

Исходным понятием нечеткой логики является понятие элементарного нечеткого высказывания.

Элементарное нечеткое высказывание – это повествовательное предложение, выражающее законченную мысль, относительно которой мы можем судить об ее истинности или ложности только с некоторой степенью уверенности. В нечеткой логикестепень истинности элементарного нечеткого высказывания принимает значение из замкнутого интервала, причем 0 и 1 являются предельными значениями степени истинности и совпадают со значениями «ложь» и «истина» соответственно.

Нечеткая импликация или импликация нечетких высказываний А и В (читается – «ЕСЛИ А, ТО В») – называется бинарная логическая операция, результат которой является нечетким высказыванием, истинность которого может принимать значение, например, определяемое формулой предложенной Э.Мамдани:

Эту форму нечеткой импликации также называют нечеткой импликацией Мамдани или нечеткой импликациейминимума корреляции.

Классическая нечеткая импликация, предложенная Л.Заде:

Продукционные системы были разработаны в рамках исследований по методам искусственного интеллекта и нашли широкое применение для представления знаний и вывода заключений в экспертных системах, основанных на правилах. Поскольку нечеткий вывод реализуется на основе нечетких продукционных правил, рассмотрение базового формализма нечетких продукционных моделей приобретает самостоятельное значение. При этом нечеткие правила продукций не только во многом близки к логическим моделям, но и, что наиболее важно, позволяют адекватно представить практические знания экспертов в той или иной проблемной области.

Правило нечеткой продукции – под этим правилом понимается выражение вида:

где () – имя нечеткой продукции;- сфера применения нечеткой продукции;- условие применимости ядра нечеткой продукции;- ядро нечеткой продукции, в котором- условие ядра (или антецедент);- заключение ядра (или консеквент);- знак логической секвенции (или следования);- метод или способ определения количественного значения степени истинности заключения ядра;- коэффициент определенности или уверенности нечеткой продукции;- постусловия продукции.

Ядро продукции записывается в виде: , где А, В – некоторые выражения нечеткой логики, которые наиболее часто представляются в форме нечетких высказываний.

Продукционная нечеткая система представляет собой некоторое согласованное множество отдельных нечетких продукций в форме.

Современную науку и технику невозможно представить без широкого применения математического моделирования, поскольку далеко не всегда могут быть поставлены натурные эксперименты, зачастую они слишком дороги и требуют значительного времени, во многих случаях они связаны с риском и большими материальными или моральными издержками. Сущность математического моделирования состоит в замене реального объекта его «образом» – математической моделью – и дальнейшим изучением модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Важнейшим требованием, предъявляемым к математической модели, является условие ее адекватность (правильного соответствия) изучаемому реальному объекту относительно выбранной системы его свойств. Под этим, прежде всего, понимается правильное количественное описание рассматриваемых свойств объекта. Построение таких количественных моделей возможно для простых систем.

Иначе дело обстоит со сложными системами. Для получения существенных выводов о поведении сложных систем необходимо отказаться от высокой точности и строгости при построении модели и привлекать при ее построении подходы, которые являются приближенными по своей природе. Один из таких подходов связан с введением лингвистических переменных, описывающих нечеткое отражение человеком окружающего мира. Для того чтобы лингвистическая переменная стала полноправным математическим объектом, было введено понятие нечеткого множества.

В теории четких множеств была рассмотрена характеристическая функция четкого множества в универсальном пространстве , равная 1, если элемент удовлетворяет свойству и, следовательно, принадлежит множеству , и равная 0 в противном случае. Таким образом, речь шла о четком мире (булевой алгебре), в котором наличие или отсутствие заданного свойства определяется значениями 0 или 1 («нет» или «да»).

Однако в мире нельзя все разделить только на белое и черное, истину и лож. Так, еще Будда видел мир, заполненный противоречиями, вещи могли быть истинны в некоторой степени и, в некоторой степени, ложны в то же самое время. Платон положил основу того, что станет нечеткой логикой, указывая, что имелась третья область (вне Истины и Лжи) где эти противоречия относительны.

Профессор Калифорнийского университета Заде опубликовал в 1965 статью «Нечеткие множества», в которой он расширил двузначную оценку 0 или 1 до неограниченной многозначной оценки выше 0 и ниже 1 в замкнутом интервале и впервые ввел понятие «нечеткого множества». Вместо термина «характеристическая функция» Заде использовал термин «функция принадлежности». Нечеткое множество (оставлено то же обозначение, что и для четкого множества) в универсальном пространстве
через функцию принадлежности (то же обозначение, что и для характеристической функции) определяется следующим образом

Функция принадлежности чаще всего интерпретируется следующим образом: величина означает субъективную оценку степени принадлежности элемента нечеткому множеству , например, означает, что на 80% принадлежит . Следовательно, должны существовать «моя функция принадлежности», «твоя функция принадлежности», «функция принадлежности специалиста» и т. п. Графическое представление нечеткого множества диаграмма Венна представляет собой концентрические окружности рис. 1. Функция принадлежности нечеткого множества имеет колоколообразный график в отличие от прямоугольного характеристической функции четкого множества рис. 1.

Следует обратить внимание на связь четкого и нечеткого множеств. Два значения {0,1} характеристической функции принадлежат замкнутому интервалу значений функции принадлежности. Следовательно, четкое множество является частным случаем нечеткого множества, а понятие нечеткого множества является расширенным понятием, охватывающим и понятие четкого множества. Другими словами четкое множество является и нечетким множеством.

Нечеткое множество строго определяется с помощью функции принадлежности и не содержит какой-либо нечеткости. Дело в том, что нечеткое множество строго определяется с помощью оценочных значений замкнутого интервала , а это и есть функция принадлежности. В случае если универсальное множество состоит из дискретного конечного набора элементов, то исходя из практических соображений, указывают значение функции принадлежности и соответствующий элемент, используя знаки разделения / и +. Например, пусть универсальное множество состоит из целых чисел меньших 10, тогда нечеткое множество «малые числа» можно представить в виде

A=1/0 + 1/1 + 0,8/2 + 0,5/3 + 0,1/4

Здесь, например, 0,8/2 означает . Знак + обозначает объединение. При написании нечеткого множества в приведенном выше виде опускаются элементы универсального множества со значениями функции принадлежности, равными нулю. Обычно записывают все элементы универсального множества с соответствующими значениями функции принадлежности. Используется запись нечеткого множества, как в теории вероятностей,

Определение. В общем случае нечеткое подмножество универсального множества определяется как множество упорядоченных пар

1.1 Основные термины и определения

Понятие нечеткого множества - эта попытка математической формализации нечеткой информации для построения математических моделей. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно принадлежать к данному множеству с различной степенью. При таком подходе высказывания типа “такой-то элемент принадлежит данному множеству” теряют смысл, поскольку необходимо указать “насколько сильно” или с какой степенью конкретный элемент удовлетворяет свойствам данного множества.

Определение 1. Нечетким множеством (fuzzy set) на универсальном множестве U называется совокупность пар (), где - степень принадлежности элемента к нечеткому множеству . Степень принадлежности - это число из диапазона . Чем выше степень принадлежности, тем в большей мерой элемент универсального множества соответствует свойствам нечеткого множества.

Определение 2. Функцией принадлежности (membership function) называется функция, которая позволяет вычислить степень принадлежности произвольного элемента универсального множества к нечеткому множеству.

Если универсальное множество состоит из конечного количества элементов , тогда нечеткое множество записывается в виде . В случае непрерывного множества U используют такое обозначение

Примечание: знаки и в этих формулах означают совокупность пар и u.

Пример 1. Представить в виде нечеткого множества понятие “мужчина среднего роста”.

Решение: = 0/155+0.1/160 + 0.3/165 + 0.8/170 +1/175 +1/180 + 0.5/185 +0/180.

Определение 3. Лингвистической переменной (linguistic variable) называется переменная, значениями которой могут быть слова или словосочетания некоторого естественного или искусственного языка.

Определение 4. Терм–множеством (term set) называется множество всех возможных значений лингвистической переменной.

Определение 5. Термом (term) называется любой элемент терм–множества. В теории нечетких множеств терм формализуется нечетким множеством с помощью функции принадлежности.

Пример 2. Рассмотрим переменную “скорость автомобиля ”, которая оценивается по шкале “низкая ", "средняя ", "высокая ” и “очень высокая ".

В этом примере лингвистической переменной является “скорость автомобиля ”, термами - лингвистические оценки “низкая ", "средняя ", "высокая ” и “очень высокая ”, которые и составляют терм–множество.

Определение 6. Дефаззификацией (defuzzification) называется процедура преобразования нечеткого множества в четкое число.

В теории нечетких множеств процедура дефаззификации аналогична нахождения характеристик положения (математического ожидания, моды, медианы) случайных величин в теории вероятности. Простейшим способом выполнения процедуры дефаззификации является выбор четкого числа, соответствующего максимуму функции принадлежности. Однако пригодность этого способа ограничивается лишь одноэкстремальными функциями принадлежности. Для многоэкстремальных функций принадлежности в Fuzzy Logic Toolbox запрограммированы такие методы дефаззификации:

Centroid - центр тяжести;

Bisector - медиана;

LOM (Largest Of Maximums) - наибольший из максимумов;

SOM (Smallest Of Maximums) - наименьший из максимумов;

Mom (Mean Of Maximums) - центр максимумов.

Определение 7. Дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Физическим аналогом этой формулы является нахождение центра тяжести плоской фигуры, ограниченной осями координат и графиком функции принадлежности нечеткого множества. В случае дискретного универсального множества дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Определение 8. Дефаззификация нечеткого множества по методу медианы состоит в нахождении такого числа a, что .

Геометрической интерпретацией метода медианы является нахождения такой точки на оси абцисс, что перпендикуляр, восстановленный в этой точке, делит площадь под кривой функции принадлежности на две равные части. В случае дискретного универсального множества дефаззификация нечеткого множества по методу медианы осуществляется по формуле .

Определение 9. Дефаззификация нечеткого множества по методу центра максимумов осуществляется по формуле:

где G – множество всех элементов из интервала , имеющих максимальную степень принадлежности нечеткому множеству .

В методе центра максимумов находится среднее арифметическое элементов универсального множества, имеющих максимальные степени принадлежностей. Если множество таких элементов конечно, то формула из определения 9 упрощается к следующему виду:

где - мощность множества G.

В дискретном случае дефаззификация по методам наибольшего из максимумов и наименьшего из максимумов осуществляется по формулам и , соответственно. Из последних трех формулы видно, что если функция принадлежности имеет только один максимум, то его координата и является четким аналогом нечеткого множества.

Пример 3. Провести дефаззификацию нечеткого множества “мужчина среднего роста ” из примера 1 по методу центра тяжести.

Решение: Применяя формулу из определения 7, получаем:

Определение 10. Нечеткой базой знаний (fuzzy knowledge base) о влиянии факторов на значение параметра y называется совокупность логических высказываний типа:

ТО , для всех ,

где - нечеткий терм, которым оценивается переменная в строчке с номером jp ();

Количество строчек-конъюнкций, в которых выход y оценивается нечетким термом , ;

Количество термов, используемых для лингвистической оценки выходного параметра y.

С помощью операций (ИЛИ) и (И) нечеткую базу знаний из определения 10 перепишем в более компактном виде:

Определение 11. Нечетким логическим выводом (fuzzy logic inference) называется апроксимация зависимости с помощью нечеткой базы знаний и операций над нечеткими множествами.

Пусть - функция принадлежности входа нечеткому терму , , , , т. е. ; - функция принадлежности выхода y нечеткому терму , , т. е. . Тогда степень принадлежности конкретного входного вектора нечетким термам из базы знаний (1) определяется следующей системой нечетких логических уравнений:

где - операция максимума (минимума).

Нечеткое множество , соответствующее входному вектору , определяется следующим образом:

где - операция объединения нечетких множеств.

Четкое значение выхода y, соответствующее входному вектору определяется в результате деффаззификации нечеткого .

1.2. Свойства нечетких множеств

Определение 12. Высотой нечеткого множества называется верхняя граница его функции принадлежности: . Для дискретного универсального множества супремум становится максимумом, а значит высотой нечеткого множества будет максимум степеней принадлежности его элементов

Определение 13. нормальным, если его высота равна единице. Нечеткие множества не являющиеся нормальными называются субнормальными . Нормализация ‑ преобразование субнормального нечеткого множества в нормальное определяется так: . В качестве примера на рис. 1 показана нормализация нечеткого множества с функцией принадлежности .

Рисунок 1 - Нормализация нечеткого множества

Определение 14. Носителем нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют ненулевые степени принадлежности: .

Определение 15. Нечеткое множество называется пустым , если его носитель является пустым множеством.

Определение 16. Ядром нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности равные единице: . Ядро субнормального нечеткого множества пустое.

Определение 17. - сечением (или множеством -уровня) нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности большие или равные : , . Значение называют -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) -уровне.

Рис. 2 иллюстрирует определения носителя, ядра, - сечения и - уровня нечеткого множества.

Рисунок 2 - Ядро, носитель и - сечение нечеткого множества

Определение 18. Нечеткое множество называется выпуклым если: , , . Альтернативное определение: нечеткое множество будет выпуклым , если все его - сечения - выпуклые множества. На рис. 3 приведены примеры выпуклого и невыпуклого нечетких множеств.

Рисунок 3 - К определению выпуклого нечеткого множества

Определение 19. Нечеткие множества и равны () если .

1.3. Операции над нечеткими множеств

Определения нечетких теоретико-множественных операций объединения, пересечения и дополнения могут быть обобщены из обычной теории множеств. В отличие от обычных множеств, в теории нечетких множеств степень принадлежности не ограничена лишь бинарной значениями 0 и 1 ‑ она может принимать значения из интервала . Поэтому, нечеткие теоретико-множественные операции могут быть определены по-разному. Ясно, что выполнение нечетких операций объединения, пересечения и дополнения над не нечеткими множествами должно дать такие же результаты, как и при использование обычных канторовских теоретико-множественных операций. Ниже приведены определения нечетких теоретико-множественных операций, предложенных Л. Заде.

Определение 20. Дополнением нечеткого множества заданного на называется нечеткое множество с функцией принадлежности для всех . На рис. 4 приведен пример выполнения операции нечеткого дополнения.

Рисунок 4 - Дополнение нечеткого множества

Определение 21. Пересечением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения минимума также обозначается знаком , т.е. .

Определение 22. Объединением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения максимума также обозначается знаком , т.е. .

Обобщенные определения операций нечеткого пересечения и объединения - треугольной нормы (t-нормы) и треугольной конормы (t-конормы или s-нормы) приведены ниже.

Определение 23. Треугольной нормой (t-нормой)

Наиболее часто используются такие t-нормы: пересечение по Заде ‑ ; вероятностное пересечение ‑ ; пересечение по Лукасевичу ‑ . Примеры выполнения пересечения нечетких множеств с использованием этих t-норм показаны на рис. 5.

Рисунок 5 - Пересечение нечетких множеств с использованием различных t-норм

Определение 25. Треугольной конормой (s-нормой) называется бинарная операция на единичном интервале , удовлетворяющая следующим аксиомам для любых :

Наиболее часто используются такие s-нормы: объединение по Заде ‑ ; вероятностное объединение ‑ ; объединение по Лукасевичу ‑ . Примеры выполнения объединения нечетких множеств с использованием этих s-норм показаны на рис. 6.

Наиболее известные треугольные нормы приведены в табл. 1.

Рисунок 6 - Объединение нечетких множеств с использованием различных s-норм

Таблица 1 - Примеры треугольных норм

Параметр

1.4. Нечеткая арифметика

В этом разделе рассматриваются способы расчета значений четких алгебраических функций от нечетких аргументов. Материал основывается на понятиях нечеткого числа и принципа нечеткого обобщения. В конце раздела приводятся правила выполнения арифметических операций над нечеткими числами.

Определение 25. Нечетким числом называется выпуклое нормальное нечеткое множество с кусочно-непрерывной функцией принадлежности, заданное на множестве действительных чисел. Например, нечеткое число "около 10" можно задать следующей функцией принадлежности: .

Определение 26. Нечеткое число называется положительным (отрицательным) если , ().

Определение 27. Принцип обобщения Заде. Если ‑ функция от n независимых переменных и аргументы заданы нечеткими числами , соответственно, то значением функции называется нечеткое число с функцией принадлежности:

Принцип обобщения позволяет найти функцию принадлежности нечеткого числа, соответствующего значения четкой функции от нечетких аргументов. Компьютерно-ориентированная реализация принципа нечеткого обобщения осуществляется по следующему алгоритму:

Шаг 1. Зафиксировать значение .

Шаг 2. Найти все n-ки , , удовлетворяющие условиям и , .

Шаг 3. Степень принадлежности элемента нечеткому числу вычислить по формуле: .

Шаг 4. Проверить условие "Взяты все элементы y?". Если "да", то перейти к шагу 5. Иначе зафиксировать новое значение и перейти к шагу 2.

Шаг 5. Конец.

Приведенный алгоритм основан на представлении нечеткого числа на дискретном универсальном множестве, т.е. . Обычно исходные данные , задаются кусочно-непрерывными функциями принадлежности: . Для вычисления значений функции аргументы , дискретизируют, т.е. представляют в виде . Число точек выбирают так, чтобы обеспечить требуемую точность вычислений. На выходе этого алгоритма получается нечеткое множество, также заданное на дискретном универсальном множестве. Результирующую кусочно-непрерывную функцию принадлежности нечеткого числа получают как верхнюю огибающую точек .

Пример 4. Нечеткие числа и заданы следующими трапециевидными функциями принадлежности:

Необходимо найти нечеткое число с использованием принципа обобщения из определения 27.

Зададим нечеткие аргументы на четырех точках (дискретах): {1, 2, 3 4} для и {2, 3, 4 8} для . Тогда: и . Процесс выполнения умножения над нечеткими числами сведен в табл. 2. Каждый столбец таблицы соответствует одной итерации алгоритма нечеткого обобщения. Результирующее нечеткое множество задано первой и последней строчками таблицы. В первой строке записаны элементы универсального множества, а в последней строке - степени их принадлежности к значению выражения . В результате получаем: . Предположим, что тип функция принадлежности будет таким же, как и аргументов и , т. е. трапециевидной. В этом случае функция принадлежности задается выражением: . На рис. 7 показаны результаты выполнения операции с представлением нечетких множителей на 4-х дискретах. Красными звездочками показаны элементы нечеткого множества из табл. 2, а тонкой красной линией - трапециевидная функция принадлежности.

Исследуем, как измениться результат нечеткого обобщения при увеличении числа дискрет, на которых задаются аргументы. Нечеткое число при задании аргументов и на 30 дискретах приведено на рис. 7. Синими точками показаны элементы нечеткого множества , найденные по принципу обобщения, а зеленой линией - верхняя огибающая этих точек ‑ функция принадлежности . Функция принадлежности результата имеет форму криволинейной трапеции, немного выгнутой влево.

Таблица 2 - К примеру 4

1 , где. По -сечения нечеткого множества, а жирной синей линией -кусочно-линейная аппроксимация функции принадлежности нечеткого числа

Аннотация: В лекции представлены методы моделирования экономических задач с использованием нечетких множеств в среде Mathcad. Введены основные понятия теории нечетких множеств. На примерах показаны операции над множествами, расчет свойств. Рассмотрены оригинальные задачи, в которых применен нечетко-множественный подход в процессе принятия решения. Техника моделирования реализована с помощью матриц программы Mathcad.

Цель лекции. Познакомить с нечеткими множествами. Научить ставить задачу для построения нечетко-множественной модели. Показать, как строить нечеткие множества и производить действия над ними в Mathcad. Представить методы решения нечетко-множественной модели в процессе решения задач.

6.1 Нечетко-множественное моделирование

При моделировании широкого класса реальных объектов возникают необходимость принимать решения в условиях неполной нечеткой информации. Современным перспективным направлением моделирования различного вида неопределенностей является теория нечетких множеств. В рамках теории нечетких множеств разработаны методы формализации и моделирования рассуждений человека, таких понятий как "более или менее высокий уровень инфляции", "устойчивое положение на рынке", "более ценный" и т.д.

Впервые понятие нечетких множеств предложил американский ученый Л.А.Заде (1965 г). Его идеи послужили развитию нечеткой логики. В отличие от стандартной логики с двумя бинарными состояниями (1/0, Да/Нет, Истина/Ложь), нечеткая логика позволяет определять промежуточные значения между стандартными оценками. Примерами таких оценок являются: "скорее да, чем нет", "наверное да", "немного вправо", "резко влево" в отличие от стандартных: "вправо" или "влево", "да". В теории нечетких множеств введены нечеткие числа как нечеткие подмножества специализированного вида, соответствующих высказываниям типа " значение переменной примерно равно а". В качестве примера рассмотрим треугольное нечеткое число , где выделяются три точки: минимально возможное, наиболее ожидаемое и максимально возможное значение фактора. Треугольные числа – это самый часто используемый на практике тип нечетких чисел, причем, чаще всего их используют в качестве прогнозных значений параметра. Например, ожидаемое значение инфляции на следующий год. Пусть наиболее вероятное значение – 10%, минимально возможное – 5%, а максимально возможное – 20%, тогда все эти значения могут быть сведены к виду нечеткого подмножества или нечеткого числа A: А: (5, 10, 20)

С введением нечетких чисел оказалось возможным прогнозировать будущие значения параметров, которые меняются в установленном расчетном диапазоне. Вводится набор операций над нечеткими числами, которые сводятся к алгебраическим операциям с обычными числами при задании определенного интервала достоверности (уровня принадлежности). Применение нечетких чисел позволяет задавать расчетный коридор значений прогнозируемых параметров. Тогда ожидаемый эффект оценивается экспертом также как нечеткое число со своим расчетным разбросом (степенью нечеткости).

Нечеткая логика , как модель человеческих мыслительных процессов, встроена в системы искусственного интеллекта и в автоматизированные средства поддержки принятия решений (в частности, в системы управления технологическими процессами).

6.2 Основные понятия теории нечетких множеств

Множество - неопределяемое понятие математики. Георг Кантор (1845 – 1918) – немецкий математик, чьи работы лежат в основе современной теории множеств, дает такое понятие: "…множество - это многое, мыслимое как единое".

Множество, включающее в себя все объекты, рассматриваемые в задаче, называют универсальным множеством. Универсальное множество принято обозначать буквой . Универсальное множество является максимальным множеством в том смысле, что все объекты являются его элементами, т.е. утверждение в рамках задачи всегда истинно. Минимальным множеством является пустое множество – , которое не содержит ни одного элемента. Все остальные множества в рассматриваемой задаче являются подмножествами множества . Напомним, что множество называют подмножеством множества , если все элементы являются также элементами . Задание множества - это правило, позволяющее относительно любого элемента универсального множества однозначно установить, принадлежит множеству или не принадлежит. Другими словами, это правило, позволяющее определить, какое из двух высказываний, или , является истинным, а какое ложным. Одним из способов задания множеств является задание с помощью характеристической функции.

Характеристической функцией множества называют функцию , заданную на универсальном множестве и принимающую значение единица на тех элементах множества , которые принадлежат , и значение нуль на тех элементах, которые не принадлежат :

(6.1)

В качестве примера рассмотрим универсальное множество и два его подмножества: - множество чисел, меньших 7, и - множество чисел, немного меньших 7. Характеристическая функция множества имеет вид

(6.2)

Множество в данном примере является обычным множеством.

Записать характеристическую функцию множества , используя лишь 0 и 1, невозможно. Например, включать ли в числа 1 и 2? "намного" или "ненамного" число 3 меньше 7? Ответы на эти и подобные им вопросы могут быть получены в зависимости от условий задачи, в которой используются множества и , а также от субъективного взгляда того, кто решает эту задачу. Множество называется нечетким множеством. При составлении характеристической функции нечеткого множества решающий задачу (эксперт) может высказать свое мнение относительно того, в какой степени каждое из чисел множества принадлежит множеству . В качестве степени принадлежности можно выбрать любое число с отрезка . При этом означает полную уверенность эксперта в том, что - столь же полную уверенность, что говорит о том, что эксперт затрудняется в ответе на вопрос, принадлежит ли множеству или не принадлежит. Если , то эксперт склонен отнести к множеству , если же , то не склонен.

Функцией принадлежности нечеткого множества называют функцию , которая

Такую функцию называют функцией принадлежности нечеткому множеству . - Максимальное значение функции принадлежности , присутствующее в множестве - верхняя грань - называется супремум. Функция принадлежности отражает субъективный взгляд специалиста на задачу, вносит индивидуальность в ее решение.

Характеристическую функцию обычного множества можно рассматривать как функцию принадлежности этому множеству, но в отличие от нечеткого множества , принимает лишь два значения: 0 или 1.

Нечетким множеством называют пару , где - универсальное множество , - функция принадлежности нечеткого множества .

Несущим множеством или носителем нечеткого множества называют подмножество множества , состоящее из элементов, на которых .

Точкой перехода нечеткого множества называют элемент множества , на котором .

В рассматриваемом примере, где , - множество чисел, меньших 7, - множество чисел, немного меньших 7, субъективно выбираем значения для множества , которые будут составлять функцию принадлежности . В таблице 6.1 представлены функции принадлежности и для и .

Таблица 6.1.
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 0 0 0 0
0 0 0,5 0,6 0,8 0,9 0 0 0 0

Часто используется более компактная запись конечных или счетных нечетких множеств. Так, вместо приведенного выше табличного представления подмножеств и , эти подмножества можно записать следующим образом.