Платформа moodle для дистанционного образования. Технологии организации дистанционного и смешанного обучения с применением LMS "MOODLE". Внедрение и сопровождение Moodle с помощью компании Открытых Технологии

Введение

В настоящее время наряду с литий-ионными аккумуляторами все еще широко используются никель-кадмиевые. Данные аккумуляторы дешевле литий-ионных и сохраняют свою работоспособность в любых погодных условиях, в то время как литий-ионные аккумуляторы некоторых производителей теряют свою работоспособность при отрицательной температуре.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолетов и вертолетов. Используются как источники питания для автономных шуруповёртов, винтовёртов и дрелей.

Минусом никель-кадмиевых аккумуляторов является так называемый «эффект памяти», который возникает при заряде аккумулятора без предварительного его полного разряда. Вследствие этого со временем понижается максимальная емкость аккумулятора, и время его работы сокращается.

В данном дипломном проекте будет разработано устройство для автоматизированной тренировки аккумуляторных батарей. Тренировка аккумулятора необходима для поддержания батареи в работоспособном состоянии и правильного отображения реального заряда аккумулятора. Заключается этот процесс в проведении цикла разряд - заряд.

Аккумулятор подключается через резистор к земле и полностью разряжается. Затем аккумулятор подключается к цепи питания и заряжается до тех пор, пока на нем не установится значение напряжения, не меняющееся в течение длительного времени за один цикл заряда. Если максимальное значение напряжения недостаточно высоко, проводится повторение цикла разряд - заряд.

Устройство, разрабатываемое в рамках данного дипломного проекта, может применяться сервисными службами, занимающимися обслуживанием аккумуляторов, строительными компаниями, располагающими большим количеством автономных шуруповертов и дрелей, больницами, в которых используются приборы для фиксирования жизненных показателей больного, постоянно носимые пациентом.

Обзор аналогов и их анализ

Современные производители электроники выпускают подобные устройства, но они, как правило, построены исключительно на аналоговых элементах и не обладают той гибкостью, какой обладает устройство, построенное на микроконтроллере.

а) Любительская схема аналогового устройства ручной тренировки аккумулятора .

Схема представлена на рисунке 1.

Рисунок 1 - Любительская схема аналогового устройства ручной тренировки аккумулятора

Принцип работы данного устройства - ручное переключение аккумулятора в режим разряда и заряда.

Достоинством этой схемы является несомненная простота и дешевизна. Недостатком - ручное управление и отсутствие защиты от переразряда аккумулятора. Пользователь должен сам отслеживать значение напряжения на аккумуляторе и вовремя переключать его с разряда на заряд. Такое устройство имеет смысл изготавливать для тренировки одного-двух аккумуляторов, так как процесс тренировки занимает весьма длительное время и требует постоянного контроля.

б) Устройство автоматической тренировки аккумулятора .

Схема этого устройства представлена на рисунке 2.


Рисунок 2 - Электрическая принципиальная схема устройства автоматической тренировки аккумулятора

Это устройство позволяет тренировать аккумуляторы только в автоматическом режиме.

Пользователь вручную задает минимальное напряжение заряда и напряжение разряда аккумулятора. Для этого к гнёздам XS1 подключают вольтметр и переменным резистором R10 устанавливают минимальное значение напряжения разряда. Затем вольтметр подключают к гнёздам XS2 и переменным резистором R8 устанавливают минимальное значение напряжения заряда.

К достоинствам этой схемы можно отнести некоторую гибкость в сравнении с предыдущей схемой, к недостаткам - отсутствие какого-либо дисплея, отображающего текущее значение напряжения на аккумуляторе, и необходимость наличия у пользователя отдельного вольтметра для программирования устройства.

в) Turnigy Fatboy 8 1300W Workststion Charger

Особняком от любительских схем стоит этот прибор, изготавливаемый сингапурской компанией LEO Energy Pte Ltd., Revolectrix. Разработчик не публикует схему внутреннего устройства прибора и не объясняет принцип его работы.

Внешний вид данного прибора изображен на рисунке 3.


Рисунок 3 - Внешний вид Turnigy Fatboy 8 1300W Workststion Charger

Данный прибор способен заряжать и разряжать множество типов аккумуляторов: никель-кадмиевые, литий-ионные, литий-полимерные, литий-марганцевые, свинцовые с напряжением 6, 12 и 24В. Также в нем есть функция произведения нескольких циклов заряда - разряда аккумулятора, которая, однако, служит лишь подобием тренировки аккумулятора: устройство производит лишь столько циклов, сколько назначит пользователь, оно не отслеживает, восстановил ли аккумулятор свою ёмкость или нет.

Достоинства этого прибора таковы: широкий спектр видов аккумуляторов, удобство использования, возможность назначить несколько циклов разряда - заряда и наличие гарантийного обслуживания.

Но помимо достоинств данный прибор обладает также и рядом недостатков, среди которых такие как:

Невысокая надежность. Несмотря на то, что производитель заверяет покупателей в обратном, в отзывах пользователи жалуются на выход прибора из строя после непродолжительного использования;

Отсутствие полностью автоматического режима тренировки аккумулятора. Как уже было сказано выше, пользователь лишь может назначить число циклов заряда - разряда, нет функции «производить циклы разряда - заряда до восстановления ёмкости аккумулятора»;

Высокое энергопотребление;

Достаточно высокая цена прибора, составляющая $199,95 без учета цены платы с балансировочными разъемами, приобретающейся отдельно, и доставки из-за рубежа, стоимость которой тоже немаленькая из-за веса прибора около двух килограмм.

Использовать такое устройство только для тренировки никель-

кадмиевых аккумуляторов экономически нецелесообразно.

Ниже представлена сводная таблица разрабатываемого устройства и рассмотренных аналогов, в которой отображены преимущества и недостатки всех рассмотренных устройств.

Таблица 1 - Сводная таблица разрабатываемого устройства и рассмотренных аналогов

Устройство

Вариант исполнения

Наличие автоматического режима

Наличие ручного режима

Сложность изготовления

Стоимость

Только аналоговые элементы

Очень просто

Устройство автоматической тренировки аккумулятора

Turnigy Fatboy 8 1300W Workststion Charger

Разработчик не предоставил информацию

Нет, только возможность задания нескольких циклов

Поставляется изготовленным

Очень высокая

Разрабатываемое устройство

Аналоговые и цифровые элементы

Описываемый прибор предназначен для обслуживания кислотных аккумуляторных батарей с номинальным напряжением 12 В и емкостью от 40 до 100 А*ч. Основное <заболевание> таких батарей — сульфатация, вызывающая повышение внутреннего сопротивления и снижение емкости батареи. Один из наиболее известных методов борьбы с сульфатацией заключается в периодической (1 — 2 раза в год) разрядке батареи малым током (не более 0,05 ее емкости) и последующей зарядке ее таким же током.

Менее известен способ десульфатации, предусматривающий зарядку аккумуляторной батареи циклами: 6… 8 ч зарядки током 0,04…0,06 от значения емкости с перерывом не менее 8 ч. В течение перерыва электродные потенциалы на поверхности и в глубине активной массы пластин аккумуляторов выравниваются, более плотный электролит из пор пластин диффундирует в межэлектродное пространство, при этом напряжение аккумулятора понижается, а плотность электролита увеличивается.

Рис. 1. Схема прибора для автоматической тренировки аккумуляторов

В предлагаемом приборе использован псевдо-комбинированный способ, при котором,производится разрядка до напряжения на каждом аккумуляторе 1,7…1,8 В, а затем последующая зарядка циклами. Критерием, используемым при управлении процессом зарядки, является напряжение на аккумуляторной батарее, функционально связанное со степенью заряженности ее. Зарядка в каждом цикле заканчивается при достижении на клеммах батареи напряжения 14,8… 15 В, а возобновляется при снижении его до 12,8…13 В. О таком способе зарядки рассказано в статье.

Прибор для автоматической тренировки аккумуляторов (ПАТА) проводит разрядку батареи до напряжения 10,5…10,8 В, автоматически переключается на режим зарядки и осуществляет ее циклами, как указано выше. Прибор работает в трех режимах. В первом режиме (<Щ>) возможны два варианта: либо зарядка циклами, либо разрядка до напряжения 10,5…10,8 В, а затем зарядка циклами. В следующем режиме () происходит многократный переход от зарядки к разрядке при достижении на клеммах аккумуляторной батареи напряжения 14,8…15 В и от разрядки к зарядке при напряжении на клеммах 10,5…10,8 В. Третий режим (<НЗ>) соответствует работе обычного зарядного устройства без автоматики.

Разряжается батарея током 2…1,7 А, а заряжается током 2 или 5 А (в первом случае он изменяется от 2 до 1,5 А, во втором — от 5,8 до 4,5 А).

Прибор питается от сети переменного тока напряжением 220 В и потребляет не более 25 Вт при отсутствии зарядки и не более 180 Вт при максимальном зарядном токе.

Принципиальная схема прибора приведена на рис. 1. Понижающий трансформатор Т1 обеспечивает на вторичной обмотке переменное напряжение около 19 В. С помощью диодов VD1 — VD4 получается пульсирующее напряжение амплитудой около 27 В, а после диода VD5 на конденсаторе С1 образуется постоянное напряжение около 26 В, необходимое для питания узла автоматики. Пульсирующее напряжение подается на анод тринистора VS1. Если на управляющий электрод тринистора подать соответствующее напряжение, тринистор откроется и пропустит ток для зарядки аккумуляторной батареи через лампы HL2 — HL6 и выключатель SA3. Ток зарядки ограничивается лампами накаливания HL6 (в режиме <2А>) или HL4 — HL6 (в режиме <5А>). Разряжается батарея через транзистор VT13 и резисторы R25, R26.

Управляются тринистор и транзистор VT13 узлом автоматики. Он содержит источник образцового напряжения (резистор R15, диоды VD9, VD10), пороговый выключатель разрядки (транзисторы VT7, VT8, резисторы R17 — R20), усилитель сигнала разрядного тока (транзисторы VT10 — VT12), пороговый переключатель зарядки (транзисторы VT3 — VT6 с соответствующими резисторами, включая R13, R16), усилитель.сигнала за-рядного тока (транзисторы VT1, VT2) и элементы запрета сигнала зарядки (диод VD7, транзистор VT9). Рассмотрим работу этих каскадов.

Пороговый переключатель разрядки подключен к выходным зажимам прибора ХТЗ, ХТ4, предназначенным для подключения аккумуляторной батареи. Имеющееся на них напряжение является одновременно и питающим и контролируемым напряжением выключателя.

Радиолюбителям известен аналог тринистора, состоящий из двух транзисторов разной структуры. Аналог способен по внешнему сигналу переходить в открытое состояние и сохранять его, пока хотя бы один из транзисторов находится в насыщении. Выключение наступает при снижении тока до порогового значения, когда оба транзистора выходят из насыщения. Пороговый выключатель выполнен с аналогичными связями, но не непосредственными, а через резисторы, причем эмиттер одного из транзисторов подключен к образцовому напряжению, а база — к делителю напряжения. Благодаря этому пороговый выключатель обладает температурной стабильностью напряжения порога выключения. Настраивают выключатель на пороговое напряжение (10,5… 10,8 В) подстроечным резистором R19.

Усилитель сигнала разрядного тока состоит из цепочки транзисторов с чередующейся структурой. Транзисторы работают в ключевом режиме. Работа одного из них (VT11) поставлена в зависимость от наличия напряжения 26 В. Это сделано для прекращения разрядки батареи в случае аварийного выключения сетевого напряжения.

Пороговый переключатель зарядки состоит из транзисторного усилителя (VT6), триггера Шмитта (VT3, VT4) и ключевого транзистора (VT5). Последний пред-назначен для устранения влияния нижнего порога переключения (резистор R13) на верхний (резистор R16).

Усилитель зарядного тока, как и разрядного,-состоит из цепочки транзисторов разной структуры, работающих в ключевом режиме. При этом коллекторный ток транзистора VT1 может протекать через базовую цепь транзистора VT2, когда закрыт транзистор VT9 (т. е. нет разрядки). Диод VD7 повышает надежность закрывания транзистора VT2 при открывании транзистора VT9 (когда идет разрядка батареи и ток через управляющий электрод тринистора не должен протекать).

Диод VD8 защищает управляющий электрод тринистора от обратного тока, который мог бы быть при выключении сети и подключенной аккумуляторной батарее.

Цепочка С2, R29, VD11 нужна для случая зарядки глубоко разряженной или сульфатированной батареи, когда на ее клеммах может возникнуть пульсирующее напряжение. Благодаря диоду VD11 на конденсаторе С2 оказывается сглаженное напряжение. Без этой цепочки выбросы напряжения могли бы раньше времени вывести пороговый выключатель из режима зарядки.

Конденсатор СЗ играет роль своеобразного аккумулятора и используется для контроля исправности при-бора. В положении <Контроль>, выключателя SA3 он мо-жет наряжаться только через диод VD12 и резистор R34, а разряжаться через узел автоматики. Поскольку в режимах <1Ц> и процессы зарядки и разрядки происходят с периодом повторения около 1 с, на вольтметре PU1 наблюдаются колебания стрелки, отражающие напряжения порогов переключения и управляемость всех цепей зарядки и порогового выключателя.

Зажимы ХТ1 и ХТ2 с напряжением 12,6 В предназначены для подключения вулканизатора, лампы подсветки, малогабаритного паяльника и другой нагрузки мощностью до 100 Вт.

Рассмотрим более подробно работу прибора в раз-личных режимах при установке выключателя SA3 в положение <Контроль> (аккумуляторная батарея не подключена) .

В режиме <1Ц> после подачи на блок сетевого напряжения на конденсаторе СЗ напряжение не повышается, потому что отсутствует ток базы транзистора VT1. Чтобы обеспечить начальные условия работы, переключателем SA1 кратковременно устанавливают режим <НЗ> и возвращают в положение <1Ц>. После этого пороговый переключатель начинает работать, запрещая зарядку при повышении напряжения на конденсаторе выше установленного максимума (14,8…15 В) и разрешая, если оно стало ниже установленного минимума (12Д..13В).

При переводе переключателя SA1 в режим <МЦ> на коллектор транзистора VT8 подается через диод VD6 напряжение, и пороговый выключатель срабатывает, разрешая разрядку. При.этом открытый транзистор VT9 запрещает зарядку, и конденсатор СЗ разряжается че-рез узел автоматики до напряжения 10,5…10,8 В.

После опрокидывания порогового выключателя транзистор VT9 закрывается, коллекторный ток транзистора VT1 протекает через диод VD7 и базовую цепь транзистора VT2. Этот транзистор, а вслед за ним и тринистор открываются. Через конденсатор СЗ протекает за-рядный ток, и напряжение на конденсаторе повышается до 14,8…15 В.

Во время указанного контроля остаются непроверенными элементы разрядки, поскольку такие дефекты, как обрыв в цепях транзисторов VT11 — VT13, никак не отразятся на показаниях вольтметра PU1. Для контроля работы этих элементов выключатель SA3 устанавливают в положение <Работа> — тогда в режиме конденсатор СЗ будет разряжаться в основном через транзистор VT13. В результате начнет мигать лампа HL7 <Разрядка>, свидетельствуя об исправности цепей разрядки.

Аналогично работает прибор с подключенной аккумуляторной батареей. В режиме <1Ц> сразу начинается зарядка циклами (имеется в виду, что напряжение батареи не превышает порогового напряжения 12,8…13 В). Горит лампа HL2 при зарядном токе 2 А или HL3 при токе 5 А. Нажатием кнопочного выключателя SB1 <Разрядка> на запускающий вход порогового выключателя подается напряжение, в результате чего он срабатывает. Разрядка индицируется лампой HL7.

В режиме при подключении аккумуляторной батареи работа может начаться как с зарядки, так и с разрядки — в зависимости от того, в каком режиме в момент включения находился пороговый выключатель. При желании установить какой-то конкретный режим, переключатель SA1 сначала устанавливают в положение <1Ц>, а после этого — в положение <МЦ>.

В режиме не автоматической зарядки (<НЗ>) контакты переключателя блокируют пороговый выключатель, и тринистор управляется непосредственно от источника постоянного тока.

Какие детали использованы в приборе:

Постоянные резисторы R25, R26 - остеклованные проволочные типа ПЭВ-10, остальные - МЛТ указанной на схеме мощно­сти, подстроечные резисторы R13, R16, R19 - типа ППЗ или другие. Кроме указанных на схеме, транзисторы VT1, VT6, VT7, VT10 могут быть П307, П307В П309-VT2 - ГТ403А, ГТ403В - ГТ403Ю; VT3, VT4, VT8 VT9, VT11 - МП20, МП20А, МП20Б, МП2.1, МП21А - МП21Е; VT5, VT12 - КТ603А, КТ608А, КТ608Б; VT13 - любой из серий П214 - П217. Диоды VD1 - VD4 могут быть, кроме указанных на схеме, Д242, Д243 Д243А Д245, Д245А, Д246, Д246А, Д247; VD5 - КД202Б - КД202С; VD6, VD7 - Д223А, Д223Б, Д219А, Д220- VD8, VD11, УШ2 - Д226В - Д226Д, Д206-Д211; вместо стабилитронов Д808 подойдут Д809 - Д813, Д814А - Д814Д. Тринистор может быть КУ202А - КУ202Н.

Конденсаторы С1, СЗ - К50-6; С2 - К50-15. Лампы HL1-HL3, Н17-СШ8, HL4-HL6 — автомобильные на напряжение 12 В и мощность 50 + 40 Вт (использует­ся нить на 50 Вт). Выключатель Q1 - тумблер ТВ (ТП), выключатели.SA2, SA3 - тумблеры ВБТ, кнопочный выключатель SB1 - КМ-1, переключатель SA1 - типа ПКГ (ЗПЗН). Трансформатор 77 - готовый, ТН-61-220/127-50 (номинальная мощность 190 Вт). Вольтметр постоянного тока - типа М4200 со шкалой на 30 В.

Конструкция прибора показана на рис. 2 и 3. Осно­вой его является основание размерами 240×225 мм из дюралюминия толщиной 3 мм. К основанию прикрепле­ны лицевая панель, монтажная плата с деталями узла автоматики, конденсаторы С1, СЗ, трансформатор пи­тания, задняя и боковая монтажные платы.

На лицевой панели расположены органы управления и индикации, а также зажимы ХТ1, ХТ2. На задней монтажной плате, изготовленной из стеклотекстолита толщиной 3 мм (размеры платы 105×215 мм), смонти­рованы диоды VD1 - VD4 (на ребристых радиаторах), диод VD5, тринистор (на ребристом радиаторе), тран­зистор VT13 (на П-образном радиаторе), резисторы R25, R26, лампы HL4HL6. На боковой монтажной плате, установленной рядом с трансформатором, смон­тированы резисторы Rll, R29, R32 - R34, диоды VD8, VD11, VD12, конденсатор С2, подстроечные резисторы. -

Для подключения аккумуляторной батареи через отверстие в лицевой панели выведен шланг с двумя тол­стыми, проводами и маркированными (знаками « + » и « - ») зажимами на концах. Сверху блок прикрыт ко­жухом, изготовленным из листового алюминия.

Чертеж платы узла автоматики приведен на рис. 4. К основанию ее крепят с помощью двух Г-образных уголков-кронштейнов.

Для налаживания прибора понадобятся регулируе­мый источник постоянного тока с максимальным напря­жением 15 В и током нагрузки не менее 0,2 А, контроль­ный вольтметр или сигнальная лампа на напряжение 27 В.

Рис. 4. Печатная плата (а) узла автоматики и расположение деталей на ней (б)

Перед налаживанием движки подстроечных резисто­ров устанавливают в положение максимального сопро­тивления, контрольный вольтметр или сигнальную лампу подключают между выводом 2 платы узла автоматики и общим проводом (зажим ХТ4), а источник питания подключают (с соблюдением полярности) к выходным зажимам прибора. Переключатель SA1 устанавливают в положение «1Ц», выключатель SA3 - в положение «Контроль». Выходное напряжение источника постоян­ного тока должно быть 14,8…15 В.

После включения прибора в сеть на контрольном вольтметре должно быть напряжение около 26 В. Плав­но перемещая движок подстроечного резистора R16, добиваются, чтобы контрольное напряжение упало скач­ком, до нуля.

Устанавливают на источнике напряжение 12,8…13 В и плавно перемещают движок резистора R13 до появ­ления на контрольном вольтметре скачком напряжения 26 В. Нажимают кнопку SB1 - контролируемое напря­жение вновь должно упасть до нуля. Установив на источнике напряжение 10,5…10,8 В, перемещают движок резистора R19 до появления на контрольном вольтметре напряжения 26 В.

После этого следует проверить и при необходимости подобрать точнее уровни срабатывания автомата при изменении напряжения источника питания.

Установка.верхнего порога 15 В не вызывает выки­пания электролита после полной зарядки батареи, по­тому что батарея в этом случае включается автоматом на зарядку на 8…10 мин и отключается примерно на 2 ч. Наблюдения показали, что при работе в таком режиме даже в течение нескольких месяцев уровень электролита в банках аккумуляторов не понижается.
Литература

  • В помощь радиолюбителю: Сборник. Вып. 100/ С80 Сост. Б. С. Иванов. -М.: ДОСААФ\А.Коробков

Описываемый прибор предназначен для обслуживания кислотных аккумуляторных батарей с номинальным напряжением 12 В и ёмкостью от 40 до 100 Ач. Прибор питается от сети переменного тока напряжением 220 В и потребляет не более 25 Вт при отсутствии зарядки и не более 180 Вт при максимальном зарядном токе.

В предлагаемом приборе использован псевдокомбинированный способ, при котором производится разрядка до напряжения на каждом аккумуляторе 1,7-1,8В, а затем последующая зарядка циклами. Критерием, используемым при управлении процессом зарядки, является напряжение на аккумуляторной батарее, функционально связанное со степенью её заряженности. Зарядка в каждом цикле заканчивается при достижении на клеммах батареи напряжения 14,8 - 15 В, а возобновляется при снижении его до 12,8-13 В.

Для автоматической тренировки аккумулятора, прибор проводит разрядку батареи до напряжения 10,5 - 10,8 В, автоматически переключается на режим зарядки и осуществляет ее циклами, как указано выше.

Прибор может работать в одном из трех режимов:

  • в первом режиме «Щ» возможны два варианта: либо зарядка циклами, либо разрядка до напряжения 10,5 - 10,8В, а затем зарядка циклами;
  • во втором режиме «NЦ» происходит многократный переход от зарядки к разрядке при достижении на клеммах аккумуляторной батареи напряжения 14,8 - 15В и от разрядки к зарядке при напряжении на клеммах 10,5 - 10,8В;
  • ручной режим «РЗ» соответствует работе обычного зарядного устройства без автоматики.

Разряжается батарея током 2 - 1,7А, а заряжается током 2 или 5А (в первом случае он изменяется от 2 до 1,5А, во втором - от 5,8 до 4,5А).

Работа узлов прибора

Понижающий трансформатор Т1 обеспечивает на вторичной обмотке переменное напряжение около 19 В. С помощью диодов VD1 - VD4 получается пульсирующее напряжение амплитудой около 27 В, а после диода VD6 на конденсаторе С1 образуется постоянное напряжение около 26 В, необходимое для питания узла автоматики. Пульсирующее напряжение подается на анод тиристора VS1. Если на управляющий электрод тиристора подать соответствующее напряжение, тиристор откроется и пропустит ток для зарядки аккумуляторной батареи через лампы HL2 - HL6 и выключатель SA3.

Ток зарядки ограничивается лампами накаливания HL2 (в режиме «2А») или HL2 - HL4 (в режиме «5А»). Разряжается батарея через транзистор VT13 и резисторы R25, R26.

Управляются тиристор и транзистор VT13 узлом автоматики. Он содержит источник образцового напряжения (резистор R17, стабилитроны VD10, VD11), пороговый выключатель разрядки (транзисторы VT6, VT7, резисторы R19 - R21), усилитель сигнала разрядного тока (транзисторы VT9, VT11, VT12), пороговый переключатель зарядки (транзисторы VT2 + VT5 с соответствующими резисторами, включая R12, R16), усилитель сигнала зарядного тока (транзисторы VT1, VT8) и элементы запрета сигнала зарядки (диод VD12, транзистор VT10).

Пороговый переключатель разрядки подключен к выходным зажимам прибора X1 и Х2, предназначенным для подключения аккумуляторной батареи. Имеющееся на них напряжение является одновременно и питающим и контролируемым напряжением выключателя.

Радиолюбителям известен аналог тиристора, состоящий из двух транзисторов разной структуры. Аналог способен по внешнему сигналу переходить в открытое состояние и сохранять его, пока хотя бы один из транзисторов находится в насыщении. Выключение наступает при снижений тока до порогового значения, когда оба транзистора выходят из насыщения.

Пороговый выключатель выполнен с аналогичными связями, но не непосредственными, а через резисторы, причем эмиттер одного из транзисторов подключен к образцовому напряжению, а база - к делителю напряжения. Благодаря этому пороговый выключатель обладает температурной стабильностью напряжения порога выключения. Настраивают выключатель на пороговое напряжение 10,5-10,8В подстроечным резистором R19.

Усилитель сигнала разрядного тока состоит из цепочки транзисторов с чередующейся структурой. Транзисторы работают в ключевом режиме. Работа одного из них (VT11) поставлена в зависимость от наличия напряжения 26 В. Это сделано для прекращения разрядки, батареи в случае аварийного выключения сетевого напряжения.

Пороговый переключатель зарядки состоит из транзисторного усилителя (VT5), триггера Шмитта (VT2, VTЗ) и ключевого транзистора (VT4). Последний предназначен для устранения влияния нижнего порога переключения (резистор R12) на верхний (резистор R16).

Усилитель зарядного тока, как и разрядного, состоит из цепочки транзисторов разной структуры, работающих в ключевом режиме. При этом коллекторный ток транзистора VT1 может протекать через базовую цепь транзистора VT8, когда закрыт транзистор VT10 (т. е. нет разрядки).

Диод VD12 повышает надежность закрывания транзистора VT8 при открывании транзистора VT10 (когда идет разрядка батареи и ток через управляющий электрод тиристора не должен протекать). Диод VD7 защищает управляющий электрод тиристора от обратного тока, который мог бы быть при выключении сети и подключенной аккумуляторной батарее.

Цепочка С2, R15, VD9 нужна для случая зарядки глубоко разряженной или сульфатированной батареи, когда на ее клеммах может возникнуть пульсирующее напряжение. Благодаря диоду VD9 на конденсаторе С2 оказывается сглаженное напряжение, Без этой цепочки выбросы напряжения могли бы раньше времени вывести пороговый выключатель из режима зарядки.

Рис. 1. Принципиальная схема прибора для автоматической тренировки аккумуляторов.

Конденсатор С3 играет роль своеобразного аккумулятора и используется для контроля исправности прибора. В положении «КОНТРОЛЬ» выключателя SA3 он может заряжаться только через диод VD12 и резистор R34, а разряжаться через узел автоматики. Поскольку в режимах «1Ц» и «NЦ» процессы зарядки и разрядки происходят с периодом повторения около 1 секунды, то на вольтметре РV1 будут наблюдаются колебания стрелки, отражающие напряжения порогов переключения и управляемость всех цепей зарядки и порогового выключателя.

Клеммы Х3 и Х4 с напряжением 12,6 В предназначены для подключения вулканизатора, лампы подсветки, малогабаритного паяльника и другой нагрузки мощностью до 100 Вт.

Рассмотрим более подробно работу прибора в различных режимах при установке выключателя SA3 в положение «КОНТРОЛЬ» (аккумуляторная батарея не подключена).

В режиме «1Ц» после подачи на блок сетевого напряжения на конденсаторе С3 напряжение не повышается, потому что отсутствует ток базы транзистора VT1. Чтобы обеспечить начальные условия работы, переключателем SA4 кратковременно устанавливают режим «Р3» и возвращают в положение «1Ц». После этого пороговый переключатель начинает работать, запрещая зарядку при повышении напряжения на конденсаторе выше установленного максимума (14,8-15В) и разрешая, если оно стало ниже установленного минимума(12,8-13В).

При переводе переключателя SA4 в режим «NЦ» на коллектор транзистора VT7 подается через диод VD8 напряжение, и пороговый выключатель срабатывает, разрешая разрядку. При этом открытый транзистор VT10 запрещает зарядку, и конденсатор С3 разряжается через узел автоматики до напряжения 10,5 4- 10,8 В.

После опрокидывания порогового выключателя транзистор VT10 закрывается, коллекторный ток транзистора VT1 протекает через диод VD12 и базовую цепь транзистора VT8. Этот транзистор, а вслед за ним и тиристор открываются. Через конденсатор С3 протекает зарядный ток, и напряжение на конденсаторе повышается до 14.8-15В.

Во время указанного контроля остаются непроверенными элементы разрядки, поскольку такие дефекты, как обрыв в цепях транзисторов VT11 - VT13, никак не отразятся на показаниях вольтметра PV1. Для контроля работы этих элементов выключатель SA3 устанавливают в положение «ЗАРЯД» - тогда в режиме «NЦ» конденсатор С3 будет разряжаться в основном через транзистор VT13. В результате начнет мигать лампа HL7 «РАЗРЯД», свидетельствуя об исправности цепей разрядки.

Аналогично работает прибор с подключенной аккумуляторной батареей. В режиме «1Ц» сразу начинается зарядка циклами (имеется в виду, что напряжение батареи не превышает порогового напряжения 12,8-13В).

Лампа HL6 горит при зарядном токе 2 А или HL5 при токе 5А. Нажатием кнопочного выключателя SB1 «РАЗРЯД» на запускающий вход порогового выключателя подается напряжение, в результате чего он срабатывает. Разрядка индицируется лампой HL7.

В режиме «NЦ» при подключении аккумуляторной батареи работа может начаться как с зарядки, так и с разрядки - в зависимости от того, в каком режиме в момент включения находился пороговый выключатель. При желании установить какой-то конкретный режим, переключатель SA1 сначала устанавливают в положение «1Ц», а после этого - в положение «NЦ».

В режиме ручной зарядки «Р3» контакты переключателя блокируют пороговый выключатель, и тиристор управляется непосредственно от источника постоянного тока.

Настройка устройства

Для налаживания прибора понадобятся регулируемый источник постоянного тока с максимальным напряжением 15 В и током нагрузки не менее 0,2 А, контрольный вольтметр или сигнальная лампа на напряжение 27 В.

Перед налаживанием движки подстроечных резисторов устанавливают в положение максимального сопротивления, контрольный вольтметр или сигнальную лампу подключают между коллектором VT8 и общим проводом (зажим Х2), а источник питания подключают (с соблюдением полярности) к выходным зажимам прибора. Переключатель SA4 устанавливают в положение «1Ц», выключатель SA3 - в положение «КОНТРОЛЬ». Выходное напряжение источника постоянного тока должно быть 14.8 - 15В.

После включения прибора в сеть на контрольном вольтметре должно быть напряжение около 26 В. Плавно перемещая движок подстроечного резистора R16, добиться, чтобы контрольное напряжение упало скачком до нуля.

Устанавливают на источнике напряжение 12,8 - 13В и плавно перемещают движок резистора R12 до появления на контрольном вольтметре скачком напряжения 26 В. Нажимают кнопку SB1 - контролируемое напряжение вновь должно упасть до нуля. Установив на источнике напряжение 10,5-10,8В, перемещают движок резистора R21 до появления на контрольном вольтметре напряжения 26В.

После этого следует проверить и при необходимости подобрать точнее уровни срабатывания автомата при изменении напряжения источника питания.

Установка верхнего порога 15 В не вызывает выкипания электролита после полной зарядки батареи, потому что батарея в этом случае включается автоматом на зарядку на 8 - 10 минут и отключается примерно на 2 часа. Наблюдения показали, что при работе в таком режиме даже в течение нескольких месяцев уровень электролита в банках аккумуляторов не понижается.

Детали

Постоянные резисторы: R33 - остеклованное проволочное типа ПЭВ-20 или два резистора (включенных параллельно) по 15 Ом (типа ПЭВ-10), остальные - МЛТ указанной на схеме мощности, подстроечные резисторы R12, R16, R21 - типа ППЗ или другие.

Кроме указанных на схеме, транзисторы VT1 VT5 VT6, VT9 могут быть П307, П307В, П309: VT8 - ГТ403А, ГТ403В - ГТ403Ю; VT2, VTЗ, VT7, VT10, VT11 - МП20, МП20А, МП20Б, МП21, МП21А - МП21Е; VT4, VT12 - КТ603А, КТ608А, КТ608Б; VT13 - любой из серий П214 - П217.

Диоды VD1 - VD4 могут быть, кроме указанных на схеме, Д242, Д243, Д243А, Д245, Д245А, Д246, Д246А, Д247; VD5, VD7, VD9 - Д226В + Д226Д, Д206 - Д211; VD6 - КД202Б КД202С; VD8, VD12 - Д223А, Д223Б, Д219А, Д220. Вместо стабилитронов Д808 подойдут Д809 -к Д813, Д814А -г Д814Д.

Тиристор может быть КУ202А -к КУ202Н. Конденсаторы С1, С3 - К50-6; С2 - К50-15. Лампы HL1 т HL3, HL7 - СМ28, HL4 HL6 - автомобильные на напряжение 12 В и мощность 50+40 Вт (используется нить на 50 Вт).

Выключатель SA1 - тумблер ТВ (ТП), выключатели SA2, SA3 - тумблеры ВБТ, кнопочный выключатель SB 1 - КМ-1, переключатель SА - типа ПКГ (ЗПЗН). Трансформатор Т1 - готовый, ТН-61 -220/127-50 (номинальная мощность 190 Вт). Вольтметр постоянного тока - типа М4200 со шкалой на 30 В.