Построение векторов в пространстве. Векторы для чайников. Действия с векторами. Координаты вектора. Простейшие задачи с векторами. Виды проекций вектора

Итак, что касается геометрии: выделяют три основных вида симметрии.

Во-первых, центральная симметрия (или симметрия относительно точки) – это преобразование плоскости (или пространства), при котором единственная точка (точка О – центр симметрии) остаётся на месте, остальные же точки меняют своё положение: вместо точки А получаем точку А1 такую, что точка О середина отрезка АА1. Чтобы построить фигуру Ф1, симметричную фигуре Ф относительно точки О, нужно через каждую точку фигуры Ф провести луч, проходящий через точку О (центр симметрии), и на этом луче отложить точку, симметричную выбранной относительно точки О. Множество построенных таким образом точек даст фигуру Ф1.


Большой интерес вызывают фигуры, имеющие центр симметрии: при симметрии относительно точки О любая точка фигурф Ф преобразуется опять же в некоторую точку фигуры Ф. Таких фигур в геометрии встречается много. Например: отрезок (середина отрезка – центр симметрии), прямая (любая её точка – центр её симметрии), окружность (центр окружности – центр симметрии), прямоугольник (точка пересечения его диагоналей – центр симметрии). Много центральносимметричных объектов в живой и неживой природе (сообщение учащихся). Часто люди сами создают объекты, имеющие центр симмет рии (примеры из рукоделия, примеры из машиностроения, примеры из архитектуры и много других примеров).

Во-вторых, осевая симметрия (или симметрия относительно прямой) – это преобразование плоскости (или пространства), при котором только точки прямой р остаются на месте (эта прямая является осью симметрии), остальные же точки меняют своё положение: вместо точки В получаем такую точку В1, что прямая р является серединным перпендикуляром к отрезку ВВ1. Чтобы построить фигуру Ф1, симметричную фигуре Ф, относительно прямой р, нужно для каждой точки фигуры Ф построить точку, симметричную ей относительно прямой р. Множество всех этих построенных точек и дают искомую фигуру Ф1. Много существует геометрических фигур, имеющих ось симметрии.

У прямоугольника их две, у квадрата – четыре, у круга – любая прямая, проходящая через его центр. Если присмотреться к буквам алфавита, то и среди них можно найти, имеющие горизонтальную или вертикальную, а иногда и обе оси симметрии. Объекты, имеющие оси симметрии достаточно часто встречаются в живой и неживой природе (доклады учащихся). В своей деятельности человек создаёт много объектов (например, орнаменты), имеющих несколько осей симметрии.

______________________________________________________________________________________________________

В-третьих, плоскостная (зеркальная) симметрия (или симметрия относительно плоскости) – это преобразование пространства, при котором только точки одной плоскости сохраняют своё местоположение (α-плоскость симметрии), остальные точки пространства меняют своё положение: вместо точки С получается такая точка С1, что плоскость α проходит через середину отрезка СС1, перпендикулярно к нему.

Чтобы построить фигуру Ф1,симметричную фигуре Ф относительно плоскости α, нужно для каждой точки фигуры Ф выстроить симметричные относительно α точки, они в своём множестве и образуют фигуру Ф1.

Чаще всего в окружающем нас мире вещей и объектов нам встречаются объёмные тела. И некоторые из этих тел имеют плоскости симметрии, иногда даже несколько. И сам человек в своей деятельности (строительство, рукоделие, моделирование, ...) создаёт объекты имеющие плоскости симметрии.

Стоит отметить, что наряду с тремя перечисленными видами симметрии, выделяют (в архитектуре) переносную и поворотную , которые в геометрии являются композициями нескольких движений.

Гомотетия и подобие. Гомотетия - преобразование, при котором каждой точке М (плоскости или пространства) ставится в соответствие точка М", лежащая на ОМ (рис. 5.16), причем отношение ОМ":ОМ= λ одно и то же для всех точек, отличных от О. Фиксированная точка О называется центром гомотетии. Отношение ОМ": ОМ считают положительным, если М" и М лежат по одну сторону от О, отрицательным - по разные стороны. Число X называют коэффициентом гомотетии. При Х< 0 гомотетию называют обратной. При λ = - 1 гомотетия превращается в преобразование симметрии относительно точки О. При гомотетии прямая переходит в прямую, сохраняется параллельность прямых и плоскостей, сохраняются углы (линейные и двугранные), каждая фигура переходит в ей подобную (рис. 5.17).

Верно и обратное утверждение. Гомотетия может быть определена как аффинное преобразование, при котором прямые, соединяющие соответствующие точки, проходят через одну точку - центр гомотетии. Гомотетию применяют для увеличения изображений (проекционный фонарь, кино).

Центральная и зеркальная симметрии. Симметрия (в широком смысле) - свойство геометрической фигуры Ф, характеризующее некоторую правильность ее формы, неизменность ее при действии движений и отражений. Фигура Ф обладает симметрией (симметрична), если существуют нетождественные ортогональные преобразования, переводящие эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой этой фигуры. Так, плоская фигура (рис. 5.18) с точкой М, преобразующая-

ся в себя при зеркальном отражении, симметрична относительно прямой - оси АВ. Здесь группа симметрии состоит из двух элементов - точка М преобразуется в М".

Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n, где n > 2 целое число, переводят ее в себя, то фигура Ф обладает симметрией n-го порядка относительно точки О - центра симметрии. Пример таких фигур - правильные многоугольники, например звездчатый (рис. 5.19), обладающий симметрией восьмого порядка относительно своего центра. Группа симметрии здесь - так называемая циклическая группа n-го порядка. Окружность обладает симметрией бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).

Простейшими видами пространственной симметрии является центральная симметрия (инверсия). В этом случае относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трех взаимно перпендикулярных плоскостей, т. е. точка О - середина отрезка, соединяющего симметричные точки Ф. Так, для куба (рис. 5.20) точка О является центром симметрии. Точки М и М" куба