Правило ленца как определить направление индукционного тока. Направление индукционного тока. Правило Ленца — Гипермаркет знаний. Физическая суть правила

Индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока.

В 1831 году английский физик Майкл Фарадей открыл то, что теперь называют законом электромагнитной индукции Фарадея , согласно которому изменение магнитного потока внутри проводящего контура возбуждает в этом контуре электрический ток даже при отсутствии в контуре источника питания. Оставленный Фарадеем открытым вопрос о направлении индукционного тока вскоре решил российский физик Эмилий Христианович Ленц.

Представьте себе замкнутый круговой токопроводящий контур без подключенной батареи или иного источника питания, в который северным полюсом начинают вводить магнит. Это приведет к увеличению магнитного потока, проходящего через контур, и, согласно закону Фарадея, в контуре возникнет индуцированный ток. Этот ток, в свою очередь, согласно закону Био—Савара будет генерировать магнитное поле, свойства которого ничем не отличаются от свойств поля обычного магнита с северным и южным полюсами. Ленцу как раз и удалось выяснить, что индуцированный ток будет направлен таким образом, что северный полюс генерируемого током магнитного поля будет ориентирован в сторону северного полюса вдвигаемого магнита. Поскольку между двумя северными полюсами магнитов действуют силы взаимного отталкивания, наведенный в контуре индукционный ток потечет именно в таком направлении, что будет противодействовать введению магнита в контур. И это лишь частный случай, а в обобщенной формулировке правило Ленца гласит, что индукционный ток всегда направлен так, чтобы противодействовать вызвавшей его первопричине.

Правило Ленца сегодня пытаются использовать в междугороднем пассажирском транспорте. Уже построены и испытываются опытные образцы поездов на так называемой магнитной подушке. Под днищем вагона такого поезда смонтированы мощные магниты, расположенные в считанных сантиметрах от стального полотна. При движении поезда магнитный поток, проходящий через контур полотна, постоянно меняется, и в нем возникают сильные индукционные токи, создающие мощное магнитное поле, отталкивающее магнитную подвеску поезда (аналогично тому, как возникают силы отталкивания между контуром и магнитом в вышеописанном опыте). Сила эта настолько велика, что, набрав некоторую скорость, поезд буквально отрывается от полотна на 10-15 сантиметров и, фактически, летит по воздуху. Поезда на магнитной подушке способны развивать скорость свыше 500 км/ч, что делает их идеальным средством междугороднего сообщения средней дальности.

См. также:

Цель работы: экспериментальное изучение явления магнитной индукции и проверка правила Ленца.

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном по времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется. В нашем случае разумнее было бы менять во времени магнитное поле, так как оно создается движущимися (свободно) магнитом. Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. В данном случае наблюдать это мы можем по отклонению стрелки миллиамперметра.

Пример выполнения работы

1. Вводя магнит в катушку одним полюсом (северным) и выводя ее, мы наблюдаем, что стрелка амперметра отклоняется в разные стороны. В первом случае число линий магнитной индукции, пронизывающих катушку (магнитный поток) растет, а во втором случае наоборот. Причем в первом случае линии индукции, созданные магнитным полем индукционного тока, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Так как стрелка амперметра отклоняется, то направление индукционного тока меняется. Именно это показывает нам правило Ленца.

Вводя магнит в катушку южным полюсом, мы наблюдаем картину, противоположную первой.

2. (Случай с двумя катушками)

В случае с двумя катушками при размыкании ключа стрелка амперметра смещается в одну сторону, а при замыкании в другую.

Это объясняется тем, что при замыкании ключа, ток в первой катушке создает магнитное поле. Это поле увеличивается, и число линий индукции, пронизывающих вторую катушку, растет. При размыкании число линий, пронизывающих катушку, уменьшается. Следовательно, по правилу Ленца в первом случае и во втором индукционный ток противодействует тому изменению, которым он вызван. Изменение направления индукционного тока нам показывает тот же амперметр, и это подтверждает правило Ленца.

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Как сказал.

Вопросы к экзамену

Для групп АМ-11, СЗ-11, А-11 специальности:

190631 «Техническое обслуживание и ремонт автомобильного транспорта»

270802 «Строительство и эксплуатация зданий и сооружений»

Список лекций по физике за 1,2 семестр

ЖЕЛАЮ УДАЧИ!

Тестирование

Лабораторная работа № 09 «Изучение явления электромагнитной индукции»

Лабораторная работа №10

Цель работы: изучить условия возникновения индукционного тока, ЭДС индукции.

Оборудование : катушка, два полосовых магнита, миллиамперметр.

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции .

Многочисленные опыты Фарадея показывают, что с помощью магнитного поля можно получить электрический ток в проводнике.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Ток, возникающий при явлении электромагнитной индук­ции, называют индукционным.

В электрической цепи (рисунок 1) возникает индукционный ток, если есть движение магнита относительно катушки, или наоборот. Направление индукционного тока зависит как от направления движения магнита, так и от расположения его полюсов. Индукционный ток отсутствует, если нет относительного перемещения катушки и магнита.

Строго говоря, при движении контура в магнит­ном поле генерируется не определенный ток, а определенная э. д. с.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции E инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус :

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограни­ченную контуром.

Знак минус в формуле отражает правило Ленца .

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток .

При возрастании магнитного потока Ф>0, а ε инд 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий физический смысл оно выражает закон сохранения энергии : если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой - слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке 2.

На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S – от северного полюса к южному полюсу магнита.

По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.

Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке 1 красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.

Подготовьте для отчета таблицу и по мере проведения опытов заполните её.

Изучение явления электромагнитной индукции

Решебник по физике за 11 класс (Г.Я Мякишев, Б.Б. Буховцев, 2000 год),
задача №1
к главе «Лабораторная работа №1 ».

Цель работы: экспериментальное изучение явления магнитной индукциии проверка правила Ленца.

Теоретическая часть: Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется. В нашем случае разумнее было бы менять во времени магнитное поле, так как оно создается движущимися (свободно) магнитом. Согласно правилу Ленца, возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. В данном случае это мы можем наблюдать по отклонению стрелки миллиамперметра.

Оборудование: Миллиамперметр, источник питания, катушки с сердечниками, дугообразный магнит, выключатель кнопочный, соединительные провода, магнитная стрелка (компас), реостат.

Вывод по проделанной работе: 1. Вводя магнит в катушку одним полюсом (северным) и выводя ее, мы наблюдаем, что стрелка амперметра отклоняется в разные стороны. В первом случае число линий магнитной индукции, пронизывающих катушку (магнитный поток), растет, а во втором случае – наоборот. Причем в первом случае линии индукции, созданные магнитным полем индукционного тока, выходят из верхнего конца катушки, так как катушка отталкивает магнит, а во втором случае, наоборот, входят в этот конец. Так как стрелка амперметра отклоняется, то направление индукционного тока меняется. Именно это показывает нам правило Ленца. Вводя магнит в катушку южным полюсом, мы наблюдаем картину, противоположную первой.

2. (Случай с двумя катушками) В случае с двумя катушками при размыкании ключа стрелка амперметра смещается в одну сторону, а при замыкании в другую. Это объясняется тем, что при замыкании ключа, ток в первой катушке создает магнитное поле. Это поле растет, и число линий индукции, пронизывающих вторую катушку, растет. При размыкании число линий падает. Следовательно, по правилу Ленца в первом случае и во втором индукционный ток противодействует тому изменению, которым он вызван. Изменение направления индукционного тока нам показывает тот же амперметр, и это подтверждает правило Ленца.

Лабораторная работа на тему: «Изучение явления электромагнитной индукции»

Успейте воспользоваться скидками до 60% на курсы «Инфоурок»

Лабораторная работа

изучение явления электромагнитной индукции

Цель: наблюдать явление электромагнитной индукции, проверить выполнение правила Ленца.

гальванометр, катушка, соединительные провода, магнит.

Метод выполнения работы

Явление электромагнитной индукции заключается в возникновении индукционного электрического тока в любом замкнутом проводящем контуре при изменении магнитного потока, который пронизывает контур. Направление индукционного тока определяется по правилу Ленца.

В этой работе наблюдается явление электромагнитной индукции. Через полость катушки перемещают магнит и определяют при этом направление индукционного тока по отклонению стрелки гальванометра.

Направление индукционного тока можно определить и по правилу Ленца. В работе его можно применить так:

1) определить направление магнитных полюсов катушки при движении магнита (к магниту обращен полюс, который препятствует его движению);

2) определить (по правилу магнитной стрелки) направление вектора В магнитного поля, созданного током в катушке;

3) определить (по правилу буравчика) направление тока в катушке.

1. Подсоединить катушку к гальванометру.

2. Передвигать магнит через полость катушки, как показано на рисунках а)-г); отметить в каждом случае отклонение стрелки гальванометра (направление тока).

3. Для одного из четырех случаев (полюса магнита и направление его движения задает преподаватель) определить направление тока в катушке по правилу Ленца, используя п. 1 – 3. Для катушки указать: полюса N и S , направление вектора В, направление тока I .

1. Что характеризует магнитная индукция В? Как вычисляется магнитная индукция? Какие величины входят в эту формулу?

2. Объясните по рисунку, как возникает ЭДС индукции в проводнике, который движется в магнитном поле?

3. При каком условии появляется вихревое электрическое поле? Каковы свойства вихревого электрического поля (объяснит его, опираясь на рисунок).

Лабораторная работа №2. «Изучение явления электромагнитной индукции»

Урок 9. Физика 11 класс

Конспект урока «Лабораторная работа №2. «Изучение явления электромагнитной индукции»»

«Человека, умеющего наблюдать и

анализировать, обмануть невозможно»

Артур Конан Дойль

Данная тема посвящена лабораторной работе по изучению явления электромагнитной индукции.

Цель лабораторной работы : изучение явления электромагнитной индукции, а также проверка правила Ленца.

Оборудование : соединительные провода, миллиамперметр, реостат, источник питания, ключ, полосовой или дугообразный магнит, магнитная стрелка или компас, катушки с сердечниками.

Магнитный поток через плоскую поверхность - это скалярная физическая величина, численно равная произведению модуля магнитной индукции на площадь поверхности, ограниченной контуром, и на косинус угла между нормалью к поверхности и магнитной индукцией

17 октября 1831 года английский ученый Майкл Фарадей открыл явление электромагнитной индукции.

Явлением электромагнитной индукции называется явление возникновения тока в замкнутом контуре при изменении магнитного потока, пронизывающего этот контур. А полученный таким способом ток, называется индукционным.

Закон электромагнитной индукции: среднее значение электродвижущей силы индукции в проводящем контуре пропорционально скорости изменения магнитного потока через поверхность, ограниченную контуром.

Знак минус в математической записи закона учитывает правило Ленца , согласно которому электромагнитная индукция создает в контуре индукционный ток такого направления, что созданное им магнитное поле препятствует изменению магнитного потока, вызывающего этот ток.

Подготовка к выполнению работы.

Вставьте в одну из катушек железный сердечник и закрепите его там, например гайкой.

Рядом с катушкой расположите магнитную стрелку или компас.

Замкнув ключ, определите расположение магнитных полюсов катушки с током при помощи магнитной стрелки.

Зафиксируйте, в какую сторону при этом отклониться стрелка миллиамперметра. Это поможет в дальнейшем судить о расположении магнитных полюсов катушки с током по направлению отклонения стрелки миллиамперметра.

После проделанной работы, отключите от цепи реостат и ключ, а миллиамперметр замкните на катушку, при этом сохранив порядок соединения их клемм.

Для удобства записей, можно составить следующую таблицу.


Приступаем непосредственно к выполнению лабораторной работы. При этом все данные, которые вы будите получать в процессе исследования, заносите в таблицу.

Приставив сердечник к одному из полюсов магнита (например к северному), быстро поместите его внутрь катушки, одновременно наблюдая за стрелкой миллиамперметра. По правилу Ленца определите направление индукционного тока внутри катушки.

Оставив магнит неподвижным, после первого опыта, пронаблюдайте опять за стрелкой миллиамперметра.

Быстро вытащите сердечник из катушки, не забывая наблюдать за стрелкой миллиамперметра (модуль скорости выдвижения магнита должен быть примерно таким же, как и в первом опыте). Опять, по правилу Ленца, определите направление индукционного тока внутри катушки в этом случае.

Посмотрите, как ведет себя стрелка миллиамперметра после проделанного опыта.

Повторите наблюдения, изменив полюс магнита с северного на южный.

Запишите вывод по работе на основе проведённых наблюдений. Объясните различие в направлении индукционного тока с точки зрения правила Ленца.

Теперь немного видоизменим нашу установку.

Расположите вторую катушку рядом с первой так, чтобы их оси совпадали, и поместите их на один общий сердечник.

Первую катушку соедините с миллиамперметром, а вторую катушку через реостат соедините с источником тока.

Замыкая и размыкая ключ, проверьте возникает ли в первой катушки индукционный ток.

Зарисуйте схему опыта и проверьте выполнения правила Ленца.

Также проверьте, возникает ли индукционный ток при изменении силы тока реостатом.

В конце работы, подведите ее итог, сделав общий вывод, не забыв отразить в нем условия, при которых в катушке возникал индукционный ток.

Письменно ответьте на контрольные вопросы:

1. В чем заключается явление электромагнитной индукции?

2. Какой ток называют индукционным?

3. Сформулируйте закон электромагнитной индукции. Какой формулой он описывается?

4. Как формулируется правило Ленца?

5. Какова связь правила Ленца с законом сохранения энергии?

Это интересно:

  • Сколько стоят услуги юриста по взысканию неустойки с застройщика Застройщик КСК (Спб) задерживает срок сдачи квартиры. По договору ДДУ должен был передать 31.12.2015г. Квартира 40м2, приобретена в ипотеку. На что можно рассчитывать и сколько будут стоить услуги юриста (акта приема […]
  • Нормативные документы Приемная комиссия Прием по образовательным программам высшего образования - программам бакалавриата, программам специалитета прием иностранных граждан в КГМУ На нашем сайте вы найдете всю необходимую информацию о правилах поступления в наш вуз, способах и сроках […]
  • Право на НДФЛ-вычет ИФНС подтвердила, а деньги так и не пришли: как быть? Далеко не всегда получение денег по заявленному НДФЛ- вычету (имущественному/ социальному/ стандартному) проходит гладко. Давайте разберемся с ситуацией, когда вы представили в инспекцию декларацию с необходимыми […]
  • Сайт мир суд С 01.01.2017 года вступил в законную силу Федеральный закон от 23.06.2016 года № 220-ФЗ "О внесении изменений в отдельные законодательные акты Российской Федерации в части применения электронных документов в деятельности органов судебной власти". Согласно данного закона […]

В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции . Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.

Электромагнитная индукция - это явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую - и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока , кроме гальваники.

Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

Закон электромагнитной индукции

Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:

ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит . Направление индуцируемого тока можно определить с помощью правила Ленца .


Правило Ленца

Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.

Применение правила Ленца

1. показать направление вектора В внешнего магнитного поля; 2. определить увеличивается или уменьшается магнитный поток через контур; 3. показать направление вектора Вi магнитного поля индукционного тока (при уменьшении магнитного потока вектора В внешнего м.поля и Вi магнитного поля индукционного тока должны быть направлены одинаково, а при увеличениии магнитного потока В и Вi должны быть направлены противоположно); 4. по правилу буравчика определить направление индукционного тока в контуре.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Эл. ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции. Учитывая направление индукционного тока, согласно правилу Ленца:

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

Почему "-" ? - т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

Где R - сопротивление проводника.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией. Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результате Л1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Ферромагнетики - вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критическойтемпературы (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик - такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3 d -металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er

Магнитный гистерезис - явление зависимости вектора намагничивания и вектора напряженности магнитного поля в веществе не только от приложенного внешнего поля, но и от предыстории данного образца. Магнитный гистерезис обычно проявляется в ферромагнетиках - Fe, Co, Ni и сплавах на их основе. Именно магнитным гистерезисом объясняется существование постоянных магнитов.

Колебательный контур - осциллятор, представляющий собой электрическую цепь, содержащую соединённыекатушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

Это электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды.

Свойства электромагнитных волн: -распространяются не только в веществе, но и в вакууме; - распространяются в вакууме со скоростью света (С = 300 000 км/c); - это поперечные волны; - это бегущие волны (переносят энергию).

Источником электромагнитных волн являются ускоренно движущиеся электрические заряды. Колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

ЭДС индукции. Направление индукционного тока

Причиной электродвижущей силы может стать изменение магнитного поля в окружающем пространстве. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

где - поток магнитного поля через замкнутую поверхность , ограниченную контуром. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре

Индукцио́нный ток - электрический ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур. Величина и направление индукционного тока определяются законом электромагнитной индукции и правилом Ленца.

Правило Ленца определяет направление индукционного тока и гласит:

Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Правило сформулировано в 1833 году Э. Х. Ленцем. Позднее оно было обобщено на все физические явления в работах Ле Шателье (1884 год) и Брауна (1887 год), это обобщение известно как принцип Ле Шателье - Брауна.

Эффектной демонстрацией правила Ленца является опыт Элиу Томсона.

Физическая суть правила

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением:

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменением величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.

Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся током, текущим в другом контуре, то индукционный ток может оказаться направлен как в том же направлении, что и внешний, так и в противоположном: это зависит от того, уменьшается или увеличивается внешний ток. Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.

Ленца правило это:

Ленца правило определяет направление индукционных токов, т. е. токов, возникающих вследствие индукции электромагнитной (См. Индукция электромагнитная); является следствием закона сохранения энергии. Л. П. установлено в 1833 Э. X. Ленцем. Согласно Л. п., возникающий в замкнутом контуре индукционный ток направлен так, что создаваемый им поток магнитной индукции (См. Магнитная индукция) через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток. Так, например, индукционный ток в витке, помещенном в магнитное поле В, которое направлено перпендикулярно плоскости витка (рис .) от наблюдателя (т. е. за плоскость чертежа), направлен против часовой стрелки, если поле возрастает во времени (а), и по часовой стрелке, если поле убывает (б).


Большая советская энциклопедия. - М.: Советская энциклопедия. 1969-1978.

Чтобы найти направление индукционного тока в контуре при известном направлении его магнитного поля используют

а)правило правой руки
б)правило Ленца
в)правило буравчика

НАПРАВЛЕНИЕ ИНДУКЦИОННОГО ТОКА
1. Прямолинейный проводник

Направление индукционного тока определяется по правилу правой руки:
Если поставить правую руку так, чтобы вектор магнитной индукции входил в ладонь, отставленный на 90 градусов большой палец указывал направление вектора скорости, то выпрямленные 4 пальца покажут направление индукционного тока в проводнике.
2. Замкнутый контур
Направление индукционного тока в замкнутом контуре определяется по правилу Ленца.

Правило Ленца:
Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует изменению магнитного потока, которым он вызван.
Применение правила Ленца:
показать направление вектора В внешнего магнитного поля;
определить увеличивается или уменьшается магнитный поток через контур;
показать направление вектора Вi магнитного поля индукционного тока;
(при уменьшении магнитного потока вектора В внешнего м. поля и Вi магнитного поля индукционного тока должны быть направлены одинаково, а при увеличениии магнитного потока В и Вi должны быть направлены противоположно);
по правилу буравчика определить направление индукционного тока контуре.

Направление индукционного тока

При внесении в катушку магнита в ней возникает индукционный ток. Если к катушке присоединить гальванометр, то можно заметить, что направление тока будет зависеть от того приближаем ли мы магнит или удаляем его.

Магнит будет взаимодействовать с катушкой либо притягиваясь, либо отталкиваясь от нее. Это будет возникать вследствие того, что катушка с проходящим по ней током, будет подобна магниту с двумя полюсами. Направление индуцируемого тока будет определять, где у катушки будет находиться какой из полюсов.

Если приближать к катушке магнит, то в ней будет возникать индукционный ток такого направления, что катушка обязательно будет отталкиваться от магнита. Если мы будет удалять магнит от катушки, то при этом в катушке возникнет такой индукционный ток, что она будет притягиваться к магниту.

Стоит отметить, что не важно каким полюсом мы подносим или убираем магнит, всегда при подносе катушка будет отталкиваться, а при удалении притягиваться. Различие состоит в том, что при приближении магнита к катушке магнитный поток, который будет пронизывать катушку, увеличивается, так как у полюса магнита кучность линий магнитной индукции увеличивается. А при удалении магнита, магнитный поток, пронизывающий катушку, будет уменьшаться.

Узнать направление индукционного тока можно. Для этого существует правило Ленца . Оно основано на законе сохранения. Рассмотрим следующий опыт.

Имеется катушка с подключенным к ней гальванометром. К одному и краев катушки начинаем подносить магнит, например, северным полюсом. Количество линий, которые будут пронизывать поверхность каждого витка катушки, будет увеличиваться. Следовательно, будет увеличиваться и значение магнитного потока.

Так как должен выполняться закон сохранения, должно возникнуть магнитное поле, которое будет препятствовать изменению магнитного потока. В нашем случае магнитный поток увеличивался, следовательно, ток должен течь в таком направлении, чтобы линии вектора магнитной индукции, создаваемые катушкой, были направлены в противоположном направлении линиям магнитной индукции, создаваемым магнитом.

То есть они должны в нашем случае быть направлены вверх. Теперь воспользуемся правилом буравчика. Направляем большой палец правой руки по необходимому нам направлению линий магнитной индукции, то есть - вверх. Тогда остальные пальцы укажут, в какую сторону должен быть направлен индукционный ток. В нашем случае, слева на право.

Аналогичный процесс происходит при удалении магнита. Убираем магнит, магнитный поток уменьшается, следовательно, должно возникнуть поле которое будет увеличивать магнитный поток. То есть поле линии магнитной индукции, которого будут сонаправлены с линиями магнитной индукции, создаваемыми постоянным магнитом. В нашем случае эти лини направлены вниз. Опять пользуемся правилом буравчика и определяем направление индукционного тока.

Правило Ленца.

Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей.

Применять правило Ленца для нахождения направления индукционного тока в контуре надо так:

1. Определить направление линий магнитной индукции вектора В внешнего магнитного поля.

2. Выяснить, увеличивается ли поток вектора магнитной индукции этого поля через поверхность, ограниченную контуром (Δ Ф > 0), или уменьшается (Δ Ф < 0).

3. Установить направление линий магнитной индукции вектора В’ магнитного поля индукционного тока. Эти линии должны быть согласно правилу Ленца направлены противоположно линиям магнитной индукции вектора В’ при Δ Ф > 0 и иметь одинаковое с ними направление при Δ Ф < 0.

4. Зная направление линий магнитной индукции вектора В’ , найти направление индукционного тока, пользуясь правилом буравчика.

Направление индукционного тока определяется с помощью закона сохранения энергии. Индукционный ток во всех случаях направлен так, чтобы своим магнитным полем препятствовать изменению магнитного потока, вызывающего данный индукционный ток .

Вихревое электрическое поле .

Причина возникновения электрического тока в неподвижном проводнике - электрическое поле.

Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.

Индукционное электрическое поле является вихревым.Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

электростатическое поле

индукционное электрическое поле

(вихревое электрическое поле)

1. создается неподвижными электрическими зарядами

1. вызывается изменениями магнитного поля

2. силовые линии поля разомкнуты -потенциальное поле

2. силовые линии замкнуты - вихревое поле

3. источниками поля являются электрические заряды

3. источники поля указать нельзя

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна нулю.

4. работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции