Размер атома составляет примерно. Большая энциклопедия нефти и газа. О числах, связанных с атомом

Атом (от греч. άτομοσ - неделимый) - наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из плотного ядра из положительно заряженных протонов и электрически нейтральных нейтронов, которое окружено гораздо большей облаком отрицательно заряженных электронов. Когда число протонов соответствует числу электронов, атом электрически нейтрален, в противном случае это ион, с определенным зарядом. Атомы классифицируются по числу протонов и нейтронов: число протонов определяет химический элемент, а число нейтронов определяет нуклид элемента.

Образуя между собой связи, атомы объединяются в молекулы и большие по размеру твердые тела.

О существовании мельчайших частиц вещества человечество догадывалось еще с давних времен, однако подтверждения существования атомов было получено лишь в конце 19-го века. Но почти сразу же стало понятно, что атомы, в свою очередь, имеют сложное строение, которой определяются их свойства.

Концепция атома как наименьшей неделимой частицы материи впервые была предложена древнегреческими философами. В 17-м и 18-м веках химики установили, что химические вещества вступают в реакции в определенных пропорциях, которые выражаются с помощью малых чисел. Кроме того они выделили определенные простые вещества, которые назвали химическими элементами. Эти открытия привели к возрождению идеи о неделимые частицы. Развитие термодинамики и статистической физики показал, что тепловые свойства тел можно объяснить движением таких частиц. В конце концов были экспериментально определены размеры атомов.

В конце 19-го и в начале 20-го веков, физики открыли первую из субатомных частиц - электрон, а несколько позже атомное ядро, таким образом показав, что атом не является неделим. Развитие квантовой механики позволил объяснить не только строение атомов, а также ихни свойства: оптические спектры, способность вступать в реакции и образовывать молекулы, т.

Общая характеристика строения атома

Современные представления о строении атома базируются на квантовой механике.

На популярном уровне строении атома можно изложить в рамках волновой модели, которая опирается на модель Бора, но учитывает также дополнительные сведения по квантовой механике.

По этой модели:

Атомы состоят из элементарных частиц (протонов, электронови нейтронов). Масса атома в основном сосредоточена в ядре, поэтому большая часть объема относительно пустая. Ядро окружено электронами. Количество электронов равно числу протонов в ядре, число протонов определяет порядковый номер элемента в периодической системе. В нейтральном атоме суммарный отрицательный заряд электронов равен положительному заряду протонов. Атомы одного элемента с разным количеством нейтронов называются изотопами.
В центре атома находится крошечное, положительно заряженное ядро, состоящее из протонов и нейтронов.
Ядро атома примерно в 10 000 раз меньше, чем сам атом. Таким образом, если увеличить атом до размеров аэропорту Борисполь, размер ядра будет меньше размера шарика для настольного тенниса.
Ядро окружено электронной облаком, которое занимает большую часть его объема. В электронной облаке можно выделить оболочки, для каждых из которых существует несколько возможных орбиталей. Заполненные орбитали составляют электронную конфигурацию, характерную для каждого химического элемента.
Каждая орбиталь может содержать до двух электронов, характеризуются тремя квантовыми числами: основным, орбитальным и магнитным.
Каждый электрон на орбитали имеет уникальное значение четвертой квантового числа: спина.
Орбитали определяются специфическим распределением вероятности того, где именно можно найти электрон. Примеры орбиталей и их обозначения приведены на рисунке справа. «Границей» орбитали считается расстояние, на котором вероятность того что электрон может находиться вне ее меньше 90%.
Каждая оболочка может содержать не более от строго определенного числа электронов. Например, ближайшая к ядру оболочка может иметь максимум два электрона, следующая - 8, третья от ядра - 18 и так далее.
Когда электроны присоединяются к атому, они опускаются на орбиталь с низкой энергией. Только электроны внешней оболочки могут участвовать в образовании межатомных связей. Атомы могут отдавать и присоединять электроны, становясь положительно или отрицательно заряженными ионами. Химические свойства элемента определяются тем, с какой легкостью ядро может отдавать или приобретать электроны. Это зависит как от числа электронов так и от степени заполненности внешней оболочки.
Размер атома

Размер атома является величиной, трудно поддается измерению, ведь центральное ядро окружает размыта электронное облако. Для атомов, образующих твердые кристаллы, расстояние между смежными узлами кристаллической решетки может служить приближенным значением их размера. Для атомов, кристаллов не формируют, используют другие техники оценки, включая теоретические расчеты. Например, размер атома водорода оценивают как 1,2 × 10-10 м. Это значение можно сравнить с размером протона (что является ядром атома водорода): 0,87 × 10-15 м и убедиться в том, что ядро атома водорода в 100 000 раз меньше, чем сам атом. Атомы других элементов сохраняют приблизительно то же соотношение. Причиной этого является то, что элементы с большим позитивно-заряженным ядром притягивают электроны сильнее.

Еще одной характеристикой размеров атома радиус ван дер Ваальса - расстояние, на которую до данного атома может приблизиться другой атом. Межатомные расстояния в молекулах характеризуются длиной химических связей или ковалентной радиусом.

Ядро

Основная масса атома сосредоточена в ядре, которое состоит из нуклонов: протонов и нейтронов, связанных между собой силами ядерного взаимодействия.

Количество протонов в ядре атома определяет его атомным номером и то, которому элементу принадлежит атом. Например, атомы углерода содержат 6 протонов. Все атомы с определенным атомным номером имеют одинаковые физические характеристики и проявляют одинаковые химические свойства. В периодической таблице элементы перечислены в порядке возрастания атомного номера.

Общее количество протонов и нейтронов в атоме элемента определяет его атомную массу, поскольку протон и нейтрон имеют массу приблизительно равную 1 а.е.м.. Нейтроны в ядре не влияют на то, которому элементу принадлежит атом, но химический элемент может иметь атомы с одинаковым количеством протонов и разным количеством нейтронов. Такие атомы имеют одинаковый атомный номер, но разную атомную массу, и называются изотопами элемента. Когда пишут название изотопа, после нее пишут атомную массу. Например, изотоп углерод-14 содержит 6 протонов и 8 нейтронов, что в сумме составляет атомную массу 14. Другой популярный метод нотации состоит в том, что атомная масса сказывается верхним индексом перед символом элемента. Например, углерод-14 обозначается, как 14C.

Атомная масса элемента приведена в периодической таблице является усредненным значением массы изотопов встречающихся в природе. Усреднение проводится согласно распространенности изотопа в природе.

С увеличением атомного номера растет положительный заряд ядра, а, следовательно, кулоновское отталкивание между протонами. Чтобы удержать протоны вместе необходимо все больше нейтронов. Однако большое количество нейтронов нестабильна, и это обстоятельство накладывает ограничение на возможный заряд ядра и число химических элементов, существующих в природе. Химические элементы с большими атомными номерами имеют очень малый время жизни, могут быть созданы только при бомбардировке ядер легких элементов ионами, и наблюдаются лишь во время экспериментов с использованием ускорителей. По состоянию на февраль 2008 тяжелым синтезированным химическим элементом является унуноктий

Многие изотопов химических элементов нестабильны и распадаются со временем. Это явление используется радиоелементним тест для определения возраста объектов имеет большое значение для археологии и палеонтологии.

Модель Бора

Модель Бора - первая физическая модель, которая сумела правильно описать оптические спектры атома водорода. После развития точных методов квантовой механики модель Бора имеет только историческое значение, но благодаря своей простоте она до сих пор широко преподается и используется для качественного понимания строения атома.

Модель Бора базируется на планетарной модели Резерфорда, описывающий атом как маленькое положительно заряженное ядро с отрицательно заряженными электронами на орбитах на разных уровнях, что напоминает структуру солнечной системы. Резерфорд предложил планетарную модель, чтобы объяснить результаты своих экспериментов по рассеянию альфа-частиц металлической фольгой. По планетарной моделью атом состоит из тяжелого ядра, вокруг которого вращаются электроны. Но то, чем электроны, вращающиеся вокруг ядра, не падают по спирали на него, было непостижимым для тогдашних физиков. Действительно, согласно классической теории электромагнетизма электрон, который вращается вокруг ядра должен излучать электромагнитные волны (свет), что привело бы к постепенной потере им энергии и падения на ядро. Поэтому, каким образом атом может вообще существовать? Более того, исследование электромагнитного спектра атомов показали, что электроны в атоме могут излучать свет только определенной частоты.

Эти трудности были преодолены в модели предложенной Нильсом Бором в 1913, которая постулирует, что:

Электроны могут находиться только на орбитах, имеющих дискретные квантованные энергии. То есть возможны не любые орбиты, а лишь некоторые специфические. Точные значения энергий допустимых орбит зависят от атома.
Законы классической механики не действуют, когда электроны переходят из одной допустимой орбиты на другую.
Когда электрон переходит с одной орбиты на другую, разница в энергии излучается (или поглощается) единственным квантом света (фотоном), частота которого напрямую зависит от энергетической разницы между двумя орбитами.

где ν - это частота фотона, E - разность энергий, а h - константа пропорциональности, также известная как постоянная Планка.
Определив, что можно записать

где ω это угловая частота фотона.
Допустимые орбиты зависят от квантованных значений углового орбитального момента L, описываемая уравнением

где n = 1,2,3,...
и называется квантовым числом углового момента.
Эти предположения позволили объяснить результаты тогдашних наблюдений, например, почему спектр состоит из дискретных линий. Предположение (4) утверждает, что наименьшее значение n - это 1. Соответственно, наименьший допустимый радиус атома равен 0,526 Å (0,0529 нм = 5,28 · 10-11 м). Это значение известно как радиус Бора.

Иногда модель Бора называют Полуклассическая, потому, что, хотя она включает некоторые идеи квантовой механики, она не является полным квантовомеханических описанием атома водорода. Однако модель Бора была значительным шагом к созданию такого описания.

При строгом квантовомеханической описании атома водорода уровни энергии находятся из решения стационарного уравнения Шредингера. Эти уровни характеризуются тремя указанными выше квантовыми числами, формула для квантования углового момента другая, квантовое число углового момента равен нулю для сферических s-орбиталей, единицы для вытянутых гантелеобразную p-орбиталей и т.д. (см. рисунок вверху).

Энергия атома и его квантование

Значение энергии, которые может иметь атом, исчисляются и интерпретируются, исходя из положений квантовой механики. При этом учитываются такие факторы, как электростатическое взаимодействие электронов с ядром и электронов между собой, спины электронов, принцип Тождественные частицы. В квантовой механике состояние, в котором находится атом описывается волновой функцией, которую можно найти из решения уравнения Шредингера. Существует определенный набор состояний, каждое из которых имеет определенное значение энергии. Состояние с наименьшей энергией называется основным состоянием. Другие состояния называются возбужденными. Атом находится в возбужденном состоянии конечное время, излучая рано или поздно квант электромагнитного поля (фотон) и переходя в основное состояние. В основном состоянии атом может находиться долго. Чтобы возбудиться, ему нужна внешняя энергия, которая может поступить к нему только из внешней среды. Атом излучает или поглощает свет только определенных частот, соответствующих разности энергий его состояний.

Возможные состояния атома индексируются квантовыми числами, такими как спин, квантовое число орбитального момента, квантовое число полного момента. Подробнее об их классификации можно прочитать в статье электронные терм

Электронные оболочки сложных атомов

Сложные атомы имеют десятки, а для очень тяжелых элементов, даже сотни электронов. Согласно принципу Тождественные частицы электронные состояния атомов формируются всеми электронами, и невозможно определить, где находится каждый из них. Однако, в так называемом одноэлектронном приближении, можно говорить об определенных энергетические состояния отдельных электронов.

Согласно этим представлениям существует определенный набор орбиталей, которые заполняются электронами атома. Эти орбитали образуют определенную электронную конфигурацию. На каждой орбитали может находиться не более двух электронов (принцип запрета Паули). Орбитали группируются в оболочки, каждая из которых может иметь лишь определенное фиксированное число орбиталей (1, 4, 10 и т.д.). Орбитали подразделяют на внутренние и внешние. В основном состоянии атома внутренние оболочки полностью заполнены электронами.

На внутренних орбиталях электроны находятся очень близко к ядру и сильно к нему привязаны. Чтобы вырвать электрон из внутренней орбитали нужно предоставить ему большую энергию, до нескольких тысяч электрон-вольт. Такую энергию электрон на внутренней оболочке может получить лишь поглотив квант рентгеновского излучения. Энергии внутренних оболочек атомов индивидуальны для каждого химического элемента, а потому по спектру рентгеновского поглощения можно идентифицировать атом. Это обстоятельство используют в рентгеновском анализе.

На внешней оболочке электроны находятся далеко от ядра. Именно эти электроны участвуют в формировании химических связей, поэтому внешнюю оболочку называют валентной, а электроны внешней оболочки валентными электронами.

Квантовые переходы в атоме

Между различными состояниями атомов возможны переходы, вызванные внешним возмущением, чаще электромагнитным полем. Вследствие квантования состояний атома оптические спектры атомов состоят из отдельных линий, если энергия кванта света не превышает энергию ионизации. При более высоких частотах оптические спектры атомов становятся непрерывными. Вероятность возбуждения атома светом падает с дальнейшим ростом частоты, но резко возрастает при определенных характерных для каждого химического элемента частотах в рентгеновском диапазоне.

Возбужденные атомы излучают кванты света с теми же частотами, на которых происходит поглощение.

Переходы между различными состояниями атомов могут вызываться также взаимодействием с быстрыми заряженными частицами.

Химические и физические свойства атома

Химические свойства атома определяются в основном валентными электронами - электронами на внешней оболочке. Количество электронов на внешней оболочке определяет валентность атома.

Атомы последнего столбца периодической таблице элементов имеют полностью заполненную внешнюю оболочку, а для перехода электрона на следующую оболочку нужно предоставить атома очень большую энергию. Поэтому эти атомы инертны, не склонны вступать в химические реакции. Инертные газы изреживаются и кристаллизуются только при очень низких температурах.

Атомы первого столбца периодической таблицы элементов имеют на внешней оболочке один электрон, и является химически активными. Их валентность равна 1. Характерным типом химической связи для этих атомов в кристаллизованного состоянии является металлический связь.

Атомы второго столбика периодической таблицы в основном состоянии имеют на внешней оболочке 2 s-электроны. Их внешняя оболочка заполнена, поэтому они должны быть инертными. Но для перехода из основного состояния с конфигурацией электронной оболочки s2 в состояние с конфигурацией s1p1 нужно очень мало энергии, поэтому эти атомы имеют валентность 2, однако они проявляют меньшую активности.

Атомы третьего столбика периодической таблице элементов имеют в основном состоянии электронную конфигурацию s2p1. Они могут проявлять разную валентность: 1, 3, 5. Последняя возможность возникает тогда, когда электронная оболочка атома дополняется до 8 электронов и становится замкнутой.

Атомы Четвертая колонка периодической таблицы элементов своем имеют валентность 4 (например, углекислый газ CO2), хотя возможна и валентность 2 (например, угарный газ CO). До этого столбика принадлежит углерод - элемент, который образует самые разнообразные химические соединения. Соединениям углерода посвящен особый раздел химии - органическая химия. Другие элементы этого столбика - кремний, германий при обычных условиях является твердотельными полупроводниками.

Элементы пятой колонки имеют валентность 3 или 5.

Элементами шестого столбца периодической таблицы в основном состоянии имеют конфигурацию s2p4 и общий спин 1. Поэтому они двухвалентные. Существует также возможность перехода атома в возбужденное состояние s2p3s" со спином 2, в котором валентность равна 4 или 6.

Элементам седьмой колонки периодической таблицы не хватает одного электрона на внешней оболочке для того, чтобы ее заполнить. Они в основном одновалентные. Однако могут вступать в химические соединения в возбужденных состояниях, проявляя валентности 3,5,7.

Для переходных элементов характерно заполнение внешней s-оболочки, прежде чем полностью заполняется d-оболочка. Поэтому они в основном имеют валентность 1 или 2, но в некоторых случаях один из d-электронов участвует в образовании химических связей, и валентность становится равной трем.

При образовании химических соединений атомные орбитали видоизменяются, деформируются и становятся молекулярных орбиталей. При этом происходит процесс гибридизации орбиталей - образование новых орбиталей, как специфической суммы базовых.

История понятия атом

Подробнее в статье атомистика
Понятие атом, как и само слово, имеет древнегреческое происхождение, хотя истинность гипотезы о существовании атомов нашла свое подтверждение только в 20 веке. Основной идеей, которая стояла за данным понятием протяжении всех столетий, было представление о мире как о наборе огромного количества неделимых элементов, которые являются очень простыми по своей структуре и существуют от начала времен.

Первые проповедники атомистического учения

Первым начал проповедовать атомистическое учения в 5 веке до нашей эры философ Левкипп. Затем эстафету подхватил его ученик Демокрит. Сохранились лишь отдельные фрагменты их работ, из которых становится ясно, что они исходили из небольшого количества достаточно абстрактных физических гипотез:

«Сладость и горечь, жара и холод смысл определения, на самом же [только] атомы и пустота».

По Демокритом, вся природа состоит из атомов, мельчайших частиц вещества, которые покоятся или движутся в совершенно пустом пространстве. Все атомы имеют простую форму, а атомы одного сорта тождественны; многообразие природы отражает многообразие форм атомов и многообразие способов, в которые атомы могут сцепляться между собой. И Демокрит, и Левкип считали, что атомы, начав двигаться, продолжают двигаться по законам природы.

Наиболее тяжелым для древних греков был вопрос о физической реальности основных понятий атомизма. В каком смысле можно было говорить о реальности пустоты, если она, не имея материи, не может иметь никаких физических свойств? Идеи Левкипа и Демокрита не могли служить удовлетворительной основой теории вещества в физическом плане, поскольку не объясняли, не из чего состоят атомы, ни почему атомы неделимы.

Через поколение после Демокрита, Платон предложил свое решение этой проблемы: «мельчайшие частицы принадлежат не царству материи, а царству геометрии; они представляют собой различные телесные геометрические фигуры, ограниченные плоскими треугольниками».

Понятие атома в индийской философии

Через тысячу лет отвлеченные рассуждения древних греков проникли в Индию и были восприняты некоторыми школами индийской философии. Но если западная философия считала, что атомистическая теория должна стать конкретной и объективной основой теории материального мира, индийская философия всегда воспринимала вещественный мир как иллюзию. Когда атомизм появился в Индии, он принял форму теории, согласно которой реальность в мире имеет процесс, а не субстанция, и что мы присутствуем в мире как звенья процесса, а не как сгустки вещества.

То есть и Платон, и индийские философы считали примерно так: если природа состоит из мелких, но конечных по размерам, долей, то почему их нельзя разделить, хотя бы в воображении, на еще более мелкие частицы, которые стали предметом дальнейшего рассмотрения?

Атомистическая теория в римской науке

Римский поэт Лукреций (96 - 55 годы до н.э.) был одним из немногих римлян, которые проявляли интерес к чистой науки. В своей поэме О природе вещей (De rerum natura) он подробно выстроил факты, свидетельствующие в пользу атомистической теории. Например, ветер, дующий с большой силой, хотя никто не может его видеть, наверное состоит из частиц, утечка чтобы их разглядеть. Мы можем чувствовать вещи на расстоянии по запаху, звука и теплу, которые распространяются, оставаясь невидимыми.

Лукреций связывает свойства вещей со свойствами их составляющих, т.е. атомов: атомы жидкости малы и имеют округлую форму, поэтому жидкость течет так легко и просачивается через пористую вещество, тогда как атомы твердых веществ имеют крючки, которыми они сцеплены между собой. Так же и различные вкусовые ощущения и звуки разной громкости состоят из атомов соответствующих форм - от простых и гармоничных к извилистым и нерегулярных.

Но учение Лукреция были осуждены церковью, поскольку он дал довольно материалистическую их интерпретацию: например, представление о том, что Бог, запустив один раз атомный механизм, более не вмешивается в его работу, или то, что душа умирает вместе с телом.

Первые теории о строении атома

Одна из первых теорий о строении атома, которая имеет уже современные очертания, была описана Галилеем (1564-1642). По его теории вещество состоит из частиц, которые не находятся в состоянии покоя, а под воздействием тепла движутся во все стороны; тепло - является ничем иным как движением частиц. Структура частиц является сложной, и если лишить любую часть ее материальной оболочки, то изнутри брызнет свет. Галилей был первым, кто, хотя и в фантастической форме, представил строение атома.

Научные основы

В 19 веке Джон Дальтон получил свидетельство существования атомов, но предполагал, что они неделимы. Эрнест Резерфорд показал экспериментально, что атом состоит из ядра, окруженного отрицательно заряженными частицами - электронами.

АТОМ (от греч. atomos - неделимый), наименьшая частица хим. элемента, его св-в. Каждому хим. элементу соответствует совокупность определенных атомов. Связываясь друг с другом, атомы одного или разных элементов образуют более сложные частицы, напр. . Все многообразие хим. в-в (твердых, жидких и газообразных) обусловлено разл. сочетаниями атомов между собой. Атомы могут существовать и в своб. состоянии (в , ). Св-ва атома, в т. ч. важнейшая для способность атома образовывать хим. соед., определяются особенностями его строения.

Общая характеристика строения атома. Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных . Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра атома (линейные размеры атома ~ 10~ 8 см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значит. степени условны и зависят от способов их определения (см. ). Ядро атома состоит из Z и N , удерживаемых ядерными силами (см. ). Положит. заряд и отрицат. заряд одинаковы по абс. величине и равны е= 1,60*10 -19 Кл; не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика атома, обусловливающая его принадлежность к определенному хим. элементу. элемента в периодич. системе Менделеева () равен числу в ядре.

В электрически нейтральном атоме число в облаке равно числу в ядре. Однако при определенных условиях он может терять или присоединять , превращаясь соотв. в положит. или отрицат. , напр. Li + , Li 2+ или О - , О 2- . Говоря об атомах определенного элемента, подразумевают как нейтральные атомы, так и этого элемента.

Масса атома определяется массой его ядра; масса (9,109*10 -28 г) примерно в 1840 раз меньше массы или ( 1,67*10 -24 г), поэтому вклад в массу атома незначителен. Общее число и А = Z + N наз. . и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. 23 11 Na. Вид атомов одного элемента с определенным значением N наз. . Атомы одного и того же элемента с одинаковыми Z и разными N наз. этого элемента. Различие масс мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия ()наблюдаются у вследствие большой относит. разницы в массах обычного атома (), D и Т. Точные значения масс атомов определяют методами .

Стационарное состояние одноэлектронного атома однозначно характеризуется четырьмя квантовыми числами: п, l, m l и m s . Энергия атома зависит только от п, и уровню с заданным п соответствует ряд состояний, отличающихся значениями l, m l , m s . Состояния с заданными п и l принято обозначать как 1s, 2s, 2p, 3s и т.д., где цифры указывают значения л, а буквы s, p, d, f и дальше по латинскому соответствуют значениям д = 0, 1, 2, 3, ... Число разл. состояний с заданными п и д равно 2(2l+ 1) числу комбинаций значений m l и m s . Общее число разл. состояний с заданным п равно , т. е. уровням со значениями п = 1, 2, 3, ... соответствуют 2, 8, 18, ..., 2n 2 разл. . Уровень, к-рому соответствует лишь одно (одна волновая ф-ция), наз. невырожденным. Если уровню соответствует два или более , он наз. вырожденным (см. ). В атоме уровни энергии вырождены по значениям l и m l ; вырождение по m s имеет место лишь приближенно, если не учитывать взаимод. спинового магн. момента с магн. полем, обусловленным орбитальным движением в электрич. поле ядра (см. ). Это - релятивистский эффект, малый в сравнении с кулоновским взаимод., однако он принципиально существен, т.к. приводит к дополнит. расщеплению уровней энергии, что проявляется в в виде т. наз. тонкой структуры.

При заданных n, l и m l квадрат модуля волновой ф-ции определяет для электронного облака в атоме среднее распределение . Разл. атома существенно отличаются друг от друга распределением (рис. 2). Так, при l = 0 (s-состояния) отлична от нуля в центре атома и не зависит от направления (т.е. сферически симметрична), для остальных состояний она равна нулю в центре атома и зависит от направления.

Рис. 2. Форма электронных облаков для различных состояний атома .

В многоэлектронных атомах вследствие взаимного электростатич. отталкивания существенно уменьшается их связи с ядром. Напр., энергия отрыва от Не + равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых атомов связь внеш. с ядром еще слабее. Важную роль в многоэлектронных атомах играет специфич. , связанное с неразличимостью , и тот факт, что подчиняются , согласно к-рому в каждом , характеризуемом четырьмя квантовыми числами, не может находиться более одного . Для многоэлектронного атома имеет смысл говорить только о всего атома в целом. Однако приближенно, в т. наз. одноэлектронном приближении, можно рассматривать отдельных и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей ф-цией) совокупностью четырех квантовых чисел n, l, m l и m s . Совокупность 2(2l+ 1) в состоянии с данными п и l образует электронную оболочку (наз. также подуровнем, подоболочкой); если все эти состояния заняты , оболочка наз. заполненной (замкнутой). Совокупность 2п 2 состояний с одним и тем же n, но разными l образует электронный слой (наз. также уровнем, оболочкой). Для п= 1, 2, 3, 4, ... слои обозначают символами К, L, M, N, ... Число в оболочках и слоях при полном заполнении приведены в таблице:

Между стационарными состояниями в атоме возможны . При переходе с более высокого уровня энергии Е i на более низкий E k атом отдает энергию (E i - E k), при обратном переходе получает ее. При излучательных переходах атом испускает или поглощает квант электромагн. излучения (фотон). Возможны и , когда атом отдает или получает энергию при взаимод. с др. частицами, с к-рыми он сталкивается (напр., в ) или длительно связан (в. Хим. св-ва определяются строением внеш. электронных оболочек атомов, в к-рых связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек атомов хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают в замкнутой оболочке. Поэтому атомы с одним или неск. в частично заполненной внеш. оболочке отдают их в хим. р-циях. Атомы, к-рым не хватает одного или неск. для образования замкнутой внеш. оболочки, обычно принимают их. Атомы , обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек атомов, к-рых связаны гораздо прочнее (энергия связи 10 2 -10 4 эВ), проявляется лишь при взаимод. атомов с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц ( , ) на атомах (см. ). Масса атома определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра атома зависят нек-рые тонкие физ. эффекты ( зависит от частоты излучения, что обусловливает зависимость от нее показателя преломления в-ва, связанного с атома. Тесная связь оптич. св-в атома с его электрич. св-вами особенно ярко проявляется в оптич. спектрах.

===
Исп. литература для статьи «АТОМ» : Карапетьянц М. X., Дракин С.И., Строение , 3 изд., М., 1978; Шло лье кий Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984. М. А. Ельяшевич.

Страница «АТОМ» подготовлена по материалам .


«Неужели это возможно в домашних условиях?» - спросите вы. Вполне возможно, только для того, чтобы рассчитать диаметр атома, надо кое-что знать. Например, что атомы многих металлов можно представить в виде маленьких, плотно упакованных шариков. В таком случае атомы-шарики занимают 74 % всего пространства, а остальные 26 % приходятся на пустот ы между ними. Еше надо знать, как связан объем шара (У) с его диаметром UD - эту формулу можно найти в учебнике или в справочнике по математике: V- тГ/Ь. где к = 3,14. Наконец, надо знать очень важную для химии величину, которая называе тся постоянной Авогадро (Л/л) в честь итальянского ученого XIX века Амедео Авогадро (1776-1856). Эта константа показывает, сколько частиц - атомов, ионов или молекул содержится водном моле вещества. Моль - очень удобная для химиков единица измерения, так как в одном моле любого вещест ва содержится одинаковое число частиц. Например. 1 моль воды (18 г), или I моль сахара (343 г), или 1 моль кислорода (32 г) содержит одинаковое число молекул, равное Л"д = 6.02 ¦ !0". Ровно столько же атомов содержит 1 моль алюминия (27 г), или I моль меди (64 г), или I мольсеребра (108 г). А I моль поваренной соли (58,5 г) содержит по 6.02 10" положительно заряженных ионов (катионов) натрия и отрицательно заряженных ионов (анионов) хлора. Понятие «моль» (раньше его называли «грамм-молекулой»,аеще раньше, во времена Менделеева, - «химическим паем») удобно тем, что им можно пользоваться и не зная численного значения постоянной Авогадро. так как ве-щества реагируют друг с другом в соответствии с числом молей в них.
О том, как ученые определили это оіромное число, мы еще поговорим, а пока вернемся к нашей ложке. Итак, пусть в предыдущем опыте нам повезло, и ложка оказалась из серебра высокой пробы с плотностью 10,5 г/см1. Теперь у нас есть все данные, чтобы определить размер «сереб-ряного атома». В I см"серебра содержится 10,5 г: 108 г/моль = 0,097 моль, или 0,097 ¦ 6,02 ¦ I0J1 = 5,84 10" атомов серебра. Если не считать пустоты между атомами, то на долю самих атомов-шари ков придется не 1 см3, а немного меньше - 0,74 см3. Значит, объем одного атома равен 0,74с.м3/5.84- Ю"= 1.27-10 "см3. Осталось только по приведенной выше формуле рассчитать диаметр атома серебра. Он получится очень маленьким: d = 3 10 4 см. пли 0,3 нм (нанометр - одна миллнардная часть метра - самая подходящая единица для измерения таких малых величин).
Все атомы имеют очень малые размеры. Цепочка из миллиона атомов серебра, плотно уложенных друг к другу, протянется всего на 0,3 мм. Для сравнения: если уложить в цепочку миллион маковых зер- нышек диаметром 1 мм, то такая цепочка протянется на 1 км! Из-за малою размера атомов их невозможно увидеть даже и самый сильный оптический микроскоп. Зато ученые придумали другие приборы, позволяющие получать изображения отдельных атомов.
Примерно такие же размеры, как атом серебра, имеют небольшие молекулы - кислорода, азота, метана, волы; все они содержат несколько небольших а томов. Бывают молекулы, которые значительно больше: они содержат много атомов или агомы больших размеров (например, атомы иода). В следующем разделе мы познакомимся с одним из методов измерения размера молекул. А сейчас - некоторые ин тересные и полезные сведения об Авогадро и постоянной, названной его именем.
Итальянский химик Авогадро прожил очень дол гую по меркам того времени жизнь. Он родился в 1776 году в Турине, в Северной Италии. Получил юридическое образование и в возрасте 20 лет был назначен секретарем префектуры. Это были годы, когда в Италии гремела слава молодого французского полководца Наполеона. Однако Авогадро не привлекала ни военная, ни юридическая карьера. Со временем он стал все больше интересоваться естественными науками - физикой и химией, которые изучил самостоятельно. В 1809 году он начал преподавать физику в городе Верчслли, недалеко от Турина, а в 1820 году был назначен профессором математической физики в Туринском университете. В университете Авогадро проработал до преклонного возраста и покинул его лишь в 1850 году. Умер Авогадро в Турине в 1856 году. О его личной жизни сохранилось очень мало сведений. Прославили же Авогадро две статьи, опубликованные в 1811 и 1814 годах. Вначале они не вызвали интереса и были почти забыты. Сегодня же имя Авогадро знают школьники всех стран, если они изучают физику и химию. Закон Авогадро звучит очень просто: «Равные объемы газообразных веществ при одинаковом давлении и температуре содержат одно и то же число молекул, так что плотность различных газов служит мерой массы их молекул». Из этого закона следовало, что, измеряя плотность разных газов, можно определять относительные массы, а также состав молекул газообразных соединений. Благодарные потомки на-звали число частиц в одном моле вещества постоянной Авогадро, которую обозначили как JVa. Кстати, само слово «моль» - итальянского, вернее, латинского происхождения. В переводе с латыни moles означает «тяжесть, глыба, громада». На современной двухцентовой итальянской монете изображен купол со шпилем «Антонеллиевой громады» {mole A/ilonelliana), самой высокой конструкции в Италии (167,5 м); интересно, что это сооружение считается символом Турина, родного города Авогадро. Соответственно, molecula (с уменьшительным суффиксом -си/о) - «маленькая масса», как корпускула - «маленькое тело» (так во времена Ломоносова называли молекулы). Помимо указанного значения слово motes на латыни означает «дамба, насыпь, укрепленная большими камнями» (вспомним слово «мол» - сооружение в гаванях для защиты судов от морских волн)- Тот же корень в латинском слове mola - «жернов» («громадный камень») и в глаголе то/о - «молоть». Отсюда и молот с молотком, и моляр - зуб, размалывающий твердую пищу, как жернов на мельнице, и даже вредная моль - насекомое, измельчающее, стирающее вещи в муку
Постоянная Авогадро - огромное число, с трудом поддающееся воображению; оно, к примеру, в 4 миллиарда раз больше, чем расстояние от Земли до Солнца, выраженное в миллиметрах! Это означает, что атомы и молекулы очень маленькие - раз их так много помещается в сравнительно небольшом количестве вещества. Еще в XIX веке ученым было очевидно, что. постольку атомы и молекулы очень маленькие и никто их еше не видел, постоянная Авогадро должна быть очень велика. Постепенно физики научились определять размеры молекул и значение постоянной Авогадро - сначала очень грубо, приблизительно, затем все точнее. Прежде всего им было понятно, что обе вели-чины связаны между собой: чем меньше окажутся атомы и молекулы, тем больше получится постоянная Авогадро.
Преподаватели и популяризаторы химии придумали множество эффектных способов, чтобы наглядно показать грандиозность этого числа. Вот некоторые из них.
В пустыне Сахара содержится менее трех молей самых мелких песчинок.
Если объем футбольного мяча увеличить в Л^ раз, то в таком мяче поместится Земной шар. Если же в NA раз увеличить диаметр мяча, то в нем поместится самая большая галактика, содержащая сотни миллиардов звезд. Кстати, число звезд во Вселенной примерно равно постоянной Авогадро.
Если взять 100 г красителя, пометить каким-либо способом все его молекулы, вылить этот краситель в море и подождать, пока он равномерно распределится по всем морям и океанам до самого дна, то, зачерпнув в любом месте Земного шара стакан воды, мы обязательно обнаружим в нем не один десяток «меченых» молекул.
При каждом вдохе человека в его легкие попадает хотя бы несколько молекул кислорода и азога, которые содержались в последнем выдохе Юлия Цезаря (44 год до н. э.).
Если взять моль долларовых бумажек, они покроют все материки двухкилометровым плотным слоем,
В древности на Востоке придумали такую легенду. В сказочном царстве находится огромная гранитная скала. Представим себе, что она имеет форму куба с ребром, равным 1 км. Раз в столетие на скалу садится ворон и чистит об нее клюв. Если предположить, что при этом скала стирается на 0,0001 г. то число лет, за которое от скалы не останется ни одной песчинки, меньше, чем постоянная Авогадро.

Размер атома определяется радиусом его внешней электронной оболочки. Размеры всех атомов ~ 10 ‑10 м. А размер ядра на 5 порядков меньше, всего — 10 -15 м. Наглядно это можно представить так: если атом увеличить до размеров 20-этажного дома, то ядро атома будет выглядеть как миллиметровая пылинка в центральной комнате этого дома. Однако трудно вообразить дом, масса которого прак-тически полностью сосредоточена в этой пылинке. А атом именно таков.

Атомы очень маленькие и очень легкие. Атом во столько раз легче яблока, во сколько раз яблоко легче земного шара. Если мир «потяжелеет» так, что атом станет весить как капля воды, то люди в таком мире станут тяже-лыми, как планеты: дети — как Меркурий и Марс, а взрослые — как Венера и Земля.

Рассмотреть атом нельзя даже с помощью микро-скопа. Лучшие оптиче-ские микроскопы позво-ляют различить детали объекта, если расстояние между ними ~0,2 мкм. В электронном микроско-пе это расстояние уда-лось уменьшить до ~2-3 Å. Различить и сфо-тографировать отдель-ные атомы впервые уда-лось с помощью ионного проектора. Но никто не видел, как устроен атом внутри. Все данные о строении атомов полу-чены из опытов по рассе-янию частиц.

Масса атомного ядра в несколько тысяч раз больше массы его электронной оболочки. Это связано с тем, что ядра атомов состоят из очень тяжелых, по сравнению с электроном, частиц — протонов p и нейтронов n. Их массы почти одинаковы и примерно в 2000 раз больше массы элек-трона. При этом протон — положительно заряженная части-ца, а нейтрон — нейтральная. Заряд протона по величине ра-вен заряду электрона. Число протонов в ядре равно числу электронов в оболочке, это и обеспечивает электрическую нейтральность атома. Число нейтронов может быть различ-ным, в ядре атома легкого водорода нейтронов нет совсем, а в ядре атома углерода их может быть и 6, и 7, и 8.

Масса электрона m e ≈ 0,91 . 10 -30 кг, масса протона m p 1,673 . 10 -27 кг = 1836 m e , мас-са нейтрона m n = 1,675 . 10 ‑27 кг ≈ 1840 m e .

Масса атома меньше суммы масс ядра и электронов на ве-личину Δm, называемую дефектом масс , который возника-ет из-за кулоновского взаимодействия ядра и электронов. Дефект масс у атомов (в отличие от ядер) очень мал, и, хотя он увеличивается с ростом Z , ни у одного атома не превы-шает массы электрона. Материал с сайта

Конечно, атом нельзя по-ложить на весы и взвесить, он слишком мал. Массы атомов сначала определи-ли химики. Причем изме-рили они их в относитель-ных единицах, приняв за единицу массу атома водо-рода и воспользовавшись законом Дальтона, соглас-но которому химические вещества образуются при соединении атомов хими-ческих элементов в строго определенной пропорции. И сейчас массы атомов ча-ще всего измеряют в отно-сительных единицах, но в качестве атомной единицы массы (а. е. м.) используют 1 / 12 массы атома углерода C 12 ,1 а. е. м. = 1,66057 . 10 -27 кг.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.