Системы линейных неравенств и выпуклые множества точек. Системы линейных неравенств

Неравенства и системы неравенств - это одна из тем, которая проходится в средней школе по алгебре. По уровню сложности она является не самой трудной, т. к. имеет незамысловатые правила (о них немного позже). Как правило, решение систем неравенств школьники усваивают достаточно легко. Это связано ещё и с тем, что учителя попросту "натаскивают" своих учеников по данной теме. И они не могут этого не делать, ведь она изучается и в дальнейшем с применением иных математических величин, а также проверяется на ОГЭ и ЕГЭ. В школьных учебниках тема, посвящённая неравенствам и системам неравенств, раскрыта очень подробно, поэтому если вы собираетесь её изучить, то лучше всего прибегнуть именно к ним. Данная статья лишь пересказывает большие материалы, и в ней могут быть некоторые опущения.

Понятие системы неравенств

Если обратиться к научному языку, то можно дать определение понятию "система неравенств". Это такая математическая модель, которая представляет собой несколько неравенств. От данной модели, конечно же, требуется решение, и в его качестве будет выступать общий ответ для всех неравенств системы, предложенной в задании (обычно в нём так и пишут, например: "Решите систему неравенств 4 x + 1 > 2 и 30 - x > 6... "). Однако перед тем как перейти к видам и методам решений, нужно ещё кое в чём разобраться.

Системы неравенств и системы уравнений

В процессе изучения новой темы очень часто возникают недопонимания. С одной стороны, всё ясно и скорее хочется приступить к решению заданий, а с другой - какие-то моменты остаются в "тени", не совсем хорошо осмысливаются. Также некоторые элементы уже полученных знаний могут переплетаться с новыми. В результате такого "наложения" зачастую случаются ошибки.

Поэтому перед тем как приступить к разбору нашей темы, следует вспомнить про отличия уравнений и неравенств, их систем. Для этого нужно ещё раз пояснить, что представляют собой данные математические понятия. Уравнение - это всегда равенство, и оно всегда чему-нибудь равно (в математике это слово обозначается знаком "="). Неравенство же представляет собой такую модель, в которой одна величина или больше, или меньше другой, или содержит в себе утверждение, что они неодинаковы. Таким образом, в первом случае уместно говорить о равенстве, а во втором, как бы это очевидно ни звучало из самого названия, о неравенстве исходных данных. Системы уравнений и неравенств друг от друга практически не отличаются и методы их решения одинаковы. Единственное различие заключается в том, что в первом случае используются равенства, а во втором применяются неравенства.

Виды неравенств

Выделяют два вида неравенств: числовые и с неизвестной переменной. Первый тип представляет собой предоставленные величины (цифры), неравные друг другу, например, 8 > 10. Второй - это неравенства, содержащие в себе неизвестную переменную (обозначается какой-либо буквой латинского алфавита, чаще всего X). Данная переменная требует своего нахождения. В зависимости от того, сколько их, в математической модели различают неравенства с одной (составляют систему неравенств с одной переменной) или несколькими переменными (составляют систему неравенств с несколькими переменными).

Два последних вида по степени своего построения и уровню сложности решения делятся на простые и сложные. Простые называют ещё линейными неравенствами. Они, в свою очередь, подразделяются на строгие и нестрогие. Строгие конкретно "говорят", что одна величина обязательно должна быть либо меньше, либо больше, поэтому это в чистом виде неравенство. Можно привести несколько примеров: 8 x + 9 > 2, 100 - 3 x > 5 и т. д. Нестрогие включают в себя ещё и равенство. То есть одна величина может быть больше или равна другой величине (знак "≥") либо меньше или равна другой величине (знак "≤"). Ещё в линейных неравенствах переменная не стоит в корне, квадрате, не делится на что-либо, из-за чего они называются "простыми". Сложные включают в себя неизвестные переменные, нахождение которых требует выполнения большего количества математических операций. Они часто находятся в квадрате, кубе или под корнем, могут быть модульными, логарифмическими, дробными и пр. Но поскольку нашей задачей становится необходимость разобраться в решении систем неравенств, то мы поговорим о системе линейных неравенств. Однако перед этим следует сказать пару слов об их свойствах.

Свойства неравенств

К свойствам неравенств относятся следующие положения:

  1. Знак неравенства меняется на обратный, если применяется операция по перемене следования сторон (например, если t 1 ≤ t 2 , то t 2 ≥ t 1).
  2. Обе части неравенства позволяют прибавить к себе одно и то же число (например, если t 1 ≤ t 2 , то t 1 + число ≤ t 2 + число).
  3. Два и более неравенств, имеющие знак одного направления, позволяют складывать их левые и правые части (например, если t 1 ≥ t 2 , t 3 ≥ t 4 , то t 1 + t 3 ≥ t 2 + t 4).
  4. Обе части неравенства позволяют себя умножать или делить на одно и то же положительное число (например, если t 1 ≤ t 2 и число ≤ 0, то число · t 1 ≥ число · t 2).
  5. Два и более неравенств, имеющие положительные члены и знак одного направления, позволяют умножать себя друг на друга (например, если t 1 ≤ t 2 , t 3 ≤ t 4 , t 1 , t 2 , t 3 , t 4 ≥ 0 то t 1 · t 3 ≤ t 2 · t 4).
  6. Обе части неравенства позволяют себя умножать или делить на одно и то же отрицательное число, но при этом знак неравенства меняется (например, если t 1 ≤ t 2 и число ≤ 0, то число · t 1 ≥ число · t 2).
  7. Все неравенства обладают свойством транзитивности (например, если t 1 ≤ t 2 и t 2 ≤ t 3 , то t 1 ≤ t 3).

Теперь после изучения основных положений теории, относящейся к неравенствам, можно приступить непосредственно к рассмотрению правил решения их систем.

Решение систем неравенств. Общие сведения. Способы решения

Как уже говорилось выше, решением выступают значения переменной, подходящие ко всем неравенствам данной системы. Решение систем неравенств - это осуществление математических действий, которые в итоге приводят к решению всей системы или доказывают, что у неё решений не имеется. В таком случае говорят, что переменная относится к пустому числовому множеству (записывается так: буква, обозначающая переменную ∈ (знак "принадлежит") ø (знак "пустое множество"), например, x ∈ ø (читается так: "Переменная "икс" принадлежит пустому множеству"). Выделяют несколько способов решения систем неравенств: графический, алгебраический, способ подстановки. Стоит заметить, что они относятся к тем математическим моделям, которые имеют несколько неизвестных переменных. В случае, когда имеется только одна, подойдёт способ интервалов.

Графический способ

Позволяет решить систему неравенств с несколькими неизвестными величинами (от двух и выше). Благодаря данному методу система линейных неравенств решается достаточно легко и быстро, поэтому он является самым распространённым способом. Это объясняется тем, что построение графика сокращает объём написания математических операций. Особенно становится приятным немного отвлечься от ручки, взять в руки карандаш с линейкой и приступить к дальнейшим действиям с их помощью, когда выполнено много работы и хочется небольшого разнообразия. Однако данный метод некоторые недолюбливают из-за того, что приходится отрываться от задания и переключать свою умственную деятельность на рисование. Тем не менее, это очень действенный способ.

Чтобы выполнить решение системы неравенств с помощью графического способа, необходимо все члены каждого неравенства перенести в их левую часть. Знаки поменяются на противоположные, справа следует записать ноль, затем нужно записать каждое неравенство отдельно. В итоге из неравенств получатся функции. После этого можно доставать карандаш и линейку: теперь потребуется нарисовать график каждой полученной функции. Всё множество чисел, которое окажется в интервале их пересечения, будет являться решением системы неравенств.

Алгебраический способ

Позволяет решить систему неравенств с двумя неизвестными переменными. Также неравенства должны обладать одинаковым знаком неравенства (т. е. обязаны содержать либо только знак "больше", либо только знак "меньше" и пр.) Несмотря на свою ограниченность, этот способ к тому же и более сложный. Он применяется в двух этапах.

Первый включает себя действия по избавлению от одной из неизвестных переменных. Сначала нужно её выбрать, затем проверить на наличие чисел перед этой переменной. Если их нет (тогда переменная будет выглядеть, как одиночная буква), то ничего не изменяем, если есть (вид переменной будет, например, таким - 5y или 12y), то тогда необходимо сделать так, чтобы в каждом неравенстве число перед выбранной переменной было одинаковым. Для этого нужно умножить каждый член неравенств на общий множитель, например, если в первом неравенстве записано 3y, а во втором 5y, то необходимо все члены первого неравенства умножить на 5, а второго - на 3. Получится 15y и 15y соответственно.

Второй этап решения. Нужно левую часть каждого неравенства перенести в их правые части с изменением знака каждого члена на противоположный, справа записать нуль. Затем наступает самое интересное: избавление от выбранной переменной (по-другому это называется "сокращение") во время складывания неравенств. Получится неравенство с одной переменной, которое необходимо решить. После этого следует проделать то же самое, только с другой неизвестной переменной. Полученные результаты и будут решением системы.

Способ подстановки

Позволяет решить систему неравенств при наличии возможности ввести новую переменную. Обычно этот способ применяется, когда неизвестная переменная в одном члене неравенства возведена в четвёртую степень, а в другом члене имеет квадрат. Таким образом, данный метод направлен на понижение степени неравенств в системе. Неравенство образца х 4 - х 2 - 1 ≤ 0 данным способом решается так. Вводится новая переменная, например, t. Пишут: "Пусть t = х 2 ", далее модель переписывают в новом виде. В нашем случае получится t 2 - t - 1 ≤0. Это неравенство нужно решить методом интервалов (о нём немного позже), потом обратно вернуться к переменной X, затем проделать то же самое с другим неравенством. Полученные ответы будут решением системы.

Метод интервалов

Это самый простой способ решения систем неравенств, и в то же время он является универсальным и распространённым. Он используется и в средней школе, и даже в высшей. Его суть заключается в том, что ученик ищет промежутки неравенства на числовой прямой, которая рисуется в тетради (это не график, а просто обычная прямая с числами). Там, где промежутки неравенств пересекаются, находится решение системы. Чтобы использовать метод интервалов, необходимо выполнить следующие шаги:

  1. Все члены каждого неравенства переносятся в левую часть с изменением знака на противоположный (справа пишется ноль).
  2. Неравенства выписываются отдельно, определяется решение каждого из них.
  3. Находятся пересечения неравенств на числовой прямой. Все числа, находящиеся на этих пересечениях, будут являться решением.

Какой способ использовать?

Очевидно тот, который кажется наиболее лёгким и удобным, но бывают такие случаи, когда задания требуют определённого метода. Чаще всего в них написано, что нужно решать либо с помощью графика, либо методом интервалов. Алгебраический способ и подстановка используются крайне редко или не используются вообще, поскольку они достаточно сложные и запутанные, да и к тому же больше применяемы для решения систем уравнений, а не неравенств, поэтому следует прибегать к рисованию графиков и интервалов. Они привносят наглядность, которая не может не способствовать эффективному и быстрому проведению математических операций.

Если что-то не получается

Во время изучения той или иной темы по алгебре, естественно, могут возникнуть проблемы с её пониманием. И это нормально, ведь наш мозг устроен так, что он не способен уяснить сложный материал за один раз. Часто требуется перечитать параграф, воспользоваться помощью учителя или заняться практикой по решению типовых заданий. В нашем случае они выглядят, например, так: "Решите систему неравенств 3 x + 1 ≥ 0 и 2 x - 1 > 3". Таким образом, личное стремление, помощь сторонних людей и практика помогают в понимании любой сложной темы.

Решебник?

А ещё очень хорошо подойдёт решебник, только не для списывания домашних заданий, а для самопомощи. В них можно найти системы неравенств с решением, посмотреть на них (как на шаблоны), попытаться понять, как именно автор решения справился с поставленной задачей, а затем попытаться выполнить подобное в самостоятельном порядке.

Выводы

Алгебра - это один из самых сложных предметов в школе. Ну что же тут поделать? Математика всегда была такой: кому-то она даётся легко, а кому-то с затруднением. Но в любом случае следует помнить, что общеобразовательная программа построена так, что с ней может справиться любой ученик. К тому же, надо иметь в виду огромное количество помощников. Некоторые из них были упомянуты выше.

называется любая совокупность двух или более линейных неравенств, содержащих одну и туже неизвестную величину

Вот образцы подобных систем:

Промежуток пересечения двух лучей и есть наше решение. Следовательно решением данного неравенства выступают все х расположенные между двойкой и восьмеркой.

Ответ: х

Применение такого типа отображения решения системы неравенств иногда именуют методом крыш .

Определение: Пересечением двух множеств А и В называется такое третье множество, которое включает все элементы, входящих и в А и в В . Это смысл пересечения множеств произвольной природы. Нами сейчас детально рассматриваются числовые множества, поэтому при нахождении линейных неравенств такими множествами являются лучи - сонаправленные, противонаправленные и так далее.

Выясним на реальных примерах нахождение линейных систем неравенств, как определить пересечения множеств решений отдельных неравенств, входящих в систему.

Вычислим систему неравенств :

Поместим одну под другой две силовые прямые. На верхней нанесем те значения х, которые выполняют первое неравенство x >7 , а на нижней - которые выступают решением второго неравенства x >10 Соотнесем результаты числовых прямых, выясним, что оба неравенства будут удовлетворятся при x >10.

Ответ: (10;+∞).

Делаем по аналогии с первым образцом. На заданной числовой оси наносим все те значения х при которых существует первое неравенство системы , а на второй числовой оси, размещенной под первой, - все те значения х , при которых выполняется второе неравенство системы. Соотнесем эти два результата и определим, что оба неравенства одновременно будут выполнятся при всех значениях х расположенных между 7 и 10 с учетом знаков получаем 7<х≤10

Ответ: (7; 10].

Подобным образом решаются и нижеследующие системы неравенств.

В статье рассмотрим решение неравенств . Расскажем доступно о том, как строиться решение неравенств , на понятных примерах!

Перед тем, как рассмотреть решение неравенств на примерах, разберемся с базовыми понятиями.

Общи сведения о неравенствах

Неравенством называется выражение, в котором функции соединяются знаками отношения >, . Неравенства бывают как числовые, так и буквенные.
Неравенства с двумя знаками отношения, называются двойными, с тремя - тройными и т.д. Например:
a(x) > b(x),
a(x) a(x) b(x),
a(x) b(x).
a(x) Неравенства, содержащие знак > или или - нестрогими.
Решением неравенства является любое значение переменой, при котором это неравенство будет верно.
"Решить неравенство " означает, что надо найти множество всех его решений. Существуют различные методы решения неравенств . Для решения неравенства пользуются числовой прямой, которая бесконечна. Например, решением неравенства x > 3 есть промежуток от 3 до +, причем число 3 не входит в этот промежуток, поэтому точка на прямой обозначается пустым кружком, т.к. неравенство строгое.
+
Ответ будет следующим: x (3; +).
Значение х=3 не входит в множество решений, поэтому скобка круглая. Знак бесконечности всегда выделяется круглой скобкой. Знак означает «принадлежание».
Рассмотрим как решать неравенства на другом примере со знаком :
x 2
-+
Значение х=2 входит в множество решений, поэтому скобка квадратная и точка на прямой обозначается закрашенным кружком.
Ответ будет следующим: x .

4. Решить систему

Откуда может взяться второе неравенство системы? Например, из неравенства

Графически обозначим решения каждого неравенства и найдем промежуток их пересечения.

Таким образом, если мы имеем систему, в которой одно из неравенств удовлетворяет любому значению x, то его можно исключить.

Ответ: система противоречива.

Мы рассмотрели типовые опорные задачи, к которым сводится решение любой линейной системы неравенств.

Рассмотрим следующую систему.

7.

Иногда линейная система задается двойным неравенством, рассмотрим такой случай.

8.

Мы рассмотрели системы линейных неравенств, поняли, откуда они появляются, рассмотрели типовые системы, к которым сводятся все линейные системы, и решили некоторые из них.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Портал Естественных Наук ().

2. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

4. Центр образования «Технология обучения» ().

5. Раздел College.ru по математике ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 53; 54; 56; 57.

Определение 1 . Совокупность точек пространства R n , координаты которых удовлетворяют уравнению а 1 х 1 + а 2 х 2 +…+ a n x n = b , называется (n - 1 )-мерной гиперплоскостью в n -мерном пространстве.

Теорема 1. Гиперплоскость делит все пространство на два полупространства. Полупространство является выпуклым множеством.

Пересечение конечного числа полупространств является выпуклым множеством.

Теорема 2 . Решением линейного неравенства с n неизвестными

а 1 х 1 + а 2 х 2 +…+ a n x n b

является одно из полупространств, на которые все пространство делит гиперплоскость

а 1 х 1 + а 2 х 2 +…+a n x n = b .

Рассмотрим систему из m линейных неравенств с n неизвестными.

Решением каждого неравенства системы является некоторое полупространство. Решением системы будет являться пересечение всех полупространств. Это множество будет замкнутым и выпуклым.

Решение систем линейных неравенств

с двумя переменными

Пусть дана система из m линейных неравенств с двумя переменными.

Решением каждого неравенства будет являться одна из полуплоскостей, на которые всю плоскость разбивает соответствующая прямая. Решением системы будет являться пересечение этих полуплоскостей. Данная задача может быть решена графически на плоскости Х 1 0 Х 2 .

37. Представление выпуклого многогранника

Определение 1. Замкнутое выпуклое ограниченное множество в R n , имеющее конечное число угловых точек , называется выпуклым n -мерным многогранником.

Определение 2 . Замкнутое выпуклое неограниченное множество в R n , имеющее конечное число угловых точек, называется выпуклой многогранной областью.

Определение 3 . Множество А R n называется ограниченным, если найдется n -мерный шар, содержащий это множество.

Определение 4. Выпуклой линейной комбинацией точек называется выражение, гдеt i , .

Теорема (теорема о представлении выпуклого многогранника). Любую точку выпуклого многогранника можно представить в виде выпуклой линейной комбинации его угловых точек.

38. Область допустимых решений системы уравнений и неравенств.

Пусть дана система из m линейных уравнений и неравенств с n неизвестными.

Определение 1 . Точка R n называется возможным решением системы, если ее координаты удовлетворяют уравнениям и неравенствам системы. Совокупность всех возможных решений называется областью возможных решений (ОВР) системы.

Определение 2. Возможное решение, координаты которого неотрицательны, называется допустимым решением системы. Множество всех допустимых решений называется областью допустимых решений (ОДР) системы.

Теорема 1 . ОДР является замкнутым, выпуклым, ограниченным (или неограниченным) подмножеством вR n .

Теорема 2. Допустимое решение системы является опорным тогда и только тогда, когда эта точка являетсяугловой точкой ОДР.

Теорема 3 (теорема о представлении ОДР). Если ОДР - ограниченное множество, то любое допустимое решение можно представить в виде выпуклой линейной комбинации угловых точек ОДР (в виде выпуклой линейной комбинации опорных решений системы).

Теорема 4 (теорема о существовании опорного решения системы). Если система имеет хотя бы одно допустимое решение (ОДР), то среди допустимых решений существует хотя бы одно опорное решение.