Скорость волны в пресной воде. Поверхностные волны. Волны

.
В природе, однако, мы видим еще ряд типов волновых движений. Таких, как возбуждаемые ветром волны на воде и барханы в пустынях, или возбуждаемые неизвестно чем гигантские спиральные волны в дисках плоских галактик. Или вообще не выглядящие волнами, но реально возникающие из них циклоны и антициклоны. Последние пока оставим на "поздний ужин", а сейчас обсудим механизм возбуждения волн сдвиговыми движениями газа и жидкости.
Этот механизм принято называть неустойчивостью Кельвина-Гельмгольца (НКГ) . Именно она является причиной возбуждения волн на воде, ряби на песке под водой вблизи берегов рек и моря, барханов в пустынях, волн облаков. Мы знаем, что в отсутствии ветра поверхность воды в реках, озерах и морях спокойна. При слабом ветре - тоже. Но при достаточно заметном ветре на поверхности воды возбуждаются волны.
Ветер дует параллельно поверхности воды. И, казалось бы, скользя вдоль поверхности воды, он не должен возбуждать волн. Как же понять эффект возбуждения ветром волн на воде?
В стационарных потоках сплошной среды действует своеобразный закон сохранения, называемый уравнением Бернулли :

P / ρ + v 2 /2 = const ,

где v - скорость частицы жидкости или газа в конкретной точке пространства, P - давление и ρ - плотность в той же точке пространства. Смысл этого уравнения состоит в том, что означенная в нем комбинация сохраняется вдоль линии тока - линии, вдоль которой движутся частицы жидкости (газа).
Кстати, уравнение Бернулли очень похоже на закон сохранения энергии из школьной физики. В котором полная энергия частицы сохраняется вдоль траектории ее движения. В нем тоже
v 2 /2 + U / m = E / m = const и видна аналогия между P / ρ и U / m .
Предположим теперь, что на поверхности воды случайно в результате флуктуации возникла маленькая выпуклость:

Схема возбуждения ветровых волн на воде (неустойчивость Кельвина-Гельмгольца ).

О т этого линии тока в воздухе в самой близкой окрестности этой флуктуации тоже станут слегка выпуклыми. Но эти выпуклости по мере удаления от поверхности воды быстро затухают. Из-за результирующего сближения линий тока в воздухе над выпуклостью водной поверхности скорость воздуха вдоль них слегка увеличится. Поскольку через уменьшенное сечение должно пройти то же количество воздуха, что и через обычное сечение над плоской поверхностью воды. И, следовательно, второе слагаемое в уравнении Бернулли над выпуклостью поверхности воды увеличивается, а первое слагаемое - уменьшается.
Что же преимущественно изменяется в первом слагаемом - давление или плотность воздуха? Интуитивно кажется, что плотность. Но это не так. На самом деле колебания плотности δρ в существенно дозвуковых потоках порядка ρ (v /с) ². И при скорости звука с~340 м/сек и скоростях ветра до 15-17 м/сек колебания плотности не будут превышать четверти процента от величины самой плотности. То есть, воздух в таких потоках остается практически несжимаемым. И реально над выпуклостью воды на рисунке будет уменьшаться давление в воздухе. А в воде оно остается неизменным. Поэтому произвольная выпуклость на поверхности воды вынуждена будет расти по амплитуде. В этом и состоит суть неустойчивости Кельвина-Гельмгольца как механизма возбуждения ветром волн на воде.
Из сказанного следует, что любой ветерок должен возбуждать волны на воде. Но по опыту мы знаем, что от слабого ветра волны не возбуждаются. Причина этого - в стабилизирующем влиянии поверхностного натяжения на границе раздела вода-воздух.
Который оказывается недостаточно при превышении скоростью ветра некоторого критического значения (в условиях российского лета это значение для чистой воды - около 7 м/сек).
Но если ветер перестанет дуть, то через некоторое время затухают и возбужденные им волны. Поскольку переток энергии ветра в колебания водной поверхности прекращается. А колебания водной поверхности постепенно затухают из-за диссипации их энергии , обусловленной вязкостью воды.
Возбуждаемые ветром волны на воде по своей сути являются внутренними гравитационными (ВГВ), описанными в . Но поскольку масштаб неоднородности среды в вертикальном направлении фактически равен нулю (разрыв плотности среды на границе вода-воздух), то частота этих волн ω определяется не масштабом неоднородности среды, а длиной волны λ. Из тех же соображений размерности, что и в предыдущем псто, определяем частоту волн: ω ~ √g/λ, где g - ускорение силы тяжести (значок "~" - по порядку величины).
Неустойчивость Кельвина-Гельмгольца (НКГ) возбуждается не только в системах с разрывом скорости в системе ветер - покоящаяся вода (черная толстая линия на графике). Она развивается и в плавно сдвиговых движениях сплошной среды, если в графике профиля ее скорости есть точка перегиба, при прохождении через которую выпуклая кривая графика скорости становится вогнутой (красная линия на графике):


Именно этот случай мы и наблюдаем в небе в виде волнообразных облаков.
Ошибка Ландау . В самом начале войны Лев Ландау задался вопросом - а не стабилизируется ли неустойчивость КГ если разрыв в скорости потока существенно превышает скорость звука? По его вполне корректным вычислениям выходило, что стабилизируется. Если разрыв скорости превышает
2√2 скорости звука.
Сразу возникла идея - давайте жечь немецкие танки сверхзвуковой струей легко воспламеняющейся жидкости! Поставили опыты. Не пошло. И об этом забыли. И только в 1954 году стало ясно, что Ландау в своих вычислениях учел только возмущения поверхности струи кольцевого типа. А возмущения винтового типа не учел. Но именно винтовые возмущения остаются неустойчивыми при сколь угодно больших скоростях струи по сравнению со скоростью звука.

Любое локальное нарушение горизонтальности поверхности жидкости приводит к появлению волн, которые распространяются по поверхности и быстро затухают с глубиной. Возникновение волн происходит из-за совместного действия силы тяжести и силы инерции (гравитационные гидродинамические волны) или силы поверхностного натяжения и силы инерции (капиллярные волны).

Приведем ряд результатов по гидродинамике поверхностного волнения жидкости, которые понадобятся нам в дальнейшем . Можно существенно упростить задачу, если считать жидкость идеальной; учет диссипации необходим главным образом для капиллярных и коротких гравитационных волн.

Считая смещения частиц жидкости малыми, можно ограничиться линейной задачей и пренебречь в уравнении Эйлера нелинейным членом что соответствует малости амплитуды волны по сравнению с ее длиной X. Тогда для несжимаемой жидкости волновое движение на ее поверхности без учета сил поверхностного натяжения определяется такой системой уравнений для потенциала (напомним, что :

Направлена вертикально вверх и соответствует невозмущенной поверхности жидкости).

Для неограниченной поверхности жидкости, глубина которой значительно больше длины волны, можно искать решение задачи в виде распространяющейся в положительном направлении х и затухающей с глубиной плоской неоднородной волны:

где - частота волны и волновое число, где - фазовая скорость. Подставляя это значение потенциала в уравнение (6.1), а также учитывая, что решения имеют смысл для , получаем выражение для потенциала:

а удовлетворяя граничному условию на поверхности жидкости дисперсионное уравнение

Таким образом, групповая скорость распространения гравитационной волны

тогда как фазовая скорость такой волны

Как видно, гравитационные волны обладают дисперсией; с увеличением длины волны их фазовая скорость растет.

Интересен вопрос о том, каково распределение скоростей частиц жидкости в волне; оно находится дифференцированием потенциала (6.3) по х.

Рис. 1.4. Дисперсионная кривая для гравитационно-капиллярных волн на поверхности глубокой воды в области, где существенны и g, и а.

Рассмотрение показывает, что частицы жидкости в волне описывают движение приблизительно по окружности (вокруг своих равновесных точек ), радиус которых экспоненциально спадает с глубиной. На глубине, равной одной длине волны, ее амплитуда примерно в 535 раз меньше, чем вблизи поверхности. Приведенные результаты относились к волнам на глубокой воде, когда где h - глубина жидкости. Если имеет место противоположный случай (например, волны распространяются в канале конечной, но малой глубины), то

Как видно, такие волны дисперсией не обладают.

С учетом капиллярной силы Лапласа, обусловленной поверхностным натяжением 0,

т. е., в отличие от гравитационных, скорость капиллярных волн растет с уменьшением длины волны. Совместное действие силы тяжести и силы поверхностного натяжения определяется таким дисперсионным уравнением (глубокая вода):

На рис. 1.4 показана зависимость фазовой скорости распространения волн на поверхности жидкости от длины волны для воды согласно выражению (6.9). Из этого рисунка видно, что при см имеет место минимум скорости поверхностных волн, являющихся смешанными гравитационно-капиллярными волнами..

Приведенные результаты относились к одномерным линейным волнам в отсутствие диссипации. Кроме того, считалось, что волны регулярные и распространяются в одном направлении. Волны, возникающие при движении корабля в спокойной воде или при подходе к мелкому берегу, действительно представляют собой

регулярные возмущения. Волны же на поверхности жидкости, возникающие под действием ветра, преимущественно случайные - они движутся в разных направлениях и имеют разные частоты и амплитуды; именно такую картину мы наблюдаем, находясь на корабле в открытом море в ветренную погоду.

Затухание гравитационных волн с длинами волн более метра мало, но оно все же значительно больше, чем это следует из линейной теории. Это расхождение, очевидно, вызвано процессами, связанными с нелинейностью при распространении гравитационных и капиллярных волн. Так, если одиночная волна распространяется на мелкой воде с фазовой скоростью , то такая волна не обладает дисперсией. Ее профиль по мере распространения становится круче благодаря тому, что верхние частицы среды, для которых глубина h больше, чем для нижних частиц, будут двигаться с большей скоростью, согласно (6.7), и волна начнет захлестываться; при подходе к берегу волна обрушивается на него. Эффект захлестывания усиливается еще и потому, что при уменьшении глубины h возрастает амплитуда волны по закону сохранения лотока энергии плотность энергии возрастает из-за уменьшения поперечного сечения слоя воды. С ростом же нелинейные эффекты проявляются еще сильнее. Процесс «укручения» волн при их распространении происходит и на глубокой воде вследствие нелинейности уравнений движения. Теория нелинейных волн на ловерхности жидкости получила большое развитие в последнее время, хотя первые работы в этом направлении были сделаны еще в конце прошлого века.

Если имеется несколько волн, они нелинейно взаимодействуют друг с другом; принцип суперпозиции для волн конечной амплитуды уже не соблюдается. Условия нелинейного взаимодействия гравитационных волн, благодаря их дисперсионным свойствам, отличаются интересными особенностями, на которых мы здесь не имеем возможности остановиться. Отметим лишь, что реально существующее взаимодействие случайных волн конечной амплитуды в принципе объясняет значительно большее затухание волн на поверхности, чем это предсказывает линейная теория. Действует механизм поглощения за счет нелинейного взаимодействия; энергия из области малых волновых чисел (длинные волны) перекачивается в области все меньших длин волн и, наконец, - в капиллярную область спектра, где она в конечном счете диссипируется за счет вязкости, переходя в тепло .

В гл. 3 мы будем иметь дело с нелинейными звуковыми волнами и еще вернемся к вопросам взаимодействия волн на поверхности жидкости.

Попробуйте при случае подсчитать, сколько цветов в в радуге. Эту задачу выполнить невозможно. Между полосами красной и оранжевой, синей и голубой, как и между любыми соседними полосами, нет резких границ: между ними имеется много переходных тонов. Не все оттенки цветов способен различать глаз. Часто трудно и определить: то ли цвет «ближе к синему», то ли «ближе к голубому».

Нельзя ли в таком случае для каждого луча найти характери­стику более точную, чем его цвет? Физики нашли такую харак­теристику - и очень точную.

Это произошло благо­даря тому, что были откры­ты волновые свойства света.

Что такое волны и ка­ковы их свойства?

Ради наглядности мы познакомимся сначала с вол­нами на поверхности воды.

Каждый знает, что во­дяные волны бывают раз­ные. По пруду проносится едва заметная зыбь, слегка качающая пробку рыболова; на морских просторах огромные во­дяные валы раскачивают океанские пароходы. Чем же отличают­ся волны друг от друга? Чтобы ответить на этот во­прос, рассмотрим, как воз­никают водяные волны.

В качестве возбудителя волн на воде мы возьмём прибор, показанный на рис. 3. Когда моторчик А вращает эксцентрик Б, стерженёк В ритмично движется вверх и вниз, погружаясь в воду на разную глубину. От него разбегаются волны в виде кругов с одним центром (рис. 4). Они представляют собой ряд чередующихся гребней и впадин.

Расстояние между со­седними гребнями или впади­нами называется длиной волны и обычно обозначается грече­ской буквой X (лямбда). Увеличим число оборотов моторчика, а стало быть и частоту колебаний стерженька, вдвое. Тогда число волн, появляющихся за то же время, будет вдвое больше. Но длина волн будет теперь вдвое меньше. Число волн, образующихся в одну секунду, называется частотой волн. Она обычно обозначается греческой буквой V (ню).

Пусть на воде плавает пробка. Под влиянием бегущей волны она будет совершать колебания. Подошедший к пробке гребень поднимет её вверх, а последующая впадина опустит вниз. За секунду пробку поднимет столько гребней (и опустит столько впадин), сколько за это время образуется волн. А это число и есть частота волны V. Значит, пробка будет колебаться с частотой V, Так, обнаруживая действие волн, мы можем установить их частоту в любом месте их распро­странения.

Ради простоты мы будем считать, что волны не затухают. Частота и длина незатухающих волн связаны друг с другом простым законом. За секунду образуется V волн. Все эти волны уложатся на некотором отрезке. Первая волна, обра­зовавшаяся в начале секунды, дойдёт до конца этого отрезка; она отстоит от источника на расстоянии, равном длине волны, умноженной на частоту. Но расстояние, пройденное волной за секунду, есть скорость волны V. Итак, = Если известна длина волны и скорость распространения волн, то

Можно определить частоту V, а именно: V - у.

Частота и длина волн являются их существенными харак­теристиками; по этим характеристикам одни волны отличают от других.

Кроме частоты (или длины волны), вблны отличаются ещё и высотой гребней (или глубиной впадин). Высота волны измеряется от горизонтального уровня покоящейся поверхно­сти воды. Она называется амплитудой.

Эволюция света Современный мир светится яркими красками даже с космоса: космические станции и экипаж на борту могут лицезреть удивительную картину ночью: светящаяся паутина из ярких городских огней. Это – продукт …

Н Аш рассказ подходит к концу. Мы узнали теперь, какое мощное теоретическое и практическое оружие получил человек, изучая законы возникновения и распространения света, и как сложен был путь познания этих …

Современная промышленность предъявляет исключительно высокие требования к качеству металлов. Современные маши­ны и инструменты работают в самых разнообразных режимах температур, давлений, скоростей, электрических и магнит­ных полей. Возьмём, к примеру, режущий инструмент. …

§ 35. Волновой режим.

Волны, наблюдаемые на поверхности воды, делятся на три вида.

Ветровые волны, образующиеся в результате действия ветра.

Сейсмические волны, возникающие в океанах в результате землетрясения и достигающие у берегов высоты 10-30 м.

Сейши - волны, которые образуются в ограниченном бассейне, примыкающем к морю, в результате нарушения равновесия водной поверхности, вызванного сильным ветром или колебаниями почвы.

Для судовождения на реках и в прибрежных районах моря существенны только ветровые волны (волны трения).

Волны состоят из чередующихся между собой валов и впадин (рис. 79), где длина волны l , измеряемая в метрах, является расстоянием по горизонтали между соседними гребнями или подошвами волн; высота волны h - расстояние по вертикали от подошвы до гребня волны. Скорость волны, измеряемая в м/сек, - расстояние, которое проходят в единицу времени гребень или подошва волны в направлении ее движения.

Период волны - промежуток времени, за который последовательно проходят через одну и ту же точку два соседних гребня волн, измеряется в секундах. Угол склона или крутизна волны обозначается a . Фронт волны - линия, перпендикулярная направлению движения волны. Это направление, подобно курсу, определяется в румбах или градусах. Отношение высоты волны h к ее длине l также характеризует крутизну волн. Она меньше на морях и океанах и больше на водохранилищах и озерах.

Ветровые волны возникают с ветром, с прекращением ветра эти волны в виде мертвой зыби, постепенно затухая, продолжают двигаться в прежнем направлении.

Ветровое волнение зависит от величины водного пространства, открытого для разгона волны, скорости ветра и времени действия его в одном направлении, а также глубины. С уменьшением глубины волна становится крутой. Слабый ветер, дующий длительное время на большом водном пространстве, может вызвать волнение более значительное, чем сильный кратковременный ветер на малой водной поверхности. Высота волны связана со степенью волнения и определяется специальной шкалой волнений (см. табл. 3).

Ветровые волны несимметричны, наветренный склон их пологий, подветренный - крутой. Так как ветер на верхнюю часть волны действует сильнее, чем на нижнюю, гребень волны рассыпается, образуя «барашки».

Зыбь - волнение, продолжающееся после ветра уже затихшего, ослабевшего или изменившего направление. Волнение, распространяющееся по инерции при полном безветрии, называется мертвой зыбью.

Волны бывают правильные, когда их гребни ясно различимы, и неправильные, когда волны не имеют ясно выраженных гребней и образуются без всякой видимой закономерности. Гребни волн перпендикулярны направлению ветра в открытом море, озере, водохранилище, но у берега они принимают положение, параллельное береговой черте, набегая на берега.

Толчея - хаотическое нагромождение волн, образующихся при встрече прямых волн с отраженными. Опрокидывание гребня идущей волны на крутом берегу образует взбросы, имеющие большую разрушительную силу.

Набегание волн на отлогий берег с увеличением по высоте и крутизне и последующим опрокидыванием на берег называется прибоем. Над банками или рифами образуются буруны, служащие признаком подводной опасности.

Волны несколько успокаиваются от сильного дождя, от плавающих на поверхности воды водорослей, масла.

При обычных штормах длина большой морской волны бывает от 60 до 150 м, высота от 6 до 8 м с периодом в 6-10 сек. Крутизна волны достигает 1\20 - 1\10. На водохранилищах и глубоких озерах крутизна волны равна 1\10 - 1\15. Высота волны на водохранилище обычно достигает 2,5- 3,0 м, на озерах до 3,5 м. На реках и каналах высота волны обычно меньше - 0, 6 м, но иногда, особенно в период весенних вод, может достигать 1 м.

Таблица 3

Шкала волнений.

Высота волн

(от - до, м)

Степень волнения в баллах

Характеристика

Признаки для определения состояния поверхности моря, озера, крупного водохранилища

Волнение отсутствует

Зеркально-гладкая поверхность

До 0,25

Слабое

Рябь, появляются небольшие гребни волн

0,25-0,75

Умеренное

Небольшие гребни волн начинают опрокидываться, но пена не белая, а стекловидная

0,75-1,25

Значительное

Небольшие волны, гребни некоторых из них опрокидываются, образуя местами белую клубящуюся пену - «барашки»

1,25-2,0

То же

Волны принимают хорошо выраженную форму, повсюду образуются «барашки»

2,0-3,5

Сильное

Появляются высокие гребни, их пенящиеся вершины занимают большие площади, ветер начинает срывать пену с гребней волн

3,5-6,0

То же

Гребни очерчивают длинные валы ветровых волн; пена, срываемая с гребней ветром, начинает вытягиваться полосами по склонам волн

6,0-8,5

Очень сильное

Длинные полосы пены, срываемой ветром, покрывают склоны волн, местами сливаясь, достигают их подошв

8,5-11,0

VIII

То же

Пена широкими плотными сливающимися полосами покрывает склоны волн, отчего поверхность становится белой, только местами во впадинах волн видны свободные от пены участки

11,0 и более

Исключительное

Поверхность моря покрыта плотным слоем пены, воздух наполнен водяной пылью и брызгами, видимость значительно уменьшена

Максимальные высоты волн в океанах доходят до 20 м. На морях, озерах и водохранилищах* они различны, например: в Северном - 9, Средиземном - 8, Охотском - 7, на озерах Байкал и Ладожском - 6, Черном - 6 и Каспийском - 10, на Братском водохранилище - 4, 5 (в местах, где глубины 100 м), в Рыбинском водохранилище 2, 7, в Цимлянском - 4, 5, Куйбышевском - 3, в Белом море и Финском заливе - 2, 5 м; в низовьях Волги в шторм волны достигают высоты 1, 2 м.

Для ознакомления с ветровыми волнами на определенном участке водохранилища пользуются специальным атласом волновых явлений. Любитель по тем или иным причинам не всегда может пользоваться атласом. На рис. 80 приведен график определения высоты волны в зависимости от скорости ветра и длины ее разгона. График действителен только для пресноводных водоемов: водохранилищ, озер и рек. Рельефа дна и надводного рельефа берега график не учитывает, поэтому он дает небольшой процент погрешности.

Перед выходом в плавание на широкий участок водохранилища или реки нужно определить высоту волны на трассе, по которой судно должно следовать. Предположим, по сводке погоды, переданной по радио перед выходом в плавание, сообщалось, что ожидается облачность без осадков, ветер северовосточный, умеренный.

По карте водохранилища определяем место, район, курс, трассу и расстояние в километрах от северо-восточного берега, откуда дует ветер. Получили длину разгона волны 20 км.

Из шкалы для визуальной оценки силы ветра (табл. 3) определяем, что умеренный ветер может иметь скорость от 5, 3 до 7, 4 м/сек. На графике (рис. 85) берем кривую 7 м/сек, по которой находим, что при длине разгона в 20 км высота волны будет равна 0, 65 м.

В результате, сообразуясь с навигационными качествами судна и другими данными, можно решить, следует изменить курс или лучше вообще не выходить в плавание.

Мы уже упоминали о волнах, образование которых обусловлено не силой упругости, а силой тяжести. Именно поэтому нас не должно удивлять, что волны, распространяющиеся по поверхности жидкости, не являются продольными. Однако они не являются и поперечными: движение частиц жидкости здесь более сложное.

Если в какой-либо точке поверхность жидкости опустилась (например, в результате прикосновения твердым предметом), то под действием силы тяжести жидкость начнет сбегать вниз, заполняя центральную ямку и образуя вокруг нее кольцевое углубление. На внешнем крае этого углубления все время продолжается сбегание частиц жидкости вниз, и диаметр кольца растет. Но на внутреннем крае кольца частицы жидкости вновь «выныривают» наверх, так что образуется кольцевой гребень. Позади него опять получается впадина, и т. д. При опускании вниз частицы жидкости движутся, кроме того, назад, а при подъеме наверх они движутся и вперед. Таким образом, каждая частица не просто колеблется в поперечном (вертикальном) или продольном (горизонтальном) направлении, а, как оказывается, описывает окружность.

На рис. 76 темными кружками показано положение частиц поверхности жидкости в некоторый момент, а светлыми кружками - положение этих частиц немного времени спустя, когда каждая из них прошла часть своей круговой траектории. Эти траектории показаны штриховыми линиями, пройденные участки траекторий - стрелками. Линия, соединяющая темные кружки, даст нам профиль волны. В изображенном на рисунке случае большой амплитуды (т. с. радиус круговых траектории частиц не мал по сравнению с длиной волны) профиль волны совсем не похож на синусоиду: у него широкие впадины и узкие гребни. Линия, соединяющая светлые кружки, имеет ту же форму, но сдвинута вправо (в сторону запаздывания фазы), т, е. в результате движения частиц жидкости по круговым траекториям волна переместилась.

Рис. 76. Движение частиц жидкости в волне на ее поверхности

Следует заметить, что в образовании поверхностных волн играет роль не только сила тяжести, но и сила поверхностного натяжения (см. том I, § 250), которая, как и сила тяжести, стремится выровнять поверхность жидкости. При прохождении волны в каждой точке поверхности жидкости происходит деформация этой поверхности - выпуклость становится плоской и затем сменяется вогнутостью, и обратно, в связи с чем меняется площадь поверхности и, следовательно, энергия поверхностного натяжения. Нетрудно понять, что роль поверхностного натяжения будет при данной амплитуде волны тем больше, чем больше искривлена поверхность, т. е. чем короче длина волны. Поэтому для длинных волн (низких частот) основной является сила тяжести, но для достаточно коротких волн (высоких частот) на первый план выступает сила поверхностного натяжения. Граница между «длинными» и «короткими» волнами, конечно, не является резкой и зависит от плотности поверхностного натяжения. У воды эта граница соответствует волнам, длина которых около , т. е. для более капиллярных волн преобладают силы поверхностного натяжения, а для более длинных – сила тяжести.

Несмотря на сложный «продольно-поперечный» характер поверхностных волн, они подчиняются закономерностям, общим для всякого волнового процесса, и очень удобны для наблюдения многих таких закономерностей. Поэтому мы остановимся несколько подробнее на способе их получения и наблюдения.

Для опытов с такими волнами можно взять неглубокую ванну, дном которой служит стекло, площадь которого около . Под стеклом на расстоянии можно поместить яркую лампочку, позволяющую спроецировать этот «пруд» на потолок или экран (рис. 77). На тени в увеличенном виде можно наблюдать все явления, происходящие на поверхности воды. Для ослабления отражения волн от бортов ванны поверхность последних делается рифленой и сами борта - наклонными.

Рис. 77. Ванна для наблюдения волн на поверхности воды

Наполним ванну водой примерно на глубину и коснемся поверхности воды концом проволоки или острием карандаша. Мы увидим, как от точки прикосновения разбегается кольцевая морщинка. Скорость ее распространения невелика (10-30 см/с), поэтому можно легко следить за ее перемещением.

Укрепим проволоку на упругой пластинке и заставим ее колебаться, причем так, чтобы при каждом колебании пластинки конец проволоки ударял по поверхности воды. По воде побежит система кольцевых гребней и впадин (рис. 78). Расстояние между соседними гребнями или впадинами , т. е. длина волны, связано с периодом ударов уже известной нам формулой ; - скорость распространения волны.

Рис. 78. Кольцевые волны

Рис. 79. Прямолинейные волны

Линии, перпендикулярные к гребням и впадинам, показывают направления распространения волны. У кольцевой волны направления распространения изображаются, очевидно, прямыми линиями, расходящимися из центра волны, как это показано на рис. 78 штриховыми стрелками. Заменив конец проволоки ребром линейки, параллельным поверхности воды, можно создать волну, имеющую форму не концентрических колец, а параллельных друг другу прямолинейных гребней и впадин (рис. 79). В этом случае перед средней частью линейки мы имеем одно-единственное направление распространения.

Кольцевые и прямолинейные волны на поверхности дают представление о сферических и плоских волнах в пространстве. Небольшой источник звука, излучающий равномерно во все стороны, создает вокруг себя сферическую волну, в которой сжатия и разрежения воздуха расположены в виде концентрических шаровых слоев. Участок сферической волны, малый по сравнению с расстоянием до ее источника, можно приближенно считать плоским. Это относится, конечно, к волнам любой физической природы - и к механическим, и к электромагнитным. Так, например, любой участок (в пределах земной поверхности) световых воли, приходящих от звезд, можно рассматривать как плоскую волну.

Мы неоднократно будем далее пользоваться опытами с описанной выше водяной ванной, так как волны на поверхности воды делают очень наглядными и удобными для наблюдения основные черты многих волновых явлений, включая и такие важные явления, как дифракция и интерференция. Мы используем волны в водяной ванне для получения ряда общих представлений, сохраняющих значение и для упругих (в частности, акустических), и для электромагнитных волн. Там, где можно осуществить наблюдение более тонких особенностей волновых процессов (в частности, в оптике), мы остановимся более подробно на истолковании этих особенностей.