Стационарный процесс. Стационарные и нестационарные случайные процессы

Определение. Случайным процессом Х (t ) называется процесс, значение которого при любом значении аргумента t является случайной величиной.

На практике часто встречаются случайные процессы, протекающие во времени приблизительно однородно и имеющие вид случайных колебаний вокруг некоторого среднего значения, причем ни средняя амплитуда, ни характер этих колебаний существенно не изменяются с течением времени. Такие случайные процессы называются стационарными . Примерами стационарных случайных процессов могут служить колебания самолета на установившемся режиме горизонтального полета, колебания напряжения в электрической цепи, случайные шумы в радиоприемнике, процесс качки корабля, и т.д.

Каждый стационарный процесс можно рассматривать как продолжающийся во времени непрерывно долго, и при исследовании стационарного процесса в качестве начала отсчета можно выбрать любой момент времени. Исследуя стационарный процесс на любом участке времени, мы должны получить одни и те же его характеристики.

Как правило, случайный процесс в любой динамической системе начинается с нестационарной стадии, после чего система обычно переходит в установившийся режим, и тогда процессы, происходящие в ней, можно считать стационарными. В связи с этим получила широкое применение теория стационарных случайных процессов или, точнее, теория стационарных случайных функций (так как аргументом стационарной случайной функции в общем случае может быть и не время).

Определение . Случайная функция Х (t ) называется стационарной , если все ее вероятностные характеристики не зависят от t (точнее, не меняются при любом сдвиге аргументов, от которых они зависят, по оси t ).

В предыдущей главе при изучении случайных функций мы не пользовались такими вероятностными характеристиками, как законы распределения: изучались только математическое ожидание, дисперсия и корреляционная функция. Сформулируем определение стационарной случайной функции в терминах этих характеристик.



Так как изменение стационарной случайной функции должно протекать однородно по времени, естественно потребовать, чтобы ее математическое ожидание было постоянным:

m x (t ) = m x = const .

Обратим внимание, однако, на то, что это требование не является существенным: мы знаем, что от случайной функции Х (t ) всегда можно перейти к центрированной случайной функции , для которой математическое ожидание тождественно равно нулю. Таким образом, если случайный процесс нестационарен только за счет математического ожидания, то это не мешает изучать его как стационарный.

Второе условие, которому, очевидно, должна удовлетворять стационарная случайная функция, - это условие постоянства дисперсии:

D x (t ) = D x = const .

Теперь установим, какому условию должна удовлетворять корреляционная функция стационарной случайной функции. Рассмотрим случайную функцию Х (t ) и положим в выражении K x (t 1 , t 2) t 2 = t 1 + τ . Рассмотрим теперь K x (t 1 , t 1 + τ ) – корреляционный момент двух сечений случайной функции, разделенных интервалом времени τ . Очевидно, если случайный процесс действительно стационарен, то этот корреляционный момент не должен зависеть от того , где именно на оси 0t мы взяли участок τ , а только от длины этого участка. Т.е., корреляционная функция стационарного случайного процесса должна зависеть только от промежутка между первым и вторым аргументами

K x (t 1 , t 1 + τ ) = k x (τ ).

Т.о., корреляционная функция стационарного случайного процесса есть функция одного аргумента, что сильно упрощает операции над стационарными случайными функциями.

Заметим, что постоянство дисперсии является частным случаем приведенной формулы, т.к. D x (t ) = K x (t , t ) = k x (0) = const .

Таким образом, переформулируем с помощью вышеприведенных рассуждений определение стационарной случайной функции – это есть случайная функция Х (t ), математическое ожидание которой постоянно при всех значениях аргумента t и корреляционная функция которой зависит только от разности аргументов t 2 - t 1 . При этом корреляционная функция есть функция одного аргумента, а дисперсия равна значению корреляционной функции в начале координат (при τ = t 2 - t 1 = 0).

Свойства корреляционной функции стационарной функции .

1 0 . Корреляционная функция стационарной случайной функции – четная функция: k x (τ ) = k x (-τ ). Это следует из того, что K x (t 1 , t 2) = K x (t 2 , t 1).

2 0 . Абсолютная величина корреляционной функции стационарной случайной функции не превышает ее значения в начале координат: |k x (τ )| ≤ k x (0).

На практике вместо корреляционной функции k x (τ ) часто пользуются нормированной корреляционной функцией :

ρ x (τ ) = ,

где D x = k x (0) – постоянная дисперсия стационарного процесса. Очевидно, что ρ x (0) ≡ 1.

Введем еще одно понятие, связанное со стационарностью.

Определение . Две случайные функции называются стационарно связанными , если их взаимная корреляционная функция зависит только от разности аргументов.

Обратим внимание на то, что не всякие две стационарные функции стационарно связаны; с другой стороны, две нестационарные функции могут быть стационарно связаны.

Важным классом случайных процессов являются стационарные случайные процессы, то есть, случайные процессы, не изменяющие свои характеристики с течением времени. Они имеют вид непрерывных случайных колебаний вокруг некоторого среднего значения. Таковыми являются: давление газа в газопроводе, колебания самолёта при «автополёте», колебания напряжения в электрической сети и т.д.

Случайный процессназывается стационарным в широком смысле ,если его математическое ожидание
есть постоянное число, а корреляционная функция
зависит только от разности аргументов, т.е.

Из этого определения следует, что корреляционная функция стационарного процесса есть функция одного аргумента: Это обстоятельство часто упрощает операции над стационарными случайными процессами.

Случайный процесс называют стационарным в узком смысле , если его характеристики зависят не от значений аргументов, а лишь от их взаимного расположения. То есть, для функции распределения сечений процесса должно выполняться равенство:

при любых

Отметим, что из стационарности СП в узком смысле следует стационарность его в широком смысле, обратное утверждение неверно.

В дальнейшем мы будем рассматривать только стационарные случайные процессы в широком смысле. Далее приведем основные свойства корреляционной функции случайного стационарного процесса (с.с.п.).

1. Дисперсия с.с.п. постоянна и равна значению корреляционной функции в нуле, т.е.

То есть в начале координат.

2. Корреляционная функция с.с.п. является чётной функцией, т.е.

3. Абсолютное значение корреляционной функции с.с.п. не превосходит её значение при
, т.е.

Нормированная корреляционна функция с.с.п. является неслучайная функция аргумента , т.е.

при этом в соответствии свойство 3 имеет место неравенство

Пример 6 . Задана случайная функция,

равномерно распределённая случайная величина, в интервале

Доказать, что

Решение. Найдём математическое ожидание

На основании определения м.о. получим (с учётом равномерной распределённости с.в. , по условию контроля
)

и

Следовательно,

Найдём корреляционную функцию. Учитывая, что центрированная и случайная функция равны (т.к.
), т.е., то согласно определению корреляционной функции (см.пункт 16.5) имеем

,

поскольку ).

Задание. Покажите, что в условиях нашего примера имеет место

Итак, математическое ожидание с.в.
есть постоянное число при всех значениях аргумента, и её корреляционная функция зависит только от разности аргументов. Следовательно,
случайная стационарная функция.

Отметим что, положив
в корреляционной функции, найдём дисперсию

Таким образом, дисперсия сохраняет постоянное значение при всех значениях аргумента, как и должно, быть при случайной стационарной функции.

Большинство случайных стационарных процессов обладают важным для практики, так называемым, « эргодическим свойством» , сущность которого состоит в том, что по одной, достаточно длинной отдельной реализации данного процесса можно судить обо всех свойствах процесса также как по любому количеству реализаций.

Другими словами, отдельные характеристики с.с.п.
могут быть определены как соответствующие средние по времени для одной реализации достаточно большой продолжительности.

Связь между классами стационарных и случайных эргодических процессов можно охарактеризовать, например, как на рисунке 61.

Рис. 61 (Письм.).

Достаточным условием эргодического с.п.
относительно математического ожидания и корреляционной функции является стремление к нулю его корреляционной функции при
.

В качестве оценок характеристик эргодических с.с.п. принимают усреднённое по времени значение:

Интегралы, в правых частях равенств, на практике вычисляют приближённо.

Случайные процессы
и
называютсястационарно связанными , если их взаимно корреляционная функция
зависит только от разности
. В качестве примера стационарного процесса можно взять с.п.– гармоническое колебание. Можно показать, что
а

Стационарным случайным процессом называется такой процесс, вероятностные характеристики которого не зависят от времени. Все плотности вероятностей не меняются при любом сдвиге рассматриваемого участка процесса во времени, т. е. при сохранении постоянной разности.

Можно сказать, что стационарный случайный процесс в какой-то мере аналогичен обычным стационарным или установившимся процессам в автоматических системах. Например, при рассмотрении обычных установившихся периодических колебаний ничего не изменится, если перенести начало отсчета на какую-нибудь величину. При этом сохранят свои значения такие характеристики, как частота, амплитуда, среднеквадратичное значение и т. п.

В стационарном случайном процессе закон распределения один и тот же для каждого момента времени, т. е. плотность вероятности не зависит от времени:

Отсюда получаем вдоль всего случайного процесса. Следовательно, в стационарном случайном процессе средняя линия, в отличие от общего случая (см. рис. 11.12), будет прямая (рис. 11.13), подобно постоянному смещению средней линии обычных периодических

колебаний. Рассеяние значений переменной х в стационарном случайном процессе, определяемое также будет все время одинаковым, подобно постоянному значению среднеквадратичного отклонения обычных установившихся колебаний от средней линии.

Аналогичным образом и двумерная плотность вероятности также будет «дна и та же для одного и того же промежутка времени - между любыми (рис. 11.13), т. е.

и также для -мерной плотности вероятности.

Задание всех этих функций распределения плотности определяет случайный процесс. Однако более удобно иметь дело с некоторыми осредненными и характеристиками процесса.

Прежде чем перейти к ним, отметим два важных для практики свойства.

1. Ограничиваясь только стационарными случайными процессами, можно будет определить только установившиеся (стационарные) динамические ошибки автоматических систем при случайных воздействиях. Такой прием применялся и ранее при рассмотрении регулярных воздействий, когда определялись динамические свойства систем регулирования по величине динамических ошибок в установившемся периодическом режиме.

2. Стационарные случайные процессы обладают замечательным свойством, которое известно под названием эргодической гипотезы.

Для стационарного случайного процесса с вероятностью, равной единице (т. е. практически достоверно), всякое среднее по множеству равно соответствующему среднему по времени, в частности

В самом деле, поскольку вероятностные характеристики стационарного случайного процесса с течением времени не меняются (например, то длительное наблюдение случайного процесса на одном объекте (среднее но времени) дает в среднем такую же картину, как и большое число наблюдений, сделанное в один и тот же момент времени на большом числе одинаковых объектов (среднее по множеству).

Для многих случаев существует математическое доказательство этого свойства. Тогда оно сводится к эргодической теореме.

Итак, среднее значение (математическое ожидание) для стационарного процесса будет

Аналогичным образом могут быть записаны моменты более высоких порядков - дисперсия, среднеквадратичное отклонение и т. п.

Эргодическая гипотеза позволяет сильно упрощать все расчеты и эксперименты. Она позволяет для определения вместо параллельного испытания многих однотипных систем в один и тот же момент времени, пользоваться одной кривой полученной при испытании одной системы в течение длительного времени.

Таким образом, важное свойство стационарного случайного процесса состоит в том, что отдельная его реализация на бесконечном промежутке времени полностью определяет собой весь случайный процесс со всеми бесчисленными возможными его реализациями. Этим свойством не обладает никакой другой тип случайного процесса.

Определение [ | ]

X t (⋅) : Ω → R , t ∈ T {\displaystyle X_{t}(\cdot)\colon \Omega \to \mathbb {R} ,\quad t\in T} ,

где T {\displaystyle T} произвольное множество , называется случайной функцией .

Терминология [ | ]

Данная классификация нестрогая. В частности, термин «случайный процесс» часто используется как безусловный синоним термина «случайная функция».

Классификация [ | ]

  • Случайный процесс X (t) {\displaystyle X(t)} называется процессом дискретным во времени , если система, в которой он протекает, меняет свои состояния только в моменты времени t 1 , t 2 , … {\displaystyle \;t_{1},t_{2},\ldots } , число которых конечно или счётно. Случайный процесс называется процессом с непрерывным временем , если переход из состояния в состояние может происходить в любой момент времени.
  • Случайный процесс называется процессом с непрерывными состояниями , если значением случайного процесса является непрерывная случайная величина. Случайный процесс называется случайным процессом с дискретными состояниями , если значением случайного процесса является дискретная случайная величина:
  • Случайный процесс называется стационарным , если все многомерные законы распределения зависят только от взаимного расположения моментов времени t 1 , t 2 , … , t n {\displaystyle \;t_{1},t_{2},\ldots ,t_{n}} , но не от самих значений этих величин. Другими словами, случайный процесс называется стационарным , если его вероятностные закономерности неизменны во времени. В противном случае, он называется нестационарным .
  • Случайная функция называется стационарной в широком смысле , если её математическое ожидание и дисперсия постоянны, а АКФ зависит только от разности моментов времени, для которых взяты ординаты случайной функции. Понятие ввёл А. Я. Хинчин .
  • Случайный процесс называется процессом со стационарными приращениями определённого порядка, если вероятностные закономерности такого приращения неизменны во времени. Такие процессы были рассмотрены Ягломом .
  • Если ординаты случайной функции подчиняются нормальному закону распределения , то и сама функция называется нормальной .
  • Случайные функции, закон распределения ординат которых в будущий момент времени полностью определяется значением ординаты процесса в настоящий момент времени и не зависит от значений ординат процесса в предыдущие моменты времени, называются марковскими .
  • Случайный процесс называется процессом с независимыми приращениями , если для любого набора t 1 , t 2 , … , t n {\displaystyle t_{1},t_{2},\ldots ,t_{n}} , где n > 2 {\displaystyle n>2} , а t 1 < t 2 < … < t n {\displaystyle t_{1}, случайные величины (X t 2 − X t 1) {\displaystyle (X_{t_{2}}-X_{t_{1}})} , (X t 3 − X t 2) {\displaystyle (X_{t_{3}}-X_{t_{2}})} , … {\displaystyle \ldots } , (X t n − X t n − 1) {\displaystyle (X_{t_{n}}-X_{t_{n-1}})} независимы в совокупности.
  • Если при определении моментных функций стационарного случайного процесса операцию усреднения по статистическому ансамблю можно заменить усреднением по времени, то такой стационарный случайный процесс называется эргодическим .
  • Среди случайных процессов выделяют импульсные случайные процессы .

Траектория случайного процесса [ | ]

Пусть дан случайный процесс { X t } t ∈ T {\displaystyle \{X_{t}\}_{t\in T}} . Тогда для каждого фиксированного t ∈ T {\displaystyle t\in T} X t {\displaystyle X_{t}} - случайная величина, называемая сечением . Если фиксирован элементарный исход ω ∈ Ω {\displaystyle \omega \in \Omega } , то X t: T → R {\displaystyle X_{t}\colon T\to \mathbb {R} } - детерминированная функция параметра t {\displaystyle t} . Такая функция называется траекто́рией или реализа́цией случайной функции { X t } {\displaystyle \{X_{t}\}} | ]