Тема: Химия как наука. Что такое химия? Химия

«Химия - наука, изучающая свойства и превращения веществ, сопровождающиеся изменением их состава и строения». Она изучает природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов и т.д. Своеобразную программу исследования химических явлений впервые сформулировали и приняли ученые химики на первом Международном съезде химиков в в Германии в 1860 г. Они исходили из того, что: - все вещества состоят из молекул, которые находятся в непрерывном и самопроизвольном движении; - все молекулы состоят из атомов; - атомы и молекулы находятся в непрерывном движении; - атомы представляют собой мельчайшие, далее неделимые составные части молекул.

Химия - это одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения.

Химия - наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо, и почему олово не ржавеет; что происходит с пищей в организме; почему раствор соли проводит электрический ток, а раствор сахара - нет; почему одни химические изменения происходят быстро, а другие - медленно.

Химия - греч., наука, занимающаяся изучением состава тел; она учит, из каких простых веществ (химич. элементов) состоят тела, как их можно разложить (хим. анализ) на составные части и получить снова из этих составных частей (хим. синтез).

Химия - Наука о составе, строении, изменениях и превращениях, а также об образовании новых простых и сложных веществ. Химию, говорит Энгельс, можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава.

Химия.- греч. наука о разложении и составлении веществ, тел, об отыскании неразлагаемых стихий, основ.

Химический взгляд на природу, истоки и современное состояние.

Химия - очень древняя наука. Существует несколько объяснений слова «химия». Согласно одной из имеющихся теорий, оно происходит от древнего названия Египта - Kham и, следовательно, должно означать «египетское искусство». Согласно другой теории, слово «химия» произошло от греческого слова cumoz (сок растения) и означает «искусство выделения соков». Этот сок может быть расплавленным металлом, так что при подобном расширенном толковании данного термина в него приходится включать и искусство металлургии.

Предмет химии - химические элементы и их соединения, а также закономерности, которым подчиняются различные химические реакции. Химию, иногда называют центральной наукой из-за ее особого положения среди естественных наук. Она соединяет физико-математические и биолого-социальные науки. Это делает химию «наукой-гигантом». Современная химия является самой обширной среди всех естественных наук.



По определению Д. И. Менделеева Дмитрия Ивановича (1871), "химию в современном ее состоянии можно... назвать учением об элементах".Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта - Хемия (греч. Chemía, встречается у Плутарха), которое производится от "хем" или "хаме" - чёрный и означает "наука чёрной земли" (Египта), "египетская наука".

Главная задача химии - выяснение природы вещества, главный подход к решению этой задачи - разложение вещества на более простые компоненты и синтез новых веществ. Используя этот подход, химики научились воспроизводить множество природных химических субстанций и создавать материалы, не существующие в природе. На химических предприятиях уголь, нефть, руды, вода, кислород воздуха превращаются в моющие средства и красители, пластики и полимеры, лекарства и металлические сплавы, удобрения, гербициды и инсектициды и т.д. Живой организм тоже можно рассматривать как сложнейший химический завод, на котором тысячи веществ вступают в совершенно точно отрегулированные химические реакции.

Современная химия представляет собой широкий комплекс наук, постепенно сложившийся в ходе ее длительного исторического развития. Практическое знакомство человека с химическими процессами восходит к глубокой древности. В течение многих столетий теоретическое объяснение химических процессов основывалось на натурфилософском учении об элементах-качествах. В модифицированном виде оно послужило основой для алхимии, возникшей примерно в III-IV вв. н.э. и стремившейся решить задачу превращения неблагородных металлов в благородные. Не добившись успеха в решении этой задачи, алхимики, тем не менее, выработали ряд приемов исследования веществ, открыли некоторые химические соединения, чем в определенной степени способствовали возникновению научной химии.

Важнейшие особенности современной химии таковы.

1. В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия).

2. Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия - закономерности поведения химических элементов в земной коре. Биогеохимия - это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский. Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам.

3. В химии появляются принципиально новые методы исследования (структурный рентгеновский анализ, масс-спектроскопия, радиоспектроскопия и др.).

Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными: 1) введение в практику эфирного наркоза, а затем и других наркотических веществ; 2) использование антисептических средств для предупреждения инфекции; 3) получение новых, не имеющихся в природе аллопластических материалов-полимеров.

В химии весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) - это органические соединения. В их основе лежат 18 элементов), и большее распространение имеют всего 6 из них). Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство.

Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение.

Современная химия изучает превращения, при которых молекулы одного соединения обмениваются атомами с молекулами других соединений, распадаются на молекулы с меньшим числом атомов, а также вступают в химические реакции, в результате которых образуются новые вещества. Атомы претерпевают в химических процессах некоторые изменения лишь в наружных электронных оболочках, атомное ядро и внутренние электронные оболочки при этом не изменяются.

При определении предмета химии нередко акцентируют внимание на том, что его составляют, прежде всего, соединения атомов и превращения этих соединений, происходящее с разрывом одних и образованием других межатомных связей.

Различные химические науки отличаются тем, что они занимаются изучением либо различных классов соединений (такое различие положено в основу разграничения органической и неорганической химии), либо разных типов реакций (радиохимия, радиационная химия, каталитический синтез, химия полимеров), либо использованием разных методов исследования (физическая химия в ее различных направлениях). Отграничение одной химической дисциплины от другой, сохраняющее в нынешних условиях исторически сложившиеся разграничительные линии, имеет относительный характер.

До конца XIX века химия в основном была целостной единой наукой. Внутреннее ее деление на органическую и неорганическую не нарушало этого единства. Но последовавшие вскоре многочисленные открытия, как в самой химии, так и в биологии, физике положили начало быстрой ее дифференциации.

Современная химическая наука, опираясь в» прочные теоретические основы, непрерывно развивается вширь и вглубь. В частности, происходит открытие и изучение новых, качественно различных дискретных химических частиц. Так, еще в первой половине XIX века при изучении электролиза были обнаружены ионы - особые частицы, образованные из атомов и молекул, но электрически заряженные. Ионы являются структурными единицами многих кристаллов, кристаллических решеток металлов, они существуют в атмосфере, в растворах и т.д.

В начале XX в. химики открыли радикалы как одну из активных форм химического вещества. Они образуются из молекул путем отщепления отдельных атомов или групп и содержат атомы элементов в необычном для них валентном состоянии, что связано с наличием одиночных (неспаренных) электронов, объясняющих их исключительную химическую активность.

К особым формам химического вещества относятся также макромолекулы. Они состоят из сотен и тысяч атомов и вследствие этого приобретают в отличие от обычной молекулы качественно новые свойства.

Характерный для новейшей химии, как и для всей науки XX в., процесс глубокой внутренней дифференциации в значительной степени связан с открытием этого качественного многообразия химических веществ. Их строение, превращения и свойства стали предметом изучения специальных разделов химии: электрохимии, химической кинетики, химии полимеров, химии комплексных соединений, коллоидной химии, химии высокомолекулярных соединений.

Уже к началу XX в. внутри самой химии четко различаются общая и неорганическая химия, и органическая химия. Предметом изучения общей и тесно связанной с ней неорганической химии стали химические элементы, образуемые ими простейшие неорганические соединения и их общие законы (прежде всего Периодический закон Д.И. Дмитрия Ивановича Менделеева).

Сильный толчок развитию неорганической химии дали проникновение в недра атома и изучение ядерных процессов. Поиски элементов, наиболее пригодных для расщепления в ядерных реакторах, способствовали исследованию малоизученных и синтезу новых элементов с помощью ядерных реакций. Изучением их свойств, а также физико-химических основ и химических свойств радиоактивных изотопов, методикой их выделения и концентрации занялась радиохимия, возникшая во второй четверти XX в.

Органическая химия окончательно сложилась в самостоятельную науку во второй половине XIXв. Этому способствовало получение большого эмпирического и теоретического материала о соединениях углерода и его производных. Определяющим фактором для всех органических соединений являются особенности валентного состояния углерода - способность его атомов связываться между собой как одинарной, так и двойной, тройной связью в длинные линейные и разветвленные цепи. Благодаря бесконечному многообразию форм сцепления углеродных атомов, наличию изомерии и гомологических рядов почти во всех классах органических соединений возможности получения этих соединений практически безграничны.

В XX в. многие разделы органической химии стали постепенно превращаться в большие, относительно самостоятельные ветви со своими объектами изучения. Так появились химия элементоорганических соединений, химия полимеров, химия высокомолекулярных соединений, химия антибиотиков, красителей, душистых соединений, фармакохимия и т.д.

В конце XX в. возникает химия металлоорганических соединений, то есть соединений, содержащих одну (или более) прямую связь металла с углеродом. До окончания века были открыты органические соединения ртути, кадмия, цинка, свинца и др. В настоящее время получены углеродистые соединения со значительным содержанием не только металлов, но и неметаллов (фосфор, бур, кремний, мышьяк и т.д.). Теперь эту область химии стали называть химией элементоорганических соединений, она находится на стыке органической и неорганической химии.

Самостоятельной областью химии является наука о методах определения состава вещества - аналитическая химия. Ее основная задача - определение химических элементов или их соединений, входящих в состав исследуемого вещества, - решается путем анализа. Без современных методов анализа был бы невозможен синтез новых химических соединений, эффективный постоянный контроль за ходом технологического процесса и качеством получаемых продуктов.

Химия наших дней составляет одну из наиболее обширных областей человеческих знаний и играет исключительно важную роль в народном хозяйстве. Объекты и методы исследования химии настолько разнообразны, что многие ее разделы являются по существу самостоятельными научными дисциплинами. Современную химию принято подразделять в наиболее общем плане, по крайней мере, на 5 разделов: неорганическую, органическую, физическую, аналитическую и химию высокомолекулярных соединений. Однако четких границ между этими разделами не существует. Например, координационные и элементоорганические соединения представляют собой объекты, находящиеся в сфере исследований, как неорганической, так и органической химии. Развитие же этих разделов невозможно без широкого использования методов и представлений физической и аналитической химии.

К важнейшим особенностям современной химии относятся:

1. Дифференциация основных разделов химии на отдельные, во многом самостоятельные научные дисциплины. Эта дифференциация основана на различии объектов и методов исследования. Так, на значительное число быстро развивающихся дисциплин подразделяется физическая химия.

2. Интеграция химии с другими науками. В результате этого процесса возникли биохимия, биоорганическая химия и молекулярная биология, изучающие химические процессы в живых организмах. На границе химии и геологии развивается геохимия, исследующая закономерности поведения химических элементов в земной коре. Задачи космохимии - изучение особенностей элементного состава космических тел (планет и метеоритов) и различных соединений, содержащихся в этих объектах.

3. Появление новых, главным образом, физико-химических в физических методов исследования (структурный рентгеновский анализ, масс-спектроскопия, методы радиоспектроскопии и др.)

Взаимосвязь химии и физики

Наряду с процессами дифференциации самой химической науки, в настоящее время идут в интеграционные процессы химии с другими отраслями естествознания. Особенно интенсивно развиваются взаимосвязи между физикой и химией. Этот процесс сопровождается возникновением все новых и новых смежных физико-химических отраслей знания.

Вся история взаимодействия химии я физики полна примеров обмена идеями, объектами и методами исследования. На разных этапах своего развития физика снабжала химию понятиями в теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом, чем больше усложнялись химические исследования, тем больше аппаратура и методы расчетов физики проникали в химию. Необходимость измерения тепловых эффектов реакции, развитие спектрального и рентгеноструктурного анализа, изучение изотопов и радиоактивных химических элементов, кристаллических решеток вещества, молекулярных структур потребовали создания и привели к использованию сложнейших физических приборов эспектроскопов, масс-спектрографов, дифракционных решеток, электронных микроскопов и т.д.

Развитие современной науки подтвердило глубокую связь между физикой и химией. Связь эта носит генетический характер, то есть образование атомов химических элементов, соединение их в молекулы вещества произошло на определенном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов материи, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Возникновение химической формы движения в природе вызвало дальнейшее развитие представлений об электромагнитном взаимодействии, изучаемом физикой. На основе периодического закона ныне осуществляется прогресс не только в химии, но и в ядерной физике, на границе которой возникли такие смешанные физико-химические теории, как химия изотопов, радиационная химия.

Химия и физика изучают практически одни и те же объекты, но только каждая из них видит в этих объектах свою сторону, свой предмет изучения. Так, молекула является предметом изучения не только химии, но и молекулярной физики. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы, то последняя статистически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазы и обратно, явления, не связанные с изменением состава молекул и их внутреннего химического строения. Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах убедительно свидетельствуют о тесной связи химических и физических явлений. Так, энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии обычно в виде тепла и света, называются экзотермическими. Существуют также эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновременно с уменьшением внутренней энергии системы. В эндотермических реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль).

Еще один пример. Частным случаем первого начала термодинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измерение почему-либо неосуществимо.

С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказалось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней оболочки, Именно новейшая физика сумела решить такие вопросы химии, как природа химической связи, особенности химического строения молекул органических и неорганических соединений и т.д.

В сфере соприкосновения физики и химии возник и успешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, которая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева Дмитрия Ивановича (открытие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролитической диссоциации) и т.д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия - это разносторонне разветвленная наука, тесно связывающая физику и химию.

В самой физической химии к настоящему времени выделились и вполне сложились в качестве самостоятельных разделов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в самостоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с интенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической химии - химия высоких энергий, радиационная химия (предметом ее изучения являются реакции, протекающие под действием ионизирующего излучения), химия изотопов.

Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической химии. С возникновением физической химии изучение вещества стало осуществляться не только традиционными химическими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодинамики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, присущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.).

Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (квантовая механика, электронная теория атомов и молекул) наука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химических элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи.

В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обеспечило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия граничит, с одной стороны, с макроскопической физикой - термодинамикой, физикой сплошных сред, а с другой - с микрофизикой - статической физикой, квантовой механикой.

Общеизвестно, сколь плодотворными эти контакты оказались для химии. Термодинамика породила химическую термодинамику - учение о химических равновесиях. Статическая физика легла в основу химической кинетики - учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Дмитрия Ивановича Менделеева. Современная теория химического строения и реакционной способности - это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превращений.

Еще одним свидетельством плодотворности влияния физики на химическую науку является все расширяющееся применение физических методов в химических исследованиях. Поразительный прогресс в этой области особенно отчет-диво виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область видимого и примыкающего к нему участков инфракрасного и ультрафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее информативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального метода изучения нестабильных промежуточных частиц - свободных радикалов. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии.

Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры - уникальные по своей спектральной интенсивности источники - и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс - быстро развивающийся высокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность - это штучная регистрация атомов с помощью лазера - методика, основная на селективном возбуждении, позволяющая зарегистрировать в кювете всего несколько атомов посторонней при-Л0еи. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер.

Сейчас трудно назвать область современной физики, которая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных частиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое поведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправдывает этот интерес.

Взаимосвязь химии и биологии

Общеизвестно, что химия и биология долгое время шли каждая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма.

Резкое укрепление взаимосвязи химии с биологией произошло в результате создания А.М. Бутлеровым теория химического строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось.

Значение химии среди наук, изучающих жизнь, исключительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов.

Другие науки, возникшие на стыке биологии, химии и физики: биохимия - наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия - наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология.

Ныне для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. На этом пути есть уже определенные достижения.

В настоящее время уже видны перспективы возникновения и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии.

Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химическими, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей, использующих с большим КПД солнечный свет, превращая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности.

Для освоения каталитического опыта живой природы и реализации полученных знаний в индексе пром. производства химики наметили рад перспективных путей.

Первый - развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа.

Второй путь заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов характеризующихся высокой активностью и селективностью, иногда" почти такой же, как и у оригиналов, или с большей простотой строения.

Разделы современной химии

Современная химия - настолько обширная область естествознания, что многие её разделы по существу представляют собой самостоятельные, хотя и тесно взаимосвязанные научные дисциплины.

По признаку изучаемых объектов (веществ) химию принято делить на неорганическую и органическую. Объяснением сущности химических явлений и установлением их общих закономерностей на основе физических принципов и экспериментальных данных занимается физическая химия, включающая квантовую химию, электрохимию, химическую термодинамику, химическую кинетику. Самостоятельными разделами являются также аналитическая и коллоидная химия (см. ниже перечень разделов).

Технологические основы современных производств излагает химическая технология - наука об экономичных методах и средствах промышленной химической переработки готовых природных материалов и искусственного получения химических продуктов, не встречающихся в окружающей природе.

Сочетание химии с другими смежными естественными науками представляют собой биохимия, биоорганическая химия, геохимия, радиационная химия, фотохимия и др.

Общенаучные основы химических методов разрабатываются в теории познания и методологии науки.

Агрохимия

Аналитическая химия занимается изучением веществ с целью получить представление об их химическом составе и структуре, в рамках этой дисциплины ведётся разработка экспериментальных методов химического анализа.

Биоорганическая химия

Биохимия изучает химические вещества, их превращения и явления, сопровождающие эти превращения в живых организмах. Тесно связана с органической химией, химией лекарственных средств, нейрохимией, молекулярной биологией и генетикой.

Вычислительная химия

Геохимия - наука о химическом составе Земли и планет (космохимия), законах распределения элементов и изотопов, процессах формирования горных пород, почв и природных вод.

Квантовая химия

Коллоидная химия

Компьютерная химия

Косметическая химия

Космохимия

Математическая химия

Материаловедение

Металлоорганическая химия

Неорганическая химия изучает свойства и реакции неорганических соединений. Чёткой границы между органической и неорганической химии нет, напротив, существуют дисциплины на стыке этих наук, например, металлоорганическая химия.

Органическая химия выделяет в качестве предмета изучения вещества, построенные на основе углеродного скелета.

Нейрохимия своим предметом имеет изучение медиаторов, пептидов, белков, жиров, сахара и нуклеиновых кислот, их взаимодействия и роли, которую они играют в формировании, становлении и изменении нервной системы.

Нефтехимия

Общая химия

Препаративная химия

Радиохимия

Супрамолекулярная химия

Теоретическая химия

Фармацевтика

Физическая химия изучает физический и фундаментальный базис химических систем и процессов. Важнейшие области исследования включают химическую термодинамику, кинетику, электрохимию, статистическую механику и спектроскопию. Физическая химия имеет много общего с молекулярной физикой. Физическая химия предполагает использование инфинитезимального метода. Физическая химия является отдельной дисциплиной от химической физики.

Фотохимия

Химия высокомолекулярных соединений

Химия одноуглеродных молекул

Химия полимеров

Химия почв

Теоретическая химия своей задачей ставит теоретическое обобщение и обоснование знаний химии через фундаментальные теоретические рассуждения (как правило, в области математики или физики).

Термохимия

Токсикологическая химия

Электрохимия

Экологическая химия; химия окружающей среды

Ядерная химия изучает ядерные реакции и химические последствия ядерных реакций.

Что мы называем химией? Химия есть та часть естествознания, которая занимается изучением изменений вещества.

Все ли изменения вещества относятся к области химии? Нет. Существуют и такие изменения, которые должны быть отнесены к области физических изменений (например, превращение льда в воду), а также и такие, которые являются пограничными между физикой и химией, например, взаимные переходы обеих форм карбоната кальция - арагонита и кальцита.

Чем отличаются друг от друга физические и химические изменения вещества? При химических превращениях веществ образуются новые молекулы, свободные радикалы или свободные . При физических изменениях молекулы веществ остаются неизменными.

На какие отрасли может быть разделена химия? На общую химию, которая занимается изучением основных законов, относящихся ко всем химическим превращениям, и на специальную химию, занимающуюся изучением химических свойств отдельных веществ. По характеру изучаемых веществ специальная химия делится на неорганическую и органическую.

Какую часть химии называют неорганической химией? Неорганической химией раньше называлась та часть химии, которая изучает превращения веществ минерального происхождения. В настоящее время так называют всю специальную химию, за исключением химии углеводородных соединений.

Какую часть химии называют ? Раньше этим термином обозначали учение о превращениях веществ животного и растительного происхождения; ныне этим термином обозначают химию углеводородных соединений.

Какую часть химии называют физической химией? Ту часть общей химии, которая изучает влияние физических условий (например, теплоты, электричества, света, давления и т. д.) на вещество и на его химические свойства, а также изучает физические результаты этого влияния (возникновение тепла, электричества, света и т. д.) при химических превращениях. Термохимия, электрохимия, фотохимия и т. д. относятся к отдельным отраслям физической химии.

Химические элементы

Что называют химическими элементами? Элементами называют сравнительно небольшое число простых веществ, из которых построены все существующие вещества и которые образуются при разложении всех вообще веществ, но уже далее не могут быть разложены на более простые вещества химическими методами.

Возможно ли взаимное превращение одних в другие? Такие превращения в весомых количествах стали возможными лишь в самое последнее время. Однако в невесомых количествах подобные превращения происходят самопроизвольно при распаде природных и искусственно полученных радиоактивных элементов. Кроме того, почти все элементы удается при помощи физических методов превращать в мельчайших количествах в другие элементы. Однако эти превращения находятся уже за пределами явлений, изучаемых в химии.

Кто впервые ввел в химию современное понятие о химическом элементе? Еще с древних времен признавалось, что все вещества построены из нескольких немногих основных составных частей. Так, Аристотель считал, что весь мир состоит из 4-х составных начал - это , и огонь. Лишь Юнгиус (1642 г.) и Бойль (1664 г.), основываясь на опыте, сформулировали для химических элементов определение, которое еще поныне остается действительным.

Сколько природных элементов известно в настоящее время? В настоящее время известно 118 элементов. Они образуют естественный ряд элементов. Неизвестно какое число элементов еще может быть открыто. Из этого количества элементов 94 встречаются в доступных для исследования частях земного шара; остальные 24 элемента могут быть получены только искусственным путем.

Простые вещества и соединения

Какие вещества называют простыми? Простыми называются вещества, состоящие лишь из одного элемента; например, твердый фосфор или пары фосфора представляют собой простые вещества, ибо они содержат только один элемент - фосфор. Алмаз является простым веществом, ибо он состоит только из одного элемента - углерода и т. д.

Что называют химическим соединением? Химические соединения представляют собой физически однородные вещества, состоящие из двух или нескольких элементов. Так, например, вода является однородным веществом, образованным двумя элементами - водородом и кислородом.

Как можно отличить химическое соединение от смеси? Прежде всего химические соединения отличаются однородностью, т. е. каждая мельчайшая частичка, которую возможно отделить от химического соединения, должна обладать одинаковыми химическими свойствами. Такие вещества, в которых удается обнаружить отдельные частички с различными свойствами, называются физическими смесями. Однако одного только признака полнейшей однородности (гомогенности) еще недостаточно для определения понятия химического соединения, ибо существуют также и вполне однородные физические смеси, например, смеси газов (воздух) и растворы (раствор сахара в воде). Установить строгое разграничение между такими смесями и химическими соединениями чрезвычайно трудно.

Во-первых, в химическом соединении элементы вступают во взаимодействие в совершенно определенных количественных взаимоотношениях (например, на 1 весовую часть в воде приходится 8 весовых частей кислорода), в то время как в смесях составляющие их вещества, могут содержаться в самом различном количественном соотношении (например, в растворах солей различных концентраций).

Во-вторых, свойства химических соединений отличаются от свойств составных частей этого соединения; наличие составных частей в смесях можно обнаружить по их свойствам (например, кислород, содержащийся в воздухе, можно легко обнаружить, так как он поддерживает горение).

В-третьих, разложение химического соединения на составные части, как правило, не может быть достигнуто такими простыми методами, как разделение на составные части какой-нибудь смеси (например, разделение на составные части раствора путем выпаривания растворителя) .

Какие состояния вещества являются промежуточными, находящимися на границе между соединениями и смесями? Растворы. Этим термином обозначают жидкие или твердые смеси, обнаруживающие физическую однородность. Свойства составных частей при образовании растворов часто претерпевают (в противоположность к образованию газовых смесей) значительные изменения. Например, раствор соли приобретает свойство проводить электрический ток, в то время как чистая соль и чистая вода при прочих равных условиях этим свойством не обладают. Поэтому приходится признать, что при образовании растворов все же наступает какое-то взаимодействие между растворителем и растворенным веществом, которое имеет большое сходство с химическими процессами. От химических соединений растворы отличаются тем, что весовые соотношения составных частей могут в них изменяться в широких пределах.

Какие вещества носят название сплавов? Сплавами называют однородные по внешним признакам смеси , образованные сплавлением этих металлов, а также путем их соединения с неметаллическими элементами (например, с углеродом, фосфором и т. д.). При рассмотрении под микроскопом многие сплавы выявляются в качестве механических смесей; другие же сплавы действительно обнаруживают свою однородность и представляют собой, следовательно, твердые растворы (непрерывно изменяющегося состава) или истинные химические соединения (определенного состава).

О чем говорит закон постоянства состава? Закон постоянства состава утверждает, что химические соединения отличаются совершенно определенным, всегда неизменным составом. Вода всегда содержит, независимо от характера ее образования и от физических условий, 8 весовых частей кислорода на 1 весовую часть водорода. Поваренная соль содержит всегда 23 весовые части натрия на 35г5 весовых частей хлора и т. д.

О чем говорит закон кратных отношений? Закон кратных отношений утверждает, что в тех случаях, когда два элемента способны образовать друг с другом не одно, а два или несколько разных химических соединений, то количество одного элемента, способное присоединиться к определенному количеству другого элемента, будет находиться в соотношении целых чисел. Так, например, водород образует с кислородом, кроме воды, еще и другое соединение - перекись водорода. В воде на одну часть водорода приходится 8″, а в перекиси водорода - 16 весовых частей кислорода, числа 8 и 16 находятся друг к другу в простом отношении 1 к 2. Аналогичные соотношения наблюдаются также и для соединений, состоящих более чем из двух различных элементов. Так, например, три элемента - водород, хлор и кислород - образуют друг с другом четыре различных соединения; на 1 часть водорода, а также на 35,5 частей хлора в этих соединениях приходится 16, 32, 48 и 64 части кислорода. Эти количества кислорода находятся друг к другу в соотношении 1:2: 3: 4.

Что следует понимать под термином «агрегатное состояние»? Большинство простых веществ и соединений могут находиться в трех формах - твердой, жидкой и газообразной. Эти три формы называют агрегатными состояниями вещества. вещества обусловливается давлением и температурой.

Что следует понимать под терминами «аллотропные» или «аллотропические модификации» (видоизменения) вещества? Многие простые вещества способны образовывать несколько различных твердых (реже жидких или газообразных) видоизменений (желтый и красный фосфор, алмаз и графит, кислород и озон), которые называются аллотропическими модификациями. Многие элементы (фосфор и др.) могут встречаться в металлических и неметаллических модификациях.

Какую температуру называют критической? Критической температурой называют такую, выше которой вещество уже не способно существовать в жидкой форме; при выше критической никакое повышение давления не может уже обусловить переход пара или газа в жидкое состояние.

Какое состояние называют коллоидным? Многие органические вещества, как и некоторые неорганические (например, сернистый мышьяк, кремниевая кислота, металлическое золото или серебро и др.) проявляют способность при особых обстоятельствах (например, при самом их выделении из растворов) образовывать прозрачную жидкую смесь с растворителем, хотя по существу они являются нерастворимыми в данной жидкости. Такие смеси называются коллоидными растворами.

Какой смысл имеет термин «растворимость»? Существуют вещества, образующие друг с другом однородные смеси (растворы) во всех количественных соотношениях (например, вода и серная кислота). Однако большинство веществ растворяются в других веществах лишь до определенной границы, которую и обозначают как растворимость вещества А в растворителе Б. Эту границу обозначают, например, числом граммов на 100 г раствора или числом граммов на 100 см 3 раствора. Раствор, который имеет максимально возможное содержание растворенного вещества при данных внешних условиях, называют насыщенным раствором. Растворимость вещества зависит от температуры. В большинстве случаев она увеличивается с повышением температуры. Однако встречаются такие вещества, как, например, гипс, растворимость которых с повышением температуры уменьшается.

Химия - одна из важнейших областей естествознания, сыгравшая огромную роль в создании современной научной картины мира. Обычно ее определяют как науку, которая изучает вещества и их превращения. Этому определению нельзя отказать в справедливости, хотя оно не совсем точно. Ведь физика тоже изучает вещества и их превращения, разумеется, своими специфическими методами и в своих собственных целях. В химии же свойства простых и сложных веществ выявляются и проявляются в ходе тех химических взаимодействий, в которых эти вещества участвуют. Поэтому химическими превращениями являются такие, в результате которых образуются новые химические индивидуумы со своими характерными свойствами. Все химические превращения обязательно связаны с перестройкой внешних электронных оболочек атомов элементов, участвующих в реакциях, тогда как внутренние оболочки и атомное ядро остаются незатронутыми.

Ныне в сферу действия химической науки вовлечены примерно 100 доступных для химических исследований элементов (существующих в природе и полученных посредством ядерного синтеза) и их самых разнообразных соединений.

Хотя с различными химическими превращениями человек имел дело еще в древние времена, становление химии как самостоятельной науки - со своими целями и задачами, с собственным арсеналом понятий и терминов - фактически начало происходить во второй половине XVIII в. Это становление подготавливалось исподволь, на протяжении многих столетий. Первоначальные сведения о химических явлениях и процессах накапливались в результате практической деятельности людей - в ходе выплавки металлов, изготовления стекла и керамики, изготовления и крашения тканей, получения различных продуктов питания и т. д. В этом плане историки науки часто используют термин «ремесленная химия». Конечно, она еще не была наукой, а лишь своеобразным сводом определенных химических приемов и рецептов. Некоторые задатки будущей химии сформировались и в период господства алхимии. Хотя алхимики преследовали мистические цели, им принадлежали и многие важные практические достижения: они предложили способы разложения различных руд и минералов, получили некоторые необходимые реактивы (например, азотную, серную и соляную кислоты, царскую водку, ряд солей и щелочей), изобрели приборы, необходимые для химических исследований (колбы, реторты, нагревательные печи), описали такие процессы, как прокаливание, перегонка, дистилляция, растворение и осаждение. Далее внесла свой вклад в фундамент будущей химической науки и ятрохимия - область знаний, которая, в частности, ставила целью изготовление различных лекарств для лечения людей.

XIV-XVI века вошли в историю человечества как эпоха Возрождения. Для нее характерен расцвет многих наук - механики, математики, физики. Что касается химии, то она лишь начала осознавать свое истинное место в системе человеческих знаний.

В XVII столетии засверкали имена многих ученых, которые своими идеями и трудами подготавливали приобретение химией статуса определенной области познания. Французский физик П. Гассенди ввел понятие «молекула», которое обозначало соединение «атомов». Его соотечественник Ж. Рей установил: при прокаливании металлов их вес увеличивается. Англичане Р. Гук и Дж. Майов значительно обогнали время, сформулировав правильные представления о процессах горения и дыхания. Голландский естествоиспытатель Я. ван Гельмонт ввел термин «газ» (от греческого слова «хаос») и фактически впервые наблюдал выделение углекислого газа. Французский ученый Н. Лемерй написал первый фундаментальный учебник «Курс химии», в котором четко определил химию как искусство разделять различные вещества, содержащиеся в смешанных телах, существующих в природе,- минералах, растительных и животных телах.

Выдающегося английского естествоиспытателя Р. Бойля Фридрих Энгельс назвал создателем научной химии: «Бойль делает из химии науку». Книга Бойля, называвшаяся «Химик-спектик» (увидела свет в 1661 г.), критически пересматривала многие прежние химические воззрения. Главная заслуга ученого состояла в том, что он стал рассматривать химические элементы не как некие отвлеченные понятия, а как реально существующие минеральные вещества. Он считал: в действительности химических элементов может быть много - и тем самым нацеливал на их поиск в природе. Бойль дал и определение элементов как простых тел, не составленных друг из друга, а являющихся составными частями всех смешанных (сложных) тел. И наконец, Бойль широко ввел в практику химический анализ как главный метод изучения состава веществ. Бойля даже считают основоположником аналитической химии. Столетие спустя именно химико-аналитический метод стал приносить обильные плоды в виде большого числа открываемых химических элементов.

Анализ позволил химии решать одну из ее важнейших задач: изучать, что из чего состоит. Так возникло учение о составе химических соединений. Позднее возникли проблемы познания их свойств и строения. Этот классический «треугольник познания»: состав - строение - свойства определил основное содержание химии фактически вплоть до нашего времени.

На рубеже XVII и XVIII вв. немецкий химик Г. Шталь предложил так называемую теорию флогистона,- по существу, первую химическую теорию. Хотя она и оказалась ошибочной, но позволила систематизировать процессы горения и обжига (кальцинации) металлов, объяснив эти процессы с единой точки зрения. Шталь считал, что различные вещества и металлы содержат в своем составе особое «начало горючести» - флогистон. При прокаливании металлы теряли флогистон, превращаясь в оксиды, т. е. процессы окисления заключались в потере окислявшимися веществами флогистона. Напротив, в ходе процессов восстановления оксиды приобретали флогистон, вновь становясь металлами. Критика учения о флогистоне во многом способствовала развитию химического мышления.

Выдающимися достижениями русского ученого-эн-циклопедиста М. В. Ломоносова в области естествознания, и в частности химии, являются материалистическое толкование химических явлений, создание корпускулярной теории веществ, формулировка основополагающего закона природы - закона сохранения массы веществ и движения.

В середине XVIII в. на авансцену вышла так называемая пневматическая химия, изучавшая газы с химической точки зрения. Одним из выдающихся ее достижений стало открытие кислорода. Понимание его природы как самостоятельного газообразного химического элемента позволило А. Лавуазье развенчать концепцию флогистона и сформулировать кислородную теорию горения и дыхания. Вместе с крупными достижениями химического анализа это событие положило начало первой химической революции. Эту революцию трудно ограничить четкими временными рамками. В последние десятилетия XVIII в. начал развиваться количественный подход к изучению химических процессов, была разработана первая номенклатура химических названий; А. Лавуазье предложил «Таблицу простых тел», которая, по существу, стала первой систематикой известных к тому времени (1789) химических элементов.

Важнейшей составляющей первой химической революции стала атомистика Дж. Дальтона. В самом начале XIX в. он четко сформулировал основы атомистического учения: тождественность атомов одного и того же вещества; способность различных атомов соединяться в различных соотношениях; абсолютную неделимость атомов. Наконец, Дальтон ввел фундаментально важное понятие атомного веса, т. е. практически первый измеримый количественный параметр, характеризующий атом. Ф. Энгельс вполне справедливо полагал, что «новая эпоха начинается в химии с атомистики (следовательно, не Лавуазье, а Дальтон- отец современной химии)» (см. Атомно-моле-кулярное учение).

Первая химическая революция имела основным своим результатом создание атомно-молекулярного учения. Под его прямым и непосредственным влиянием проходило развитие химии на протяжении всего XIX столетия. Химия полностью обрела статус самостоятельной науки в ряду других естественных наук. Она создала свои специфические понятия и термины; ее практическое значение с каждым годом все отчетливее осознавалось; она становилась предметом преподавания во многих учебных заведениях. Во многих странах возникали химические общества, появлялись новые химические журналы.

К началу 1890-х гг. сформировалась та совокупность химических знаний, которая составила так называемую классическую химию. Она достаточно четко подразделялась на четыре фундаментальных раздела: неорганическую, органическую, физическую и аналитическую химии. К краеугольным камням классической химии относились, в частности, учение о периодичности; учение о строении органических соединений; учение о координационных соединениях; учение о валентности; учение о химическом процессе (включающее проблемы кинетики и катализа); учение о растворах (вместе с теорией электролитической диссоциации). Достаточное развитие получили аналитические методы. Таким «богатством» располагала химия на исходе XIX в. Но на пути ее дальнейшего развития вставали вполне определенные трудности и преграды.

Дело в том, что первая химическая революция уже в значительной степени исчерпала себя. Атомно-моле-кулярное учение достигло больших высот развития, но ведь никто не знал, как устроен атом. Никакой заслуживающей внимания модели его строения наука прошлого столетия предложить не могла. А без этого знания многие фундаментальные теории и идеи химии не могли получить необходимого объяснения и обоснования. В том числе учение Д. И. Менделеева о периодичности свойств элементов (см. Периодический закон химических элементов), химического строения теория А. М. Бутлерова. Поэтому становилась неизбежной новая, вторая революция в химии. Ее основное содержание составила разработка учения об атоме (см. Атом). Оно стало своеобразным «знаменем» новейшей химии, химической науки XX в., подобно тому как компасом химии прошлого века было атомно-молекулярное учение.

Попробуем теперь вкратце охарактеризовать основные особенности новейшей химии. Что же представляет ныне эта область человеческого знания?

Первая отличительная черта новейшей химии - химия оказывается мощной «производительной силой». И не в том очевидном смысле, что она производит обширный ассортимент самых разнообразных практически важных продуктов. Она синтезирует, извлекает из природного сырья, растительных и животных организмов огромное количество новых химических соединений. Тем самым химия порождает непрерывно и в массовом масштабе объекты своего исследования, и, видимо, о каких-либо пределах получения новых соединений нет смысла ставить вопрос. Каждую неделю становятся известными более десятка не известных ранее химических индивидуумов. Правда, лишь очень немногие «новорожденные» соединения получают путевку в практику: в основном они имеют теоретический интерес. Но вот что особенно важно: получение новых соединений проводится, как правило, по заранее разработанному плану. Исследователь уже заранее, хотя бы в общих чертах, видит цель эксперимента.

С этой чертой связана весьма тесно вторая черта новейшей химии - решение задачи получения веществ с заранее заданными свойствами. Такими, которые характеризуются необходимыми параметрами, удовлетворяющими определенным потребностям практики. Конечно, даже на заре своего существования химия преследовала цели извлечения и получения веществ, практически ценных. Но все это делалось, разумеется, ощупью: достаточная осмысленность начала приобретаться в XIX в. Ныне поставленная задача решается с начала до конца осмысленно: выбираются наиболее рациональные методы синтеза и способы проведения эксперимента; при предварительных расчетах нередко прибегают к помощи ЭВМ. Между прочим, без широкого получения веществ с заданными свойствами современная научно-техническая революция не могла бы развиваться столь стремительно...

Однако, очевидно,- говорим мы о синтезе «просто» веществ или веществ с необходимыми свойствами - сама постановка задачи должна широко опираться на теорию. На самую современную строгую научную теорию, притом такую, которая дает реальные возможности прогнозировать. А отсюда - третья характерная черта новейшей химии - наличие у нее фундаментальных теоретических основ. Одна из основ - учение о строении атома и химической связи с многочисленными следствиями. Теоретический аппарат химии включает также многоплановое учение о химическом процессе, объединившее в себе современные представления о химической кинетике, катализе и реакционной способности. Без широчайшего использования физических и математических знаний современному химику делать нечего. Ныне сплошь да рядом говорят о «физикализации» и «математизации» химии. А это означает, что новейшая химия, безусловно, может быть отнесена к разряду точных наук. Кстати, само возникновение новейшей химии нередко связывают с появлением и стремительным развитием квантовомеханических методов исследования (см. Квантовая химия).

Химия начала процесс своего осознания с анализа минералов. Фактически вся история классической и новейшей химии - это история становления и развития самых разнообразных аналитических методов: химических, физико-химических и физических. Высокой чувствительности достиг спектральный анализ в самых разных своих направлениях и приложениях. Следы примесей в исследуемых материалах позволяет определять радиоактивационный анализ. В арсеналах лабораторий - методы ЭПР (электронного парамагнитного резонанса), ЯМР (ядерного магнитного резонанса), радиоспектроскопия, масс-спектроскопия, спектрофотометрия. Этот перечень не составляет труда продолжить. Названные методы позволяют изучать тончайшие особенности строения молекул и механизмов протекания химических реакций. С каждым годом химия становится все более и более «зрячей». И отсюда следует четвертая черта новейшей химии - широкое использование аналитических методов. Ученые затрудняются дать вполне однозначное определение аналитической химии, настолько всеобъемлющей и всепроникающей научной дисциплиной стала она в наше время.

В новом свете ныне предстают и три других фундаментальных раздела химической науки: неорганическая, органическая и физическая химия. Все более и более размываются границы между неорганикой и органикой. Вот два обширных класса химических соединений: элементоорганические и координационные. Их количество стремительно возрастает. Между тем многие из них не так-то просто отнести к неорганическим или органическим. Химики-органики включают в сферу своих интересов все большее число элементов. В то же время неорганики синтезируют постоянно новые координационные соединения с органическими лигандами. Многие аналитические методы с одинаковым успехом используются в обоих фундаментальных разделах химии.

Наблюдается дифференциация (дробление) химии на отдельные самостоятельные химические дисциплины - и в этом состоит пятая характерная черта новейшей химической науки. Современная неорганическая химия включает в себя «химии» как отдельных элементов, так и их совокупностей. Привычными стали, например, понятия: химия азота, химия фосфора, химия фтора, химия урана; исследования некоторых наиболее важных элементов достигли такого размаха, что оформились в самостоятельные подразделы неорганической химии. А ведь есть еще химия редких элементов и химия редкоземельных элементов, химия трансурановых элементов и химия инертных газов. Наконец, обрели самостоятельность и направления, изучающие отдельные классы неорганических соединений,- химия гидридов, химия карбидов и т. д.

Еще более «пестрая» картина в органической химии. Назовем белки, жиры, углеводы, ароматические и алифатические соединения, насыщенные и ненасыщенные соединения, ферменты и гормоны, терпены и полимеры. У каждого класса из этих соединений - своя, самостоятельная химия.

Дифференциация химии - веяние времени. Объем накапливаемой химической информации поражал воображение еще в середине прошлого века. Ныне он поистине безбрежен. Поэтому даже самый высокоодаренный химик не может быть специалистом-химиком «широкого профиля», как это было присуще некоторым величайшим ученым в первой половине XIX в. Он даже не может «охватить» всю органику или неорганику. Даже в отдельной химической дисциплине он не всегда одинаково уверенно ориентируется от А до Я. А потому узкая специализация в новейшей химии, как и вообще в науке, неизбежна.

Мы не сказали еще о физической химии. Как фундаментальная химическая наука, она оформилась в 1880-х гг., объединив в себе такие направления исследований, как электрохимия, термохимия, учение о кинетике, учение о катализе, учение о растворах наряду с развившимся теоретическим аппаратом химической термодинамики. В XX в. она также испытала процесс дифференциации, когда от классических дисциплин физической химии отпочковывались новые. Но в то же время возникли и совершенно новые: радиохимия, радиационная химия, плазмохимия и ряд других. Физическую химию иногда считают плодом тесного взаимодействия, интеграции химии и физики. С этим представлением нельзя целиком согласиться. Однако процесс взаимопроникновения естественных наук в нашем столетии развивался интенсивно. Примером такого рода «интегрированных» наук могут служить биохимия, геохимия, биогеохимия, космохимия. Поэтому тенденцию химии вкладывать накопленные ею знания в развитие других наук можно рассматривать как еще одну, шестую ее характерную черту.

Как и другие области знаний, химия переживает информационный взрыв. Объем новой химической информации возрастает прямо-таки в геометрической прогрессии. В настоящее время в мире выходит более 250 химических журналов, которые публикуют результаты, достигнутые химиками разных стран. Сведения о достижениях химии публикуются и в журналах более общего профиля. Издаются многие сотни монографий по химии. Чуть ли не каждую неделю происходят съезды и конференции по различным химическим проблемам. Чтобы как-то облегчить исследователям ознакомление с информацией по химии, во многих странах мира выходят специальные реферативные журналы. Все большую роль играет компьютерная обработка информации.

Вот, пожалуй, основные особенности химической науки нашего времени. Науки, без которой немыслима современная цивилизация. Науки, которая кормит, поит, одевает, обувает, строит, добывает полезные ископаемые, позволяет покорять космос и опускаться на дно океана, создавать материалы, которые не знает природа. В содружестве с другими науками она помогает все глубже постигать тайны мироздания.

Душу химии составляют химические реакции. Они протекают в различных условиях. Одни - на холоде, другие - при комнатной температуре, третьи - при небольшом нагревании, четвертые - при высоких температурах. Одни реакции происходят мгновенно, иногда со взрывом. Другие в обычных условиях или вообще не идут, или протекают чрезвычайно медленно, но их можно ускорить с помощью катализаторов. В перечне современных химических дисциплин не могут быть не упомянуты такие, как химия высоких температур и химия низких температур. Они изучают химические процессы, происходящие в экстремальных условиях: с одной стороны - десятки тысяч градусов, с другой - температуры, близкие к абсолютному нулю. Частью новейшей химии является химия плазмы: здесь предмет химического исследования - четвертое состояние вещества. Мы можем назвать, далее, химию высоких давлений. Именно на этом направлении исследований были приготовлены искусственные алмазы, получено такое удивительное вещество, как водород в металлическом состоянии.

Химия оперирует различными материальными структурами. На одном «полюсе» - огромные, состоящие из многих тысяч атомов молекулы, например молекулы белков; на другом - единичные атомы химических элементов, которые к тому же имеют чрезвычайно малую продолжительность жизни,- атомы синтезированных тяжелых трансурановых элементов. На одном «полюсе» - простейшая молекула водорода, на другом - сложнейшая по структуре молекула инсулина... Поистине химия выглядит наукой контрастов.

Классической химия становилась во многом благодаря самой себе, своим собственным теоретическим представлениям, идеям и понятиям. Новейшая химия своим возникновением и развитием существенно обязана физике. Прежде всего физическому учению о строении атома. Нередко утверждают, что химия ныне вообще не должна рассматриваться как самостоятельная наука. Что она не более, чем раздел физики. На чем основано это утверждение? На том, что в основе механизмов любых химических процессов лежат физические закономерности. Ведь даже самая простая реакция - это в конечном счете перераспределение электронов между участвующими в ней атомами. А описывается это перераспределение языком физики, понятиями квантовой механики (см. Квантовая химия). Все это трудно оспаривать. Но мир химических превращений и явлений настолько сложен, ярок, многообразен и беспределен, что свести его к попыткам объяснения через физические реалии и математические уравнения было бы совершенно неоправданным упрощением, «выхолащиванием» вечно юной души науки химии. Ведь это то же самое, что свести очарование какого-нибудь музыкального

произведения к совокупности математических уравнений, описывающих колебания воздуха, вызываемые звуками музыкального инструмента.

Конечно, физика и впредь будет помогать химии глубже познавать природу вещей и процессов, на своем языке объяснять открываемые ею законы и закономерности. Но она не отнимет у химии ее важнейшей цели - получения новых фактов и сведений о свойствах химических элементов и их соединений и разработки методов получения бесконечного множества новых веществ и материалов.

Относительная молекулярная масса - масса (а. е. м.) 6,02 × 10 23 молекул сложного вещества. Численно равна молярной массе, но отличается размерностью.

  1. Атомы в молекулах соединены друг с другом в определённой последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.
  2. Соединение атомов происходит в соответствии с их валентностью.
  3. Свойства веществ зависят не только от их состава, но и от «химического строения», то есть от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют друг на друга атомы, непосредственно связанные между собой.

Тепловой эффект реакции - это теплота, которая выделяется или поглощается системой при течении в ней химической реакции. В зависимости от того, происходит реакция с выделением теплоты или сопровождается поглощением теплоты, различают экзо-и эндотермические реакции. К первым, как правило, относятся все реакции соединения, а ко вторым - реакции разложения.

Скорость химической реакции - изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства.

Внутренняя энергия системы - суммарная энергия внутренней системы, включающая энергию взаимодействия и движения молекул, атомов, ядер, электронов в атомах, внутриядерную и другие виды энергии, кроме кинетической и потенциальной энергии системы, как целого.

Стандартная энтальпия (теплота) образования сложного вещества - тепловой эффект реакции образования 1 моля этого вещества из простых веществ, находящихся в устойчивом агрегатном состоянии при стандартных условиях (= 298 К и давлении 101 кПа).

ХИМИЯ

наука, изучающая строение в-в и их превращения, сопровождающиеся изменением состава и(или) строения. Хим. св-ва в-в (их превращения; см. Реакции химические )определяются гл. обр. состоянием внеш. электронных оболочек атомов и молекул, образующих в-ва; состояния ядер и внутр. электронов в хим. процессах почти не изменяются. Объектом хим. исследований являются элементы химические и их комбинации, т. е. атомы, простые (одноэлементные) и сложные (молекулы, ион-радикалы, карбены, свободные радикалы) хим. соед., их объединения (ассоциаты, сольваты, и т. п.), материалы и др. Число хим. соед. огромно и все время увеличивается; поскольку X. сама создает свой объект; к кон. 20 в. известно ок. 10 млн. хим. соединений.
X. как наука и отрасль пром-сти существует недолго (ок. 400 лет). Однако хим. знание и хим. практика (как ремесло) прослеживаются в глубинах тысячелетий, а в примитивной форме они появились вместе с человеком разумным в процессе его взаимод. с окружающей средой. Поэтому строгая дефиниция X. может основываться на широком, вневременном универсальном смысле - как области естествознания и человеческой практики, связанной с хим. элементами и их комбинациями.
Слово "химия" происходит либо от наименования Древнего Египта "Хем" ("темный", "черный" - очевидно, по цвету почвы в долине реки Нил; смысл же назв.- "египетская наука"), либо от древнегреч. chemeia - искусство выплавки металлов. Совр. назв. X. производится от позднелат. chimia и является интернациональным, напр. нем. Chemie, франц. chimie, англ. chemistry. Термин "X." впервые употребил в 5 в. греч. алхимик Зосима.

История химии. Как основанная на опыте практика, X. возникла вместе с зачатками человеческого общества (использование огня, приготовление пищи, дубление шкур) и в форме ремесел рано достигла изощренности (получение красок и эмалей, ядов и лекарств). Вначале человек использовал хим. изменения биол. объектов ( , гниение), а с полным освоением огня и горения - хим. процессы спекания и сплавления (гончарное и стекольное произ-ва), выплавку металлов. Состав древнеегипетского стекла (4 тыс. лет до н. э.) существенно не отличается от состава совр. бутылочного стекла. В Египте уже за 3 тыс. лет до н. э. выплавляли в больших кол-вах , используя уголь в качестве восстановителя (самородная медь применялась с незапамятных времен). Согласно клинописным источникам, развитое произ-во железа, меди, серебра и свинца существовало в Месопотамии также за 3 тыс. лет до н. э. Освоение хим. процессов произ-ва меди и , а затем и железа являлось ступенями эволюции не только металлургии, но цивилизации в целом, изменяло условия жизни людей, влияло на их устремления.
Одновременно возникали и теоретич. обобщения. Напр., китайские рукописи 12 в. до н. э. сообщают о "теоретич." построениях систем "основных элементов" ( , огонь, дерево, и земля); в Месопотамии родилась идея рядов пар противоположностей, взаимод. к-рых "составляют мир": мужское и женское, тепло и холод, влага и сухость и т. д. Очень важной была идея (астрологич. происхождения) единства явлений макрокосма и микрокосма.
К концептуальным ценностям относится и атомистич. учение, к-рое было развито в 5 в. до н. э. древнегреч. философами Левкиппом и Демокритом. Они предложили аналоговую семантич. модель строения в-ва, имеющую глубокий комбинаторный смысл: комбинации по определенным правилам небольшого числа неделимых элементов (атомов и букв) в соединения (молекулы и слова) создают информационное богатство и разнообразие (в-ва и языки).
В 4 в. до н. э. Аристотель создал хим. систему, основанную на "принципах": сухость - и холод - тепло, с помощью попарных комбинаций к-рых в "первичной материи" он выводил 4 основных элемента (земля, вода и огонь). Эта система почти без изменений просуществовала 2 тыс. лет.
После Аристотеля лидерство в хим. знании постепенно перешло из Афин в Александрию. С этого времени создаются рецептуры получения хим. в-в, возникают "учреждения" (как храм Сераписа в Александрии, Египет), занимающиеся деятельностью, к-рую позже арабы назовут "аль-химия".
В 4-5 вв. хим. знание проникает в Малую Азию (вместе с несторианством), в Сирии возникают философские школы, транслировавшие греч. натурфилософию и передавшие хим. знание арабам.
В 3-4 вв. возникла алхимия - философское и культурное течение, соединяющее мистику и магию с ремеслом и искусством. Алхимия внесла значит. вклад в лаб. мастерство и технику, получение многих чистых хим. в-в. Алхимики дополнили элементы Аристотеля 4 началами (масло, влажность, и сера); комбинации этих мистич. элементов и начал определяли индивидуальность каждого в-ва. Алхимия оказала заметное влияние на формирование западноевропейской культуры (соединение рационализма с мистикой, познания с созиданием, специфич. культ золота), но не получила распространения в др. культурных регионах.
Джабир ибн Хайян, или по-европейски Гебер, Ибн Сина (Авиценна), Абу-ар-Рази и др. алхимики ввели в хим. обиход (из мочи), порох, мн. , NaOH, HNO 3 . Книги Гебера, переведенные на латынь, пользовались огромной популярностью. С 12 в. арабская алхимия начинает терять практич. направленность, а с этим и лидерство. Проникая через Испанию и Сицилию в Европу, она стимулирует работу европейских алхимиков, самыми известными из к-рых были Р. Бэкон и Р. Луллий. С 16 в. развивается практич. европейская алхимия, стимулированная потребностями металлургии (Г. Агрикола) и медицины (Т. Парацельс). Последний основал фармакологич. отрасль химии - ятрохимиюи вместе с Агриколой выступал фактически как первый реформатор алхимии.
X. как наука возникла в ходе научной революции 16-17 вв., когда в Западной Европе возникла новая цивилизация в результате череды тесно связанных революций: религиозной (Реформация), давшей новое толкование богоугодности земных дел; научной, давшей новую, механистич. картину мира (гелиоцентризм, бесконечность, подчиненность естественным законам, описание на языке математики); промышленной (возникновение фабрики как системы машин с использованием энергии ископаемого ); социальной (разрушение феодального и становление буржуазного общества).
X., вслед за физикой Г. Галилея и И. Ньютона, могла стать наукой лишь на пути механицизма, к-рый задал основные нормы и идеалы науки. В X. это было гораздо сложнее, чем в физике. Механика легко абстрагируется от особенностей индивидуального объекта. В X. каждый частный объект (в-во) - индивидуальность, качественно отличная от других. X. не могла выразить свой предмет чисто количественно и на всем протяжении своей истории оставалась мостом между миром количества и миром качества. Однако надежды антимеханицистов (от Д. Дидро до В. Оствальда) на то, что X. заложит основы иной, немеханистич. науки, не оправдались, и X. развивалась в рамках, определенных ньютоновской картиной мира.
Более двух веков X. вырабатывала представление о материальной природе своего объекта. Р. Бойль, заложивший основы рационализма и эксперим. метода в X., в своем труде "Химик-скептик" (1661) развил представления о хим. атомах (корпускулах), различия в форме и массе к-рых объясняют качества индивидуальных в-в. Атомистич. представления в X. подкреплялись идеологич. ролью атомизма в европейской культуре: человек-атом - модель человека, положенная в основу новой социальной философии.
Металлургич. X., имевшая дело с р-циями горения, окисления и восстановления, кальцинации - прокаливания металлов (X. называли пиротехнией, т. е. огненным искусством) -привлекла внимание к образующимся при этом газам. Я. ван Гельмонт, введший понятие "газ" и открывший (1620), положил начало пневматич. химии. Бойль в работе "Огонь и пламя, взвешенные на весах" (1672), повторяя опыты Ж. Рея (1630) по увеличению массы металла при обжиге, пришел к выводу, что это происходит за счет "захвата металлом весомых частиц пламени". На границе 16-17 вв. Г. Шталь формулирует общую теорию X. - теорию флогистона (теплорода, т. е. "в-ва горючести", удаляющегося с помощью воздуха из в-в при их горении), к-рая освободила X. от продержавшейся 2 тыс. лет системы Аристотеля. Хотя М. В. Ломоносов, повторив опыты по обжигу, открыл закон сохранения массы в хим. р-циях (1748) и смог дать правильное объяснение процессам горения и окисления как взаимод. в-ва с частицами воздуха (1756), познание горения и окисления было невозможно без развития пневматич. химии. В 1754 Дж. Блэк открыл (повторно) углекислый газ ("фиксированный воздух"); Дж. Пристли (1774) - , Г. Кавендиш (1766) - ("горючий воздух"). Эти открытия дали всю информацию, необходимую для объяснения процессов горения, окисления и дыхания, что и сделал А. Лавуазье в 1770-90-х гг., фактически похоронив этим теорию флогистона и стяжав себе славу "отца современной X.".
К нач. 19 в. пневматохимия и исследования состава в-в приблизили химиков к пониманию того, что хим. элементы соединяются в определенных, эквивалентных соотношениях; были сформулированы законы постоянства состава (Ж. Пруст, 1799-1806) и объемных отношений (Ж. Гей-Люс-сак, 1808). Наконец, Дж. Дальтон, наиб. полно изложивший свою концепцию в сочинении "Новая система химической философии" (1808-27), убедил современников в существовании атомов, ввел понятие атомного веса (массы) и возвратил к жизни понятие элемента, но уже в совсем ином смысле -как совокупности атомов одного вида.
Гипотеза А. Авогадро (1811, принята научным сообществом под влиянием С. Канниццаро в 1860) о том, что частицы простых газов представляют собой молекулы из двух одинаковых атомов, разрешила целый ряд противоречий. Картина материальной природы хим. объекта была завершена с открытием периодич. закона хим. элементов (Д. И. Менделеев, 1869). Он связал количеств. меру () с качеством (хим. св-ва), вскрыл смысл понятия хим. элемент, дал химику теорию большой предсказательной силы. X. стала совр. наукой. Периодич. закон узаконил собственное место X. в системе наук, разрешив подспудный конфликт хим. реальности с нормами механицизма.
Одновременно шел поиск причин и сил хим. взаимодействия. Возникла дуалистич. (электрохим.) теория (И. Берцелиус, 1812-19); введены понятия " " и "хим. связь", к-рые наполнились физ. смыслом с развитием теории строения атома и квантовой X. Им предшествовали интенсивные исследования орг. в-в в 1-й пол. 19 в., приведшие к разделению X. на 3 части: неорганическая химия, органическая химия и аналитическая химия (до 1-й пол. 19 в. последняя была основным разделом X.). Новый эмпирич. материал (р-ции замещения) не укладывался в теорию Берцелиуса, поэтому были введены представления о группах атомов, действующих в р-циях как целое - радикалах (Ф. Вёлер, Ю. Либих, 1832). Эти представления были развиты Ш. Жераром (1853) в теорию типов (4 типа), ценность к-рой состояла в том, что она легко связывалась с концепцией валентности (Э. Франкленд, 1852).
В 1-й пол. 19 в. было открыто одно из важнейших явлений X. - катализ (сам термин предложен Берцелиусом в 1835), очень скоро нашедшее широкое практич. применение. В сер. 19 в. наряду с важными открытиями таких новых в-в (и классов), как и красители (В. Перкин, 1856), были выдвинуты важные для дальнейшего развития X. концепции. В 1857-58 Ф. Кекуле развил теорию валентности применительно к орг. в-вам, установил четырехвалентность углерода и способность его атомов связываться друг с другом. Этим был проложен путь теории хим. строения орг. соед. (структурной теории), построенной А. М. Бутлеровым (1861). В 1865 Кекуле объяснил природу ароматич. соед. Я. Вант-Гофф и Ж. Ле Бель, постулировав тетраэдрич. структуры (1874), проложили путь трехмерному взгляду на структуру в-ва, заложив основы стереохимии как важного раздела Х.
В сер. 19 в. одновременно было положено начало исследованиям в области кинетики химической и термохимии. Л. Вильгельми изучил кинетику гидролиза углеводов (впервые дав ур-ние скорости гидролиза; 1850), а К. Гульдберг и П. Вааге в 1864-67 сформулировали закон действующих масс. Г. И. Гесс в 1840 открыл основной закон термохимии, М. Бертло и В. Ф. Лугинин исследовали теплоты мн. р-ций. В это же время развиваются работы по коллоидной химии, фотохимии и электрохимии, начало к-рым было положено еще в 18 в.
Работами Дж. Гиббса, Вант-Гоффа, В. Нернста и др. создается химическая . Исследования электропроводности р-ров и электролиза привели к открытию электролитич. диссоциации (С. Аррениус, 1887). В этом же году Оствальд и Вант-Гофф основали первый журнал, посвященный физической химии, и она оформилась как самостоятельная дисциплина. К сер. 19 в. принято относить зарождение агрохимии и биохимии, особенно в связи с пионерскими работами Либиха (1840-е гг.) по изучению ферментов, белков и углеводов.
19 в. по праву м. б. назван веком открытий хим. элементов. За эти 100 лет было открыто более половины (50) существующих на Земле элементов. Для сравнения: в 20 в. открыто 6 элементов, в 18 в.- 18, ранее 18 в.- 14.
Выдающиеся открытия в физике в кон. 19 в. (рентгеновские лучи, электрон) и развитие теоретич. представлений (квантовая теория) привели к открытию новых (радиоактивных) элементов и явления изотопии, возникновению радиохимии и квантовой химии, новым представлениям о строении атома и о природе хим. связи, дав начало развитию совр. X. (химии 20 в.).
Успехи X. 20 в. связаны с прогрессом аналит. X. и физ. методов изучения в-в и воздействия на них, проникновением в механизмы р-ций, с синтезом новых классов в-в и новых материалов, дифференциацией хим. дисциплин и интеграцией X. с другими науками, с удовлетворением потребностей совр. пром-сти, техники и технологии, медицины, строительства, сельского хозяйства и др. сфер человеческой деятельности в новых хим. знаниях, процессах и продуктах. Успешное применение новых физ. методов воздействия привело к формированию новых важных направлений X., напр. радиационной химии, плазмохимии. Вместе с X. низких температур ( криохимией )и X. высоких давлений (см. Давление), сонохимией (см. Ультразвук), лазерной химией и др. они стали формировать новую область - X. экстремальных воздействий, играющую большую роль в получении новых материалов (напр., для электроники) или старых ценных материалов сравнительно дешевым синтетич. путем (напр., алмазов или нитридов металлов).
На одно из первых мест в X. выдвигаются проблемы предсказания функциональных св-в в-ва на основе знания его структуры и определения структуры в-ва (и его синтез), исходя из его функционального назначения. Решение этих проблем связано с развитием расчетных квантово-хим. методов и новых теоретич. подходов, с успехами в неорг. и орг. синтезе. Развиваются работы по генной инженерии и по синтезу соед. с необычными строением и св-вами (напр., высокотемпературные сверхпроводники, ). Все шире применяются методы, основанные на матричном синтезе, а также использующие идеи планарной технологии. Получают дальнейшее развитие методы, моделирующие биохим. р-ции. Успехи спектроскопии (в т. ч. сканирующей туннельной) открыли перспективы "конструирования" в-в на мол. уровне, привели к созданию нового направления в X. - т. наз. нанотехнологии. Для управления хим. процессами как в лаб., так и в пром. масштабе, начинают использоваться принципы мол. и надмол. организации ансамблей реагирующих молекул (в т. ч. подходы, основанные на термодинамике иерархических систем).
Химия как система знания о в-вах и их превращениях. Это знание содержится в запасе фактов - надежно установленных и проверенных сведений о хим. элементах и соед., их р-циях и поведении в природных и искусств. средах. Критерии надежности фактов и способы их систематизации постоянно развиваются. Крупные обобщения, надежно связывающие большие совокупности фактов, становятся научными законами, формулировка к-рых открывает новые этапы X. (напр., законы сохранения массы и энергии, законы Дальтона, периодич. закон Менделеева). Теории, используя специфич. понятия, объясняют и прогнозируют факты более частной предметной области. По сути, опытное знание становится фактом только тогда, когда получает теоретич. толкование. Так, первая хим. теория - теория флогистона, будучи неверной, способствовала становлению X., т. к. соединяла факты в систему и позволяла формулировать новые вопросы. Структурная теория (Бутлеров, Кекуле) упорядочила и объяснила огромный материал орг. X. и обусловила быстрое развитие хим. синтеза и исследования структуры орг. соединений.
X. как знание - система очень динамичная. Эволюционное накопление знаний прерывается революциями - глубокой перестройкой системы фактов, теорий и методов, с возникновением нового набора понятий или даже нового стиля мышления. Так, революцию вызвали труды Лавуазье (матери-алистич. теория окисления, внедрение количеств. методов эксперимента, разработка хим. номенклатуры), открытие периодич. закона Менделеева, создание в нач. 20 в. новых аналит. методов (микроанализ, ). Революцией можно считать и появление новых областей, вырабатывающих новое видение предмета X. и влияющих на все ее области (напр., возникновение физ. X. на базе хим. термодинамики и хим. кинетики).
Хим. знание обладает развитой структурой. Каркас X. составляют основные хим. дисциплины, сложившиеся в 19 в.: аналит., неорг., орг. и физ. X. В дальнейшем в ходе эволюции структуры А. образовалось большое число новых дисциплин (напр., кристаллохимия), а также новая инженерная отрасль - химическая технология.
На каркасе дисциплин вырастает большая совокупность исследовательских областей, часть из к-рых входит в ту или иную дисциплину (напр., X. элементоорг. соед.- часть орг. X.), другие носят многодисциплинарный характер, т. е. требуют объединения в одном исследовании ученых из разных дисциплин (напр., исследование структуры биополимеров с использованием комплекса сложных методов). Третьи являются междисциплинарными, т. е. требуют подготовки специалиста нового профиля (напр., X. нервного импульса).
Поскольку почти вся практич. деятельность людей связана с применением материи как в-ва, хим. знание необходимо во всех областях науки и технологии, осваивающих материальный мир. Поэтому сегодня X. стала, наравне с математикой, хранилищем и генератором такого знания, к-рое "пропитывает" почти всю остальную науку. То есть, выделяя X. как совокупность областей знания, можно говорить и о хим. аспекте большинства других областей науки. На "границах" X. существует множество гибридных дисциплин и областей.
На всех этапах развития как науки X. испытывает мощное воздействие физ. наук - сначала ньютоновской механики, потом термодинамики, атомной физики и квантовой механики. Атомная физика дает знание, входящее в фундамент X., раскрывает смысл периодич. закона, помогает понять закономерности распространенности и распределения хим. элементов во Вселенной, чему посвящены ядерная астрофизика и космохимия.
Фундам. влияние оказала на X. термодинамика, устанавливающая принципиальные ограничения на возможность протекания хим. р-ций (хим. термодинамика). X., весь мир к-рой был изначально связан с огнем, быстро освоила термодинамич. способ мышления. Вант-Гофф и Аррениус связали с термодинамикой исследование скорости р-ций (кинетику) -X. получила совр. способ изучения процесса. Изучение хим. кинетики потребовало привлечения многих частных физ. дисциплин для понимания процессов переноса в-в (см., напр., Диффузия, Массообмен ).Расширение и углубление математизации (напр., применение мат. моделирования, графов теории )позволяет говорить о формировании мат. X. (ее предсказал Ломоносов, назвав одну из своих книг "Элементы математической химии").

Язык химии. Система информации. Предмет X.- элементы и их соед., хим. взаимод. этих объектов - обладает огромным и быстро растущим разнообразием. Соответственно сложен и динамичен язык л. Его словарь включает назв. элементов, соединений, хим. частиц и материалов, а также понятия, отражающие структуру объектов и их взаимодействие. Язык X. имеет развитую морфологию - систему префиксов, суффиксов и окончаний, позволяющих выразить качественное многообразие хим. мира с большой гибкостью (см. Номенклатура химическая). Словарь X. переведен на язык символов (знаков, ф-л, ур-ний), к-рые позволяют заменить текст очень компактным выражением или зрительным образом (напр., пространств. модели). Создание научного языка X. и способа записи информации (прежде всего на бумаге) - один из великих интеллектуальных подвигов европейской науки. Международное сообщество химиков сумело наладить конструктивную всемирную работу в столь противоречивом деле, как выработка терминологии, классификации и номенклатуры. Было найдено равновесие между обыденным языком, историческими (тривиальными) названиями хим. соединений и их строгими формульными обозначениями. Создание языка X.- удивительный пример сочетания очень высокой мобильности и прогресса с устойчивостью и преемственностью (консерватизмом). Совр. хим. язык позволяет очень коротко и однозначно записывать огромный объем информации и обмениваться ею между химиками всего мира. Созданы машиночитаемые версии этого языка. Многообразие объекта X.и сложность языка делают информационную систему X. наиб. крупной и изощренной во всей науке. Ее основу составляют химические журналы, а также монографии, учебники, справочники. Благодаря рано возникшей в X. традиции международной координации, более века назад сложились нормы описания хим. в-в и хим. р-ций и положено начало системы периодически пополняющихся указателей (напр., указатель орг. соед. Бейльштейна; см. также Химические справочники и энциклопедии). Огромные масштабы хим. литературы уже 100 лет назад побудили искать способы ее "сжатия". Возникли реферативные журналы (РЖ); после 2-й мировой войны в мире издавалось два максимально полных РЖ: "Chemical Abstracts" и "РЖ Химия". На базе РЖ развиваются автоматизир. информационно-поисковые системы.

Химия как социальная система - крупнейшая часть всего сообщества ученых. На формирование химика как типа ученого оказали влияние особенности объекта его науки и способа деятельности (хим. эксперимента). Трудности мат. формализации объекта (по сравнению с физикой) и в то же время многообразие чувственных проявлений (запах, цвет, биол. и др. ) с самого начала ограничивали господство механицизма в мышлении химика и оставляли значит. поле для интуиции и артистизма. Кроме того, химик всегда применял инструмент немеханич. природы - огонь. С другой стороны, в отличие от устойчивых, данных природой объектов биолога, мир химика обладает неисчерпаемым и быстро нарастающим многообразием. Неустранимая таинственность нового в-ва придала мироощущению химика ответственность и осторожность (как социальный тип химик консервативен). Хим. лаборатория выработала жесткий механизм "естественного отбора", отторжения самонадеянных и склонных к ошибкам людей. Это придает своеобразие не только стилю мышления, но и духовно-нравственной организации химика.
Сообщество химиков состоит из людей, профессионально занимающихся X. и относящих самих себя к этой области. Примерно половина из них работает, однако, в других областях, обеспечивая их хим. знанием. Кроме того, к ним примыкает множество ученых и технологов - в большой мере химиков, хотя уже и не относящих себя к химикам (освоение навыков и умений химика учеными других областей затруднено из-за указанных выше особенностей предмета).
Как и любое другое сплоченное сообщество, химики имеют свой профессиональный язык, систему воспроизводства кадров, систему коммуникаций [журналы, конгрессы и т. д.], свою историю, свои культурные нормы и стиль поведения.

Методы исследования. Особая область хим. знания - методы хим. эксперимента (анализа состава и структуры, синтеза хим. в-в). А.- наиб. ярко выраженная эксперим. наука. Набор навыков и приемов, к-рыми должен владеть химик, очень широк, а комплекс методов быстро растет. Поскольку методы хим. эксперимента (особенно анализа) используются почти во всех областях науки, X. разрабатывает технологии для всей науки и объединяет ее методически. С другой стороны, X. проявляет очень высокую восприимчивость к методам, рожденным в др. областях (прежде всего физике). Ее методы носят в высшей степени междисциплинарный характер.
В исследоват. целях в X. используется огромный набор способов воздействия на в-во. Вначале это были термич., хим. и биол. воздействия. Затем добавились высокие и низкие давления, мех., магн. и электрич. воздействия, потоки ионов кэлементарных частиц, лазерное излучение и др. Сейчас все больше этих способов проникает в технологию произ-ва, что открывает новый важный канал связи науки с произ-вом.

Организации и учреждения. Хим. исследования - особый тип деятельности, выработавший соответствующую систему организаций и учреждений. Особым типом учреждения стала хим. лаборатория, устройство к-рой отвечает основным ф-ци-ям, выполняемым в коллективе химиков. Одну из первых лабораторий создал Ломоносов в 1748, на 76 лет раньше, чем хим. лаборатории появились в США. Пространств. строение лаборатории и ее оборудование позволяют хранить и использовать большое число приборов, инструментов и материалов, в т. ч. потенциально очень опасных и несовместимых между собой (легко воспламеняющихся, взрывчатых и ядовитых).
Эволюция методов исследования в X. привела к дифференциации лабораторий и выделению множества методич. лабораторий и даже приборных центров, к-рые специализируются на обслуживании большого числа коллективов химиков (анализы, измерения, воздействие на в-во, расчеты и т. д.). Учреждением, объединяющим работающие в близких областях лаборатории, с кон. 19 в. стал исследоват. ин-т (см. Химические институты). Очень часто хим. ин-т имеет опытное произ-во - систему полупром. установок для изготовления небольших партий в-в и материалов, их испытания и отработки технол. режимов.
Подготовка химиков ведется на хим. факультетах университетов или в специализир. высших учебных заведениях, к-рые отличаются от других большой долей практикума и интенсивным использованием демонстрационных опытов в теоретич. курсах. Разработка хим. практикумов и лекционных опытов - особый жанр хим. исследований, педагогики и во многом искусства. Начиная с сер. 20 в. подготовка химиков стала выходить за рамки вуза, охватывать более ранние возрастные группы. Возникли специализир. хим. средние школы, кружки и олимпиады. В СССР и России была создана одна из лучших в мире систем доинститутской хим. подготовки, развит жанр популярной хим. литературы.
Для хранения и передачи хим. знания существует сеть издательств, библиотек и информационных центров. Особый тип учреждений X. составляют национальные и международные органы управления и координации всей деятельностью в этой сфере - государственные и общественные (см., напр., Международный союз теоретической и прикладной химии).
Система учреждений и организаций X.- сложный организм, к-рый "выращивался" 300 лет и во всех странах рассматривается как большое национальное достояние. Лишь две страны в мире обладали целостной системой организации X. по структуре знания и по структуре ф-ций - США и СССР.

Химия и общество. X.- наука, диапазон отношений к-рой с обществом всегда был очень широк - от восхищения и слепой веры ("химизация всего народного хозяйства") до столь же слепого отрицания ("нитратный" бум) и хемофобии. На X. был перенесен образ алхимика - мага, скрывающего свои цели и обладающего непонятной силой. Яды и порох в прошлом, нервно-паралитич. и психотропные в-ва сегодня -эти инструменты власти обьщенное сознание ассоциирует с X. Поскольку хим. пром-сть является важным и необходимым компонентом экономики, хемофобия нередко сознательно разжигается в конъюнктурных целях (искусств. экологич. психозы).
На деле X. является системообразующим фактором совр. общества, т. е. совершенно необходимым условием его существования и воспроизводства. Прежде всего потому, что X. участвует в формировании совр. человека. Из его мировоззрения нельзя изъять видение мира через призму понятий X. Более того, в индустриальной цивилизации человек сохраняет свой статус члена общества (не маргинализуется) лишь в том случае, если достаточно быстро осваивает новые хим. представления (для чего служит целая система популяризации X.). Вся техносфера - искусственно созданный окружающий человека мир - все быстрее насыщается продуктами хим. произ-ва, обращение с к-рыми требует высокого уровня хим. знаний, навыков и интуиции.
В кон. 20 в. все более ощущается общее несоответствие обществ. ин-тов и обыденного сознания индустриального общества уровню химизации совр. мира. Это несоответствие породило цепь противоречий, ставших глобальной проблемой и создающих качественно новую опасность. На всех социальных уровнях, включая научное сообщество в целом, растет отставание уровня хим. знаний и навыков от хим. реальности техносферы и ее воздействия на биосферу. Хим. образование и воспитание в общей школе скудеет. Увеличивается пропасть между хим. подготовкой политиков и потенциальной опасностью неверных решений. Организация новой, адекватной реальности системы всеобщего хим. образования и освоение хим. культуры становится условием безопасности и устойчивого развития цивилизации. На время кризиса (к-рый обещает быть долгим) неизбежна переориентация приоритетов X.: от знания ради улучшения условий жизни к знанию ради гарантир. сохранения жизни (от критерия "максимизации выгоды" к критерию "минимизации ущерба").

Прикладная химия. Практическое, прикладное значение X. состоит в осуществлении контроля над хим. процессами, протекающими в природе и техносфере, в произ-ве и преобразовании нужных человеку в-в и материалов. В большинстве отраслей произ-ва вплоть до 20 в. доминировали процессы, унаследованные от ремесленного периода. X. раньше других наук стала порождать произ-ва, сам принцип к-рых был основан на научном знании (напр., синтез анилиновых красителей).
Состояние хим. пром-сти во многом определяло темпы и направление индустриализации и политич. ситуацию (как, напр., не предвиденное странами Антанты создание крупнотоннажного произ-ва аммиака и азотной кислоты Германией по методу Гебера - Боша, что обеспечило ей достаточное для ведения мировой войны кол-во взрывчатых в-в). Развитие пром-сти минер, удобрений, а затем и ср-в защиты растений резко повысило продуктивность сельского хозяйства, что стало условием урбанизации и быстрого развития индустрии. Замена техн. культур искусств. в-вами и материалами (ткани, красители, заменители жиров и др.) равноценно значит. увеличению продовольств. ресурсов и сырья для легкой пром-сти. Состояние и экономич. эффективность машиностроения и стр-ва все больше определяется разработкой и произ-вом синтетич. материалов (пластмасс, каучуков, пленок и волокон). Развитие новых систем связи, к-рые в ближайшем будущем кардинально изменят и уже начали менять облик цивилизации, определяется разработкой оптоволоконных материалов; прогресс телевидения, информатики и компьютеризации связан с разработкой элементной базы микроэлектроники и мол. электроники. В целом развитие техносферы во многом зависит сегодня от ассортимента и кол-ва выпускаемых хим. пром-стью продуктов. Качество многих хим. продуктов (напр., лакокрасочных материалов) влияет и на духовное благополучие населения, т. е. участвует в формировании высших ценностей человека.
Невозможно переоценить роль X. в развитии одной из важнейших проблем, стоящих перед человечеством,- защите окружающей среды (см. Охрана природы). Здесь задача X. состоит в разработке и усовершенствовании методов обнаружения и определения антропогенных загрязнений, изучении и моделировании хим. р-ций, протекающих в атмосфере, гидросфере и литосфере, создании безотходных или малоотходных хим. произ-в, разработке способов обезвреживания и утилизации пром. и бытовых отходов.

Лит.: Фнгуровский Н. А., Очерк общей истории химии, т. 1-2, М., 1969-79; Кузнецов В. И., Диалектика развития химии, М., 1973; Соловьев Ю. И., Трифонов Д. Н., Шамин А. Н., История химии. Развитие основных направлений современной химии, М., 1978; Джуа М., История химии, пер. с итал., М., 1975; Легасов В. А., Бучаченко А. Л., "Успехи химии", 1986, т. 55, в. 12, с. 1949-78; Фримантл М., Химия в действии, пер. с англ., ч. 1-2, М., 1991; Пиментел Дж., Кунрод Дж., Возможности химии сегодня и завтра, пер. с англ., М., 1992; Par ting ton J. R., A history of chemistry, v. 1-4, L.- N. Y., 1961-70. С.

Г. Кара-Мурза, Т. А. Айзатулин. Словарь иностранных слов русского языка

ХИМИЯ - ХИМИЯ, наука о веществах, их превращениях, взаимодействии и о происходящих при этом явлениях. Выяснением основных понятий, к рыми оперирует X., как напр, атом, молекула, элемент, простое тело, реакция и др., учением о молекулярных, атомных и… … Большая медицинская энциклопедия

- (возможно от греч. Chemia Хемия, одно из древнейших названий Египта), наука, изучающая превращения веществ, сопровождающиеся изменением их состава и (или) строения. Химические процессы (получение металлов из руд, крашение тканей, выделка кожи и… … Большой Энциклопедический словарь

ХИМИЯ, отрасль науки, изучающая свойства, состав и структуру веществ и их взаимодействие друг с другом. В настоящее время химия представляет собой обширную область знаний и подразделяется прежде всего на органическую и неорганическую химию.… … Научно-технический энциклопедический словарь

ХИМИЯ, химии, мн. нет, жен. (греч. chemeia). Наука о составе, строении, изменениях и превращениях, а также об образовании новых простых и сложных веществ. Химию, говорит Энгельс, можно назвать наукой о качественных изменениях тел, происходящих… … Толковый словарь Ушакова

химия - – наука о составе, строении, свойствах и превращениях веществ. Словарь по аналитической химии аналитическая химия коллоидная химия неорганическая химия … Химические термины

Совокупность наук, предмет к рых составляют соединения атомов и превращения этих соединений, происходящие с разрывом одних и образованием других межатомных связей. Различные химия, науки отличаются тем, что они занимаются либо разными классами… … Философская энциклопедия

химия - ХИМИЯ, и, ж. 1. Вредное производство. Работать на химии. Послать на химию. 2. Наркотические средства, таблетки и т. п. 3. Все ненатуральные, вредные продукты. Не колбаса химия одна. Сам ешь свою химию. 4. Разновидность причесок с химической… … Словарь русского арго

Наука * История * Математика * Медицина * Открытие * Прогресс * Техника * Философия * Химия Химия Кто не понимает ничего, кроме химии, тот и ее понимает недостаточно. Лихтенберг Георг (Lichtenberg) (