Дифракционные методы исследования структуры кристаллов. Дифракционные методы исследования

Традиционными методами изучения структуры и структурных дефектов кристаллов являются рентгеновские дифракционные методы. С их помощью определяют структуру и состав образца, распределение дефектов по его площади. В отличие от электронов, рентгеновские кванты обладают намного большей глубиной проникновения в кристалл, что дает возможность получать информацию о плотности дефектов в объеме кристалла. Рентгеновские методы позволяют выявлять отдельные дислокации, мозаичность блоков, дефекты упаковки (ДУ), механические напряжения на границах раздела двух сред (например, диэлектрик - полупроводник). На практике наибольшее распространение получили следующие методы рентгеноструктурного анализа:

    метод Лауэ - для определения ориентации монокристаллов;

    метод Дебая - Шерера - для исследования поликристаллов и порошков монокристаллов;

    метод вращения образца с использованием дифрактометрических измерений - для исследования монокристаллов.

Все рентгенодифракционные методы основаны на законе Вульфа - Брэгга и анализе интенсивности рентгеновского луча после взаимодействия с образцом.

Закон Вульфа – Брэгга:

n λ=2d sinθ ,

где λ - длина волны рентгеновского излучения; d - межплоскостное расстояние; θ - угол Брэгга; n - целое число).

Дифракция рентгеновского излучения дает важную информацию о твердых телах, их атомной структуре и форме кристаллов, а также о жидкостях, аморфных телах и больших молекулах. Дифракционный метод применяется также для точного (с погрешностью менее 1∙10 -5) определения межатомных расстояний, выявления напряжений и дефектов и для определения ориентации монокристаллов. По дифракционной картине можно идентифицировать неизвестные материалы, а также обнаружить присутствие в образце примесей и определить их. Значение рентгеновского дифракционного метода для прогресса современной физики трудно переоценить, поскольку современное понимание свойств материи основано в конечном счете на данных о расположении атомов в различных химических соединениях, о характере связей между ними и о дефектах структуры. Главным инструментом получения этой информации является дифракционный рентгеновский метод.

Метод Лауэ

В методе Лауэ применяется непрерывный "белый" спектр рентгеновского излучения, которое направляется на неподвижный монокристалл. Для конкретного значения периода d из всего спектра автоматически выбирается соответствующее условию Брэгга - Вульфа значение длины волны. Получаемые таким образом лауэграммы дают возможность судить о направлениях дифрагированных пучков и, следовательно, об ориентациях плоскостей кристалла, что позволяет также сделать важные выводы относительно симметрии, ориентации кристалла и наличия в нем дефектов. При этом, однако, утрачивается информация о пространственном периоде d . На рис.1 приводится пример лауэграммы. Рентгеновская пленка располагалась со стороны кристалла, противоположной той, на которую падал рентгеновский пучок из источника. Дифракционным пучкам соответствуют светлые пятна на лауэграмме.

Таким образом, пучок "белого" рентгеновского излучения, отражаясь от плоскостей, для которых выполняется закон Вульфа - Брэгга, дает множество дифрагированных лучей, которые, попадая на рентгеновскую фотопластину, вызывают появление рефлексов (дифракционных максимумов). Каждый рефлекс соответствует отражению от системы параллельных плоскостей с фиксированными индексами Миллера (hkl ). Характер и симметрия распределения этих точек, лежащих на гиперболах, определяются ориентацией кристалла. Анализ ускоряется при сравнении с эталонами.

На рис.2 представлена лауэграмма ориентированного монокристалла берилла. Первичный пучок рентгеновских лучей направлен вдоль оси симметрии 2-го порядка. Дифракционным пучкам соответствуют темные пятна на лауэграмме. Монокристалл состоит из двух несколько разориентированных блоков, поэтому некоторые пятна двойные.

Метод Дебая - Шерера

При анализе поликристаллов и порошков монокристаллов (метод Дебая - Шерера) рентгеночувствительную фотопленку располагают по поверхности цилиндрической камеры. При облучении образца монохроматическим рентгеновским излучением дифрагированные лучи располагаются по поверхности коаксиальных конусов, каждый из которых соответствует дифракции от семейства плоскостей с индексами (hkl ) (рис.1)

В отличие от предыдущего метода, здесь используется монохроматическое излучение (=const), а варьируется угол . Это достигается использованием поликристаллических образцов или порошков монокристаллов, состоящих из многочисленных мелких кристаллитов случайной ориентации, среди которых имеются и удовлетворяющие условию Брэгга - Вульфа. Дифрагированные пучки образуют конусы, ось которых направлена вдоль пучка рентгеновского излучения. Для съемки обычно используется узкая полоска рентгеновской пленки в цилиндрической кассете, а рентгеновские лучи распространяются по диаметру через отверстия в пленке (рис.3).

При пересечении конуса с фотопленкой возникает линия почернения. Оси конусов совпадают с направлением первичного пучка, а угол раствора конуса равен учетверенному углу Брэгга для плоскостей (hkl ). По линиям на рентгенограмме определяют межплоскостные расстояния и идентифицируют материал по стандартным таблицам d hkl . Точность определения d hkl составляет 0.001 нм. При наличии текстуры в пленках на кривых почернения появляются штрихи и точки большей интенсивности.

Полученная таким образом дебаеграмма (рис.4, а) содержат точную информацию о периоде d hkl , то есть о структуре кристалла, но не дает информации, которую содержит лауэграмма. Поэтому методы Лауэ и Дебая-Шерера взаимно дополняют друг друга.

В современных дифрактометрах для регистрации дифрагированных пучков рентгеновских лучей используются сцинтилляционные или пропорциональные счетчики (рис.4, б). На таких установках производится автоматическая регистрация данных, что весьма существенно, так как сложные структуры могут давать большое число отражений (до 10 000).

Некоторые применения метода Дебая – Шеррера.

Идентификация химических элементов и соединений. По определенному из дебаеграммы углу можно вычислить характерное для данного элемента или соединения межплоскостное расстояние d hkl . В настоящее время составлено множество таблиц значений d , позволяющих идентифицировать не только тот или иной химический элемент или соединение, но и различные фазовые состояния одного и того же вещества, что не всегда дает химический анализ. Можно также в сплавах замещения с высокой точностью определять содержание второго компонента по зависимости периода d от концентрации.

Анализ механических напряжений. По измеренной разнице межплоскостных расстояний для разных направлений в кристаллах можно, зная модуль упругости материала, с высокой точностью вычислять малые напряжения в нем.

Исследования преимущественной ориентации в кристаллах. Если малые кристаллиты в поликристаллическом образце ориентированы не совсем случайным образом, то кольца на дебаеграмме будут иметь разную интенсивность. При наличии резко выраженной преимущественной ориентации максимумы интенсивности концентрируются в отдельных пятнах на снимке, который становится похож на снимок для монокристалла. Например, при глубокой холодной прокатке металлический лист приобретает текстуру - выраженную ориентацию кристаллитов. По дебаеграмме можно судить о характере холодной обработки материала.

Исследование размеров зерен. Если размер зерен поликристалла более 1∙10 -3 см, то линии на дебаеграмме будут состоять из отдельных пятен, поскольку в этом случае число кристаллитов недостаточно для того, чтобы перекрыть весь диапазон значений углов q. Если же размер кристаллитов менее 1∙10 -5 см, то дифракционные линии становятся шире. Их ширина обратно пропорциональна размеру кристаллитов. Уширение происходит по той же причине, по которой при уменьшении числа щелей уменьшается разрешающая способность дифракционной решетки. Рентгеновское излучение позволяет определять размеры зерен в диапазоне от 1·10 -7 – до 1·10 -6 см.

Cтраница 1


Дифракционные методы связаны с изучением углового распределения рассеянного без потери энергии излучения. С помощью-дифракционных методов, использующих в качестве излучения, монохроматические рентгеновские лучи (рентгеноструктурный анализ), нейтроны (нейтронография), электроны (газовая электронография), определяют зависящее от геометрии молекул угловое распределение интенсивности рассеяния данных видов излучения.  

Дифракционные методы, ограничиваясь почти чисто геометрическими задачами (связанными, конечно, с силовыми воздействиями, так как последние зависят прежде всего от межатомных расстояний), имеют ряд бесспорных преимуществ. Благодаря классическим работам Дебая, Лауэ, Эвальда, Цернике и Принса, углубленным и обобщенным многими теоретиками в последние годы, мы имеем хорошо разработанную оптику рентгеновских лучей, которая умело используется в теориях рассеяния электронных и нейтронных лучей. Во многих случаях удается почти однозначно рассчитать координаты атомов в элементарной ячейке монокристалла и однозначно определить кривую рассеяния по известной структуре или ее модели (как для кристаллов, так и для стекол или жидкостей), так же как и однозначно провести анализ Фурье экспериментальной кривой рассеяния и найти кривую радиального распределения.  

Дифракционные методы хотя и наиболее трудоемкие, дают почти однозначные сведения о структурах молекул.  

Дифракционные методы и прежде всего - методы рентгеновской дифракции такую возможность создают. Уже давно, как отмечалось выше, используют анализ рентгеновских рефлексов - дифракционных пиков при прохождении рентгеновских лучей сквозь решетку из атомов (кристаллическую решетку) - для определения координат атомов. В последние годы стремительно развивается и совершенствуется техника этого анализа, приводящая в конце концов к визуализации атомно-молекулярной структуры.  

Дифракционные методы исследования, позволяют анализировать структуру материала, изучать несовершенства кристалли - ческого строения металлов и сплавов; упругие, остаточные напряжения, текстуру. Не останавливаясь подробно на методике элек-тронографических исследований и нейтронографии, отметим некоторые особенности этих методов.  

Современные дифракционные методы позволяют определять электронную плотность молекул с достаточной точностью, и тогда, сравнивая ее с суперпозицией плотностей изолированных атомов, можно построить уже эмпирическую разностную картину плотности электронов.  


Дифракционные методы исследования структуры являются расчетными.  

Эти дифракционные методы до настоящего времени являются единственным способом изучения локализации молекул воды на поверхности и внутри белка. Они изобилуют ошибками, и данные часто неправильно интерпретируют даже тогда, когда экспериментальная работа выполнена тщательно. Фин-ней недавно сделал исчерпывающий и ясный обзор данных в этой области, подчеркнув факторы, влияющие на стабильность или нестабильность структуры нативного белка и роль воды в стабилизации структуры.  

Поскольку обычные дифракционные методы и другие методы получения изображений2 нечувствительны к деталям конфигураций атомов вокруг ядра дислокации, обычно оказывается достаточным рассмотреть простую классическую модель поля деформаций дислокации, в основе которой лежит макроскопическая теория упругости. Рассмотрение часто ограничивают дополнительным допущением изотропности упругих свойств материала.  

К оптическим и дифракционным методам относятся методы, основанные на взаимодействии электромагнитного излучения различной длины волны или потока частиц различной энергии с исследуемым веществом.  

Исследования дифракционными методами показали, что наличие Н - связей приводит к сокращению длин межмолекулярных контактов по сравнению с суммой ван-дер-ваальсовых радиусов и по значению этого отклонения судят об их силе. У могут быть как прямыми, так и изогнутыми. Акцепторами Н - связей могут быть такие элементы, как F, О, N, Cl, S.  

Подвижные атомы водорода в симметричной (а и асимметричной.| Временная шкала различных методов.  

В дифракционных методах, как уже отмечалось, взаимодействие между молекулой и дифракционной волной длится гораздо меньше времени, чем движение внутри молекул.  

В дифракционных методах исследования рентгеновское излучение, поток электронов или нейтронов взаимодействуют с атомами в молекулах, жидкостях или кристаллах. При этом исследуемое вещество играет роль дифракционной решетки. А длина волны рентгеновских квантов, электронов и нейтронов должна быть соизмерима с межатомными расстояниями в молекулах или между частицами в жидкостях и твердых телах. Сама же дифракция (закономерное чередование максимумов и минимумов) представляет собой результат интерференции волн. Она зависит от химического и кристаллохимического строения, следовательно, соответствует структуре исследуемого вещества. Обратная задача дифракции для рентгеновского излучения, дифрагирующего в конденсированных средах, называется рентгеноструктурным анализом. Методы применения электронных и нейтронных пучков вместо рентгеновского излучения называются электронографией и нейтронографией соответственно. Общим для этих методов является анализ углового распределения интенсивности рассеянного рентгеновского излучения, нейтронов и электронов в результате взаимодействия с веществом. Но природа рассеяния рентгеновских квантов, нейтронов и электронов не одинакова. Рентгеновское излучение рассеивается электронами атомов, входящими в состав вещества. Нейтроны же рассеиваются атомными ядрами; а электроны - электрическим полем ядер и электронных оболочек атомов. Интенсивность рассеяния электронов пропорциональна электростатическому потенциалу атомов.  

После рассеяния не изменяется. Имеет место так называемое упругое рассеяние. В основе дифракционных методов лежит простое соотношение для длины волны и расстояния между рассеивающими атомами.

  1. Рентгеноструктурный анализ позволяет определять координаты атомов в трёхмерном пространстве кристаллических веществ от простейших соединений до сложных белков.
  2. С помощью газовой электронографии определяют геометрию свободных молекул в газах, то есть молекул, не подверженных влиянию соседних молекул, как это имеет место в кристаллах.
  3. Дифракция электронов - метод исследования структуры твердых тел.
  4. Дифракционным методом является также нейтронография , в основе которой лежит рассеяние нейтронов на ядрах атомов , в отличие от первых двух методов, где используется рассеяние на электронных оболочках.
  5. Дифракция отражённых электронов - кристаллографический метод, применяемый в растровом электронном микроскопе .

Wikimedia Foundation . 2010 .

Смотреть что такое "Дифракционные методы" в других словарях:

    Исследования структуры в ва, основаны на изучении углового распределения интенсивности рассеяния исследуемым в вом излучения рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов и мёссбауэровского g излучения. Соотв. различают … Химическая энциклопедия

    дифракционные методы исследования - difrakciniai tyrimo metodai statusas T sritis chemija apibrėžtis Metodai, pagrįsti spindulių ar dalelių difrakcija. atitikmenys: angl. diffractional research techniques rus. дифракционные методы исследования … Chemijos terminų aiškinamasis žodynas

    Статьигалогибридные материалыдислокациядифракционное определение среднего размера областей когерентного рассеяния дифракция быстрых электроновдифракция медленных электроновмалоугловое нейтронное рассеяниеобласть когерентного… …

    Можно подразделить на методы сбора информации и методы анализа собранной информации. В зависимости от сферы исследования, предмет и объект исследования различны. Спектроскопические методы Основная статья: Спектроскопические методы Ядерный… … Википедия

    ПодразделыЗондовые методы микроскопии и спектроскопии: атомно силовая, сканирующая туннельная, магнитно силовая и др.Сканирующая электронная микроскопияПросвечивающая электронная микроскопия, в том числе высокого разрешенияЛюминесцентная… … Энциклопедический словарь нанотехнологий

    Основаны на измерении эффекта, вызванного взаимод. с в вом излучения потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физ. эффект представляет собой сигнал. В результате… … Химическая энциклопедия

    Расположение атомов, ионов, молекул в кристалле. Кристалл с определ. хим. ф лой имеет присущую ему К. с., обладающую трёхмерной периодичностью кристаллической решеткой. Термин К. с. употребляют вместо термина кристаллич. решётка, когда речь идёт … Физическая энциклопедия

    ПодразделыМетоды нанесения элементов наноструктур и наноматериаловФизические методы (лазерные, электронно лучевые, ионно плазменные) осаждения слоев нанометровых толщинХимическое, термическое и электродуговое ocаждение из газовой фазы (в том… … Энциклопедический словарь нанотехнологий

    Термин протеомика Термин на английском proteomics Синонимы Аббревиатуры Связанные термины активный центр катализатора, антитело, атомно силовая микроскопия, белки, биологические моторы, биологические нанообъекты, биосенсор, ван дер ваальсово… … Энциклопедический словарь нанотехнологий

    Термин протеом Термин на английском proteome Синонимы Аббревиатуры Связанные термины антитело, белки, биологические нанообъекты, геном, капсид, кинезин, клетка, масс спектрометрия с лазерной десорбцией и ионизацией, матрикс, внеклеточный,… … Энциклопедический словарь нанотехнологий

Книги

  • Методы компьютерной оптики. Гриф МО РФ , Волков Алексей Васильевич, Головашкин Димитрий Львович, Досколович Леонид Леонидович. Излагаются основы компьютерного синтеза дифракционных оптических элементов (ДОЭ) с широкими функциональными возможностями. Обсуждаются методы получения зонированных пластинок со сложным…
  • Дифракционные и микроскопические методы и приборы для анализа наночастиц и наноматериалов , Юрий Ягодкин. В учебном пособии рассмотрены физические основы методов и аппаратура для проведения рентгеноструктурного, электроно- и нейтронографического анализов, просвечивающей электронной микроскопии,…

Дифракция - явление волновое, оно наблюдается при распространении волн различной природы: дифракция света, звуковых волн, волн на поверхности жидкости и т.д. Дифракция при рассеянии частиц, с точки зрения классической физики, невозможна.

Квантовая механика устранила абсолютную грань между волной и частицей. Основным положением квантовой механики, описывающей поведение микрообъектов, является корпускулярно-волновой дуализм, т. е. двойственная природа микрочастиц. Так, поведение электронов в одних явлениях может быть описано на основе представлений о частицах, в других же, особенно в явлениях дифракции, - только на основе представления о волнах. Идея "волн материи" была высказана французским физиком Л. де Бройлем в 1924 и вскоре получила подтверждение в опытах по дифракции частиц. пестицид рентгенография дифракционный реакция

Согласно квантовой механике, свободное движение частицы с массой m и импульсом

(где V - скорость частицы) можно представить как плоскую монохроматическую волну y 0 (волну де Бройля) с длиной волны

распространяющуюся в том же направлении (например, в направлении оси х), в котором движется частица. Здесь h - постоянная Планка. Зависимость y 0 от координаты х задаётся формулой

y 0 ~ cos (k 0 x) (2)

где k 0 = |k 0 | = 2p/l - так называемое волновое число, а волновой вектор направлен в сторону распространения волны, или вдоль движения частицы.

Таким образом, волновой вектор монохроматической волны, связанной со свободно движущейся микрочастицей, пропорционален её импульсу или обратно пропорционален длине волны.

При взаимодействии частицы с некоторым объектом - с кристаллом, молекулой и тому подобное - её энергия меняется: к ней добавляется потенциальная энергия этого взаимодействия, что приводит к изменению движения частицы. Соответственно меняется характер распространения связанной с частицей волны, причём это происходит согласно принципам, общим для всех волновых явлений. Поэтому основные геометрические закономерности дифракции частиц ничем не отличаются от закономерностей дифракции любых волн. Общим условием дифракции волн любой природы является соизмеримость длины падающей волны l с расстоянием d между рассеивающими центрами: l Ј d.

Кристаллы обладают высокой степенью упорядоченности. Атомы в них располагаются в трёхмерно-периодической кристаллической решётке, т. е. образуют пространственную дифракционную решётку для соответствующих длин волн. Дифракция волн на такой решётке происходит в результате рассеяния на системах параллельных кристаллографических плоскостей, на которых в строгом порядке расположены рассеивающие центры.

При более высоких ускоряющих электрических напряжениях (десятках кв) электроны приобретают достаточную кинетическую энергию, чтобы проникать сквозь тонкие плёнки вещества Тогда возникает так называемая дифракция быстрых электронов на прохождение.

Для лёгких атомов и молекул (Н, H2, Не) и температур в сотни градусов Кельвина длина волны l также составляет около 1 А. Дифрагирующие атомы или молекулы практически не проникают в глубь кристалла; поэтому можно считать, что их дифракция происходит при рассеянии от поверхности кристалла, т. е. как на плоской дифракционной решётке.

Выпущенный из сосуда и сформированный с помощью диафрагм молекулярный или атомный пучок направляют на кристалл и тем, или иным способом фиксируют "отражённые" дифракционные пучки.

Позже наблюдалась дифракция протонов, а также дифракция нейтронов, получившая широкое распространение как один из методов исследования структуры вещества. Так было доказано экспериментально, что волновые свойства присущи всем без исключения микрочастицам.

В широком смысле слова дифракционное рассеяние всегда имеет место при упругом рассеянии различных элементарных частиц атомами и атомными ядрами, а также друг другом. С другой стороны, представление о корпускулярно-волновом дуализме материи укрепилось при анализе явлений, всегда считавшихся типично волновыми, например дифракции рентгеновских лучей - коротких электромагнитных волн с длиной волны l " 0,5-5 Е. В то же время начальный и рассеянный пучки рентгеновских лучей можно рассматривать и регистрировать как поток частиц - фотонов, определяя с помощью счётчиков фотонов число фотонов рентгеновского излучения в этих пучках.

Следует подчеркнуть, что волновые свойства присущи каждой частице в отдельности. Образование дифракционной картины при рассеянии частиц интерпретируется в квантовой механике следующим образом. Прошедший через кристалл электрон в результате взаимодействия с кристаллической решёткой образца отклоняется от своего первоначального движения и попадает в некоторую точку фотопластинки, установленной за кристаллом для регистрации электронов. Войдя в фотографическую эмульсию, электрон проявляет себя как частица и вызывает фотохимическую реакцию. На первый взгляд попадание электрона в ту или иную точку пластинки носит совершенно произвольный характер. Но при длительной экспозиции постепенно возникает упорядоченная картина дифракционных максимумов и минимумов в распределении электронов, прошедших через кристалл.

Точно предсказать, в какое место фотопластинки попадёт данный электрон, нельзя, но можно указать вероятность его попадания после рассеяния в ту или иную точку пластинки. Эта вероятность определяется волновой функцией электрона y, точнее квадратом её модуля (т.к. н - комплексная функция) |y| 2 . Однако, поскольку вероятность при больших числах испытаний реализуется как достоверность, при многократном прохождении электрона через кристалл или, как это имеет место в реальных дифракционных экспериментах, при прохождении через образец пучка электронов, содержащего громадное количество частиц, величина |y| 2 определяет уже распределение интенсивности в дифрагированных пучках. Таким образом, результирующая волновая функция электрона y, которую можно рассчитать, зная y 0 и потенциальную энергию взаимодействия электрона с кристаллом, даёт полное описание дифракционного опыта в статистическом смысле.

Специфика дифракции различных частиц. Атомная амплитуда рассеяния. Вследствие общности геометрических принципов дифракции теория дифракции частиц многое заимствовала из развитой ранее теории дифракции рентгеновских лучей. Однако взаимодействие разного рода частиц - электронов, нейтронов, атомов и т.п. - с веществом имеет различную физическую природу. Поэтому при рассмотрении дифракции частиц на кристаллах, жидкостях и т.д. существенно знать, как рассеивает различные частицы изолированный атом вещества. Именно в рассеянии частиц отдельными атомами проявляется специфика дифракции различных частиц.

Дифракцию на любой системе атомов (молекуле, кристалле и т.п.) можно рассчитать, зная координаты их центров r i и атомные амплитуды f i для данного сорта частиц.

Наиболее ярко эффекты дифракции частиц выявляются при дифракции на кристаллах. Однако тепловое движение атомов в кристалле несколько изменяет условия дифракции, и интенсивность дифрагированных пучков с увеличением угла J в формуле (6) уменьшается. При дифракции частиц жидкостями, аморфными телами или молекулами газов, упорядоченность которых значительно ниже кристаллической, обычно наблюдается несколько размытых дифракционных максимумов.

Электронография (от электрон и...графия), метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах. Физическая основа Электронографии - дифракция электронов; при прохождении через вещество электроны, обладающие волновыми свойствами, взаимодействуют с атомами, в результате чего образуются отдельные дифрагированные пучки. Интенсивности и пространственное распределение этих пучков находятся в строгом соответствии с атомной структурой образца, размерами и ориентацией отдельных кристалликов и другими структурными параметрами. Рассеяние электронов в веществе определяется электростатическим потенциалом атомов, максимумы которого в кристалле отвечают положениям атомных ядер.

Электронографические исследования проводятся в специальных приборах - электронографах и электронных микроскопах; в условиях вакуума в них электроны ускоряются электрическим полем, фокусируются в узкий светосильный пучок, а образующиеся после прохождения через образец пучки либо фотографируются (электронограммы), либо регистрируются фотоэлектрическим устройством. В зависимости от величины электрического напряжения, ускоряющего электроны, различают дифракцию быстрых электронов (напряжение от 30-50 кэв до 1000 кэв и более) и дифракцию медленных электронов (напряжение от нескольких в до сотен в).

Электронография принадлежит к дифракционным структурным методам (наряду с рентгеновским структурным анализом и нейтронографией) и обладает рядом особенностей. Благодаря несравнимо более сильному взаимодействию электронов с веществом, а также возможности создания светосильного пучка в электронографе, экспозиция для получения электронограмм обычно составляет около секунды, что позволяет исследовать структурные превращения, кристаллизацию и так далее. С другой стороны, сильное взаимодействие электронов с веществом ограничивает допустимую толщину просвечиваемых образцов десятыми долями мкм (при напряжении 1000-2000 кэв максимальная толщина несколько мкм).

Электронография позволила изучать атомные структуры огромного числа веществ, существующих лишь в мелкокристаллическом состоянии. Она обладает также преимуществом перед рентгеновским структурным анализом в определении положения лёгких атомов в присутствии тяжёлых (методам нейтронографии доступны такие исследования, но лишь для кристаллов значительно больших размеров, чем для исследуемых в электронографии).

Вид получаемых электронограмм зависит от характера исследуемых объектов. Электронограммы от плёнок, состоящих из кристалликов с достаточно точной взаимной ориентацией или тонких монокристаллических пластинок, образованы точками или пятнами (рефлексами) с правильным взаимным расположением. При частичной ориентации кристалликов в плёнках по определённому закону (текстуры) получаются отражения в виде дуг. Электронограммы от образцов, состоящих из беспорядочно расположенных кристалликов, образованы аналогично дебаеграммам равномерно зачернёнными окружностями, а при съёмке на движущуюся фотопластинку (кинематическая съёмка) - параллельными линиями. Перечисленные типы электронограмм получаются в результате упругого, преимущественно однократного, рассеяния (без обмена энергией с кристаллом). При многократном неупругом рассеянии возникают вторичные дифракционные картины от дифрагированных пучков. Подобные электронограммы называются кикучи-электронограммами (по имени получившего их впервые японского физика). Электронограммы от молекул газа содержат небольшое число диффузных ореолов.

В основе определения элементарной ячейки кристаллической структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние d в кристалле определяется из соотношения:

где L - расстояние от рассеивающего образца до фотопластинки, l - дебройлевская длина волны электрона, определяемая его энергией, r - расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в электронографии аналогичны применяемым в рентгеновском структурном анализе (изменяются лишь некоторые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Fhkl|. Распределение электростатического потенциала j(x, у, z) кристалла представляется в виде ряда Фурье. Максимальные значения j(x, у, z) соответствуют положениям атомов внутри элементарной ячейки кристалла. Таким образом, расчёт значений j(x, у, z), который обычно осуществляется ЭВМ, позволяет установить координаты х, у, z атомов, расстояния между ними и другие характеристики.

Методами электронографии были определены многие неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в том числе множество цепных и циклических углеводородов, в которых впервые были локализованы атомы водорода, молекулы нитрилов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи электронографии можно также изучать строение дефектных структур. В комплексе с электронной микроскопией электронография позволяет изучать степень совершенства структуры тонких кристаллических плёнок, используемых в различных областях современной техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, который выполняется с помощью кикучи-электронограмм: даже незначительные нарушения её структуры приводят к размытию кикучи-линий.

Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10-20, а также характер их тепловых колебаний в широком интервале температур. Таким путём изучено строение многих органических молекул, структуры молекул галогенидов, окислов и других соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см. Дальний порядок и ближний порядок) в аморфных телах, стеклах и жидкостях.

Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10- 8 см.

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся, как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Рентгеновское излучение было открыто немецким физиком В.Рентгеном (1845-1923). Его имя увековечено и в некоторых других физических терминах, связанных с этим излучением: рентгеном называется международная единица дозы ионизирующего излучения; снимок, сделанный в рентгеновском аппарате, называется рентгенограммой; область радиологической медицины, в которой используются рентгеновские лучи для диагностики и лечения заболеваний, называется рентгенологией.

Тема: Кристаллическое состояние силикатных материалов. Методы изучения структуры кристаллических веществ. Основные правила построения ионно-ковалентных структур.

Лекция № 4.

1. Силикаты в кристаллическом сосотянии.

2. Методы изучения структуры кристаллических веществ.a

3. Основные правила построения ионно-ковалентных структур.

ДТА - дифференциальный термический анализa

ТГ - термогравиметрический анализ

К дифракционным методам исследования структуры относятся рентгенография, электронография и нейтронография. Методы ос­нованы на использовании излучений с длиной волны, соизмеримой с расстоянием между структурными элементами кристаллов. Про­ходя через кристалл, лучи дифрагируют, возникающая дифракци­онная картина строго соответствует структуре исследуемого ве­щества.

Метод дифракции рентгеновского излучения .

Развитие рентгеноструктурного анализа началось со знаменитого опыта М. Лауэ (1912), показавшего, что пучок рентгеновского излучения, проходя
через кристалл, испытывает дифракцию, причем симметрия, рас­пределения дифракционных максимумов соответствует симметрии
кристалла. Дифракционные максимумы возникают во всех направлениях, отвечающих основному закону рентгеноструктурного ана­лиза- уравнению Вульф а - Брэгга

Дифракционные методы можно условно разделить на две группы: 1) угол падения луча на кристалл постоянный, а длина излуче­ния меняется; 2) длина волны постоянная, а угол падения меняется.

К методам первой группы относится метод Лауэ, заключа­ющийся в том, что полихроматическое рентгеновское излучение на­правляется на неподвижный монокристалл, за которым располага­ется фотопленка. Из множества длин волн, имеющихся в полихро­матическом излучении, всегда найдется такая волна, которая удовлетворяет условиям уравнения Вульфа - Брзгга. Метод Лауэ дает возможность выявить симметрию кристалла. К методам вто­рой группы относятся методы вращения монокристалла и поликристаллического образца. В методе вращения монокристалла
монохроматический луч направляется на монокристалл, вращаю­щийся вокруг оси, нормальной к направлению луча. При этом раз­личные плоскости кристалла попадают в положение, соответству­ющее условиям дифракции, что приводит к образованию соответст­вующей дифракционной картины. Измерением интегральной интенсивности и определением набора структурных амплитуд мож­но расшифровать структуру кристалла.

При изучении поликристаллических материалов образец осве­щается монохроматическим излучением. В множестве произвольно ориентированных кристаллов всегда найдется такой, ориентировка которого отвечает уравнению Вульфа-Брэгга. Отраженный луч регистрируется фотоспособом (рис.2) либо ионизационными или сцинтилляционными счетчиками, сигнал через систему усилителей и пересчетных устройств подается на потенциометр, записывающий кривую распре­деления интенсивности (рис.3). По расположению дифракционных максимумов судят о геометрии решетки, а по их интенсивности - о распределении электронной плотности, т. е. о вероятности нахожде­ния электронов в той или иной точке кристалла (рис. 4). Распреде­ление электронной плотности дает возможность определять не толь­ко положение атомов в решетке, но и тип химической связи. Высо­котемпературные приставки к дифрактометрам позволяют регист­рировать полиморфные превращения при нагревании, следить за твердофазовыми реакциями.


Рентгенография дает также возможность изучать дефекты в кристаллах.

выход луча; 4 - область малых углов 9

Рис. 2. Съемка рентгенограммы по­ликристаллических образцов методом фоторегистрации:

Рис. 3. Рентгенограмма кварца, по­лученная на установке со сцинтилляционным методом регистрации

Метод дифракции электронов (электронография). Метод осно­ван на том, что при взаимодействии с электростатическим полем атомов происходит рассеяние пучка электронов. В отличие от рент­геновского, электронное излучение может проникать лишь на небольшую глубину, поэтому исследуемые образцы должны иметь вид тонких пленок. При помощи электронографии можно, помимо определения межплоскостных расстояний в кристалле, изучать положение легких атомов в решетке, чего нельзя сделать при помо­щи рентгеновского излучения, слабо рассеивающегося легкими атомами.

Метод дифракции нейтронов . Для получения пучка нейтронов необходим атомный реактор, поэтому данный метод используется сравнительно редко. При выходе из реактора пучок значительно ослаблен, поэтому необходимо использовать широкий пучок и со­ответственно увеличивать размер образца. Преимуществом метода является возможность определения пространственного положения атомов водорода, что невозможно сделать другими дифракционны­ми методами.

Рис. 4. Распределение электронной плотности (о) и структура (б) кри­сталла с ковалентной связью (ал­маз)