Где и почему возникает электродный потенциал. Стандартные электродные потенциалы. Нормальный водородный электрод

Каждая окислительно-восстано-вительная реакция слагается из полуреакций окисления и восстановления. Когда реакция протекает в гальваническом элементе или осуществляется путем электролиза, то каждая полуреакция протекает на соответствующем электроде; поэтому полуреакции называют также электродными процессами.

В § 98 было показано, что протекающей в гальваническом элементе окислительно-восстановительной реакции соответствует этого элемента Е, связанная с изменением энергии Гиббса реакции уравнением:

В соответствии с разделением окислительно-восстановительной реакции на две полуреакции, электродвижущие силы также принято представлять в виде разности двух величии, каждая из которых отвечает данной полуреакции. Эти величины называются электродными потенциалами.

Для медно-цинкового элемента реакция, протекающая при его работе

разбивается на полуреакции:

Соответственно этого элемента (Е) можно представить как разность электродных потенциалов , один из которых отвечает первой, а другой - второй из записанных полуреакций:

При этом изменение энергии Гиббса , которое отвечает модинамически обратимому восстановлению одного моля ионов меди, равно

а изменение энергии Гиббса отвечающее термодинамически обратимому окислению одного моля атомов цинка, равно

В общем случае любому электродному процессу

соответствует электродный потенциал и изменение энергии Гиббса , равное:

Здесь и - сокращения латинских слов, обозначающие восстановленную и окисленную формы веществ, участвующих в электродном процессе.

В дальнейшем, говоря об электродных процессах, мы будем записывать их уравнения в сторону восстановления (за исключением, конечно, тех случаев, когда речь будет идти именно об окислении).

В результате изучения потенциалов различных электродных процессов установлено, что их величины зависят от следующих трех факторов: 1) от природы веществ - участников электродного процесса, 2) от соотношения между концентрациями этих веществ и 3) от температуры системы. Эта зависимость выражается уравнением:

Здесь - стандартный электродный потенциал данного процесса - константа, физический смысл которой рассмотрен ниже; R - газовая постоянная; Т - абсолютная температура; z - число электронов, принимающих участие в процессе; F - постоянная Фарадея; и произведения концентраций веществ, участвующих в процессе в окисленной и в восстановленной формах.

Физический смысл величины становится ясным при рассмотрении случая, когда концентрации (активности) всех веществ, участвующих в данном электродном процессе, равны единице. При этом условии второе слагаемое правой части уравнения обращается в нуль и уравнение принимает вид:

Концентрации (активности), равные единице, называются стандартными концентрациями (активностями). Поэтому и потенциал, отвечающий этому случаю, называется стандартным потенциалом. Итак, стандартный электродный потенциал - это потенциал данного электродного процесса при концентрациях (точнее говоря, активностях) всех участвующих в нем веществ, равных единице.

Таким образом, в уравнении электродного потенциала первое слагаемое учитывает влияние на его величину природы веществ, а второе - их концентрации. Кроме того, оба члена изменяются с температурой.

Для обычной при электрохимических измерениях стандартной температуры (), при подстановке значений постоянных величин () уравнение принимает вид:

Для построения численной шкалы электродных потенциалов нужно потенциал какого-либо электродного процесса принять равным нулю. В качестве эталона для создания такой шкалы принят электродный процесс

Изменение энергии Гиббса, связанное с протеканием этой полуреакции при стандартных условиях, принимается равным нулю. В соответствии с этим и стандартный потенциал данного электродного процесса принят равным нулю. Все электродные потенциалы, приводимые в настоящей книге, а также в большинстве других современных изданий, выражены по этой, так называемой водородной шкале.

Приведенный выше электродный процесс осуществляется на водородном электроде. Последний представляет собой платиновую пластинку, электролитически покрытую губчатой платиной и погруженную в раствор кислоты, через который nponускается водород (рис. 84). Водород хорошо растворяется в платине; при этом молекулы водорода частично распадаются на атомы (пластина катализирует этот распад). На поверхности соприкосновения платины с раствором кислоты может протекать, окисление атомов или восстановление ионов водорода.

Рис. 84. водородный электрод.

Рис. 85. Цепь для измерения электродного потенциала: слева - электрод, потенциал которого нужно измерить;справа - каломельный электрод; в середине - соединительный сосуд.

Платина при этом практически не принимает участия в электродных реакциях и играет как бы роль губки, пропитанной атомарным водородом.

Потенциал водородного электрода воспроизводится с очень высокой точностью. Поэтому водородный электрод и принят в качестве эталона при создании шкалы электродных потенциалов.

Установим, какой вид принимает общее уравнение электродного потенциала для водородного электрода. В соответствии с уравнением электродного процесса (см. стр. 271) . Концентрация растворенного в платине водорода пропорциональна его парциальному давлению :

где k - постоянная при данной температуре величина. Включая ее в значение , получим:

Обычно парциальное давление водорода поддерживается равным нормальному атмосферному давлению, которое условно принимается за единицу. В этом случае последний член полученного уравнения обращается в нуль . Тогда

Поскольку стандартный потенциал рассматриваемого процесса, принят равным нулю, то

или, учитывая, что , окончательно получем:

Для определения потенциала того или иного электродного процесса нужно составить гальванический элемент из испытуемого и стандартного водородного электродов и измерить его э. д. с. Поскольку потенциал стандартного водородного электрода равен нулю, то измеренная э. д. с будет представлять собою потенциал данного электродного процесса.

Практически при измерениях потенциалов в качестве электрода сравнения пользуются не стандартным водородным, а другими электродами, более удобными в обращении, потенциалы которых по отношению к стандартному водородному электроду известны. При этом необходимо рассчитать э. д. с. элемента согласно уравнению:

Здесь Е - элемента; - известный потенциал электрода сравнения; - потенциал испытуемого электрода.

Решая уравнение относительно получаем:

В качестве электродов сравнения чаще всего применяют хлор-серебряный и каломельный электроды. Хлорсеребряный электрод - это серебряная проволочка, покрытая слоем и погруженная в раствор соляной кислоты или ее соли. При замкнутой цепи на нем протекает реакция:

Каломельный электрод представляет собой ртуть, покрытую взвесью каломели в растворе . Потенциалы этих электродов воспроизводятся с высокой точностью. На рис. 85 изображена цепь с каломельным электродом.

Для того чтобы найти значение электродного потенциала, необходимо измерить не напряжение работающего элемента, а именно его э. д. с. При измерениях э. д. с. сопротивление внешней цепи (т. е. измерительного устройства) очень велико. Реакция в элементе при этом практически не протекает. Таким образом, электродные потенциалы отвечают обратимому протеканию процессов или, что то же самое, состоянию электрохимического равновесия на электродах. Поэтому электродные потенциалы часто называют равновесными электродными потенциалами или просто равновесными потенциалами.

Рассмотрим теперь, какой вид принимает общее уравнение электродного потенциала в важнейших случаях.

1. Электродный процесс выражается уравнением

где М обозначает атомы какого-либо металла, - его -зарядные ионы.

К этому случаю относятся оба электрода медно-цинкового элемента и вообще любой металлический электрод в растворе соли этого же металла. Здесь окисленной формой металла являются его ионы, а восстановленной - атомы. Следовательно, , так как концентрация атомов в металле при постоянной температуре - величина постоянная. Включая значение этой постоянной в величину получим:

Например, для процесса

а для процесса

2, Электродный процесс выражается уравнением:

В этом случае и окисленная и восстановленная формы металла находятся в растворе концентрации -величины переменные. Поэтому

Например, для процесса :

В этом и в рассматриваемых ниже случаях электрод, на котором протекает электродный процесс, изготовляется из инертного материала. Чаще всего в качестве такого материала применяют платину.

Мы рассмотрели примеры, когда в электродных процессах принимали участие только ионы, состоящие из одного элемента. Однако часто окисляющееся или восстанавливающееся вещество состоит не из одного, а из двух или большего числа элементов. Чаще всего в составе окислителя содержится кислород; при этом в электродном процессе обычно принимают участие также вода и продукты ее диссоциации - ионы водорода (в кислой среде) или гидроксид-ионы (в щелочной среде). Рассмотрим, как будут выглядеть в таких случаях уравнения потенциалов электродных процессов.

3. Электродный процесс выражается уравнением:

Эта полуреакция (при протекании ее в сторону восстановления) играет очень большую роль при коррозии металлов (см. § 196). Кислород - самый распространенный окислитель, вызывающий коррозию металлов в водных средах.

В рассматриваемом электродном процессе в результате восстановления кислорода, протекающего с участием ионов водорода, образуется вода. Следовательно, , а . Концентрацию воды в разбавленных растворах можно считать постоянной. Концентрация кислорода в растворе пропорциональна его парциальному давлению над раствором . Выполнив необходимые преобразования и обозначив сумму постоянных величин через , получим:

Для рассматриваемого процесса ; следовательно

При парциальном давлении кислорода, равном нормальному атмосферному давлению (которое условно принимается равным единице), и последнее уравнение принимает вид

4. Для электродных процессов, записываемых более сложными уравнениями, в выражениях для потенциалов содержится большее число переменных концентраций. Рассмотрим, например, электродный процесс:

Эта полуреакция протекает (в сторону восстановления) при взаимодействии перманганата калия с большинством восстановителей в кислой среде.

Концентрации всех веществ, участвующих в рассматриваемом электродном процессе, кроме воды, - величины переменные. Для этого процесса . Уравнение электродного потенциала имеет вид:

Примеры 3 и 4 показывают, что в случае электрохимических процессов, протекающих с участием воды, концентрация ионов водорода входит в числитель логарифмического члена уравнения потенциала. Поэтому электродные потенциалы таких процессов зависят от раствора и имеют тем большую величину, чем кислее раствор.

Таблица 18. Электродные потенциалы в водных растворах при и при парциальном давлении газов, равном нормальному атмосферному давлению

Продолжение табл. 18

Как уже сказано, зависимость электродного потенциала от природы веществ - участников электродного процесса учитывается величиной . В связи с этим все электродные процессы принято располагать в ряд по величине их стандартных потенциалов. В табл. 18 уравнения важнейших электродных процессов и соответствующие электродные потенциалы приведены в порядке возрастания величин .

Положение той или иной электрохимической системы в этом ряду характеризует ее окислительно-восстановительную способность. Под электрохимической системой здесь подразумевается совокупность всех веществ - участников данного электродного процесса.

Окислительно-восстановительная способность представляет собою понятие, характеризующее именно электрохимическую систему, но часто говорят и об окислительно-восстановительной способности того или иного вещества (или иона). При этом следует, однако, иметь в виду, что многие вещества могут окисляться или восстанавливаться до различных продуктов. Например, перманганат калия может в зависимости от условий, прежде всего от раствора, восстанавливаться либо до иона , либо до , либо до иона

Соответствующие электродные процессы выражаются уравнениями:

Поскольку стандартные потенциалы этих трех электродных процессов различны (см. табл. 18), то различно и положение этих трех систем в ряду Таким образом, один и тот же окислитель может занимать в ряду стандартных потенциалов несколько мест.

Элементы, проявляющие в своих соединениях только одну степень окисленности, имеют простые окислительно-восстановительные характеристики и занимают в ряду стандартных потенциалов мало мест. К их числу относятся в основном металлы главных подгрупп I-III групп периодической системы. Много же мест в ряду занимают те элементы, которые образуют соединения различных степеней окисленности - неметаллы и многие металлы побочных подгрупп периодической системы.

Ряд стандартных электродных потенциалов позволяет решать вопрос о направлении самопроизвольного протекания окислительно-восстановительных реакций. Как и в общем случае любой химической реакции, определяющим фактором служит здесь знак изменения энергии Гиббса реакции. Если из двух электрохимических систем составить гальванический элемент, то при его работе электроны будут самопроизвольно переходить от отрицательного полюса элемента к положительному, т. е. от электрохимической системы с более низким значением электродного потенциала к системе с более высоким его значением. Но это означает, что первая из этих систем будет выступать в качестве восстановителя, а вторая- в качестве окислителя. Следовательно, в гальваническом элементе окислительно-восстановительная реакция может самопроизвольно протекать в таком направлении, при котором электрохимическая система с более высоким значением электродного потенциала выступает в качестве окислителя, т. е. восстанавливается. При непосредственном взаимодействии веществ возможное направление реакции будет, конечно, таким же, как и при ее осуществлении в гальваническом элементе.

Электрохимические системы

Общая характеристика

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.


Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Электрод и электродный потенциал

Процессы взаимного превращения химической и электрической форм энергии называются электрохимическими. Их можно разделить на две основные группы: 1) процессы превращения химической энергии в электрическую (гальванический элемент); 2) процессы превращения электрической энергии в химическую (электролиз).

Изучением электрохимических процессов занимается электрохимия.

К электрохимическим процессам относятся явления, возникающие на границе двух фаз с участием заряженных частиц (ионов и электронов), например, при погружении металлической пластинки в воду.

Для всех металлов характерно свойство в большей или меньшей степени растворяться в воде. При этом протекает взаимодействие поверхностных ион-атомов металла, находящихся в узлах решетки, с полярными молекулами воды. В результате в раствор переходят гидратированные катионы металла (окисление), оставляя в металле электроны. Пластина металла становится заряженной отрицательно, а приэлектродный слой раствора – положительно. На границе металл – раствор возникает двойной электрический слой, характеризующийся разностью потенциалов.)

При погружении металла в раствор его соли также возникает двойной электрический слой. В этом случае возможны два механизма его образования. Если концентрация ионов в растворе мала или металл достаточно активный, металлическая пластинка заряжается отрицательно. В том случае, когда концентрация катионов металла в растворе велика или металл малоактивный, металлическая пластинка заряжается положительно. Потенциалу металла приписывается тот знак, который возникает на его поверхности в двойном электрическом слое.

Система, состоящая из металла, опущенного в раствор собственной соли, называется окислительно-восстановительной или электродом и характеризующаяся определенным электродным потенциалом.

Водородный электрод.

Водородный электрод состоит из платиновой пластинки, покрытой платиновой чернью (электролитически осажденной платины). Электрод погружен в раствор кислоты с концентрацией ионов водорода 1 моль/л и омывается струей газообразного водорода под давлением 1 атм. при температуре 25 о С.



При насыщении платины водородом на поверхности металл – раствор устанавливается равновесие Н 2 D 2Н+ , которое характеризуется определенным скачком потенциала, величина потенциала которого условно принимается за нуль (при всех значениях температур).

Условно водородный электрод обозначают схемой 2Н+ | Н 2 , Pt, где вертикальная черта обозначает поверхность раздела фаз.

Уравнение Нернста для этого электрода имеет вид

Учитывая, что lg = – pH, получаем

Таким образом, потенциал водородного электрода принимает более отрицательное значение с увеличением давления водорода и рН.

Стандартные электродные потенциалы

Если металл опустить в раствор его соли с концентрацией по катиону 1 моль/л, то электродный потенциал будет постоянной величиной при данной температуре и давлении. Такой потенциал называется стандартным электродным потенциалом и обозначают ϕ 0 или Е 0 .

Абсолютное значение его определить невозможно. На практике измеряют разность потенциалов между электродным потенциалом исследуемой системы и потенциалом водородного электрода (электрод сравнения) в стандартных условиях. Таковыми обычно являются активность ионов, равная 1 моль/л, Р= 101,325 кПа и Т= 298К.

Определив стандартные электродные потенциалы металлических электродов, металлы располагают в порядке их возрастания и получают электрохимический ряд напряжений металлов , или, точнее, ряд стандартных электродных потенциалов

Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Ряд стандартных электродных потенциалов характеризует химические свойства металлов в водных растворах.

– чем меньше электродный потенциал металла (левее в ряду потенциалов) тем он химически активнее, тем легче окисляется и труднее восстанавливается из своих ионов;

– металлы, имеющие отрицательные электродные потенциалы (расположенные в ряду до водорода), вытесняют водород из разбавленных кислот, анионы которых не проявляют окислительные свойства, и при этом растворяются в них;

– каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые имеют более высокий электродный потенциал.

Величина электродного потенциала зависит от природы металла, концентрации его ионов в растворе, от температуры и рН среды. Данная зависимость выражается уравнением Нернста:

где R – универсальная газовая постоянная – 8,314Дж/моль∙град;

F – число Фарадея – 96500 Кл;

Т – температура, K;

n – число отданных или присоединённых электронов одной молекулы окислителя или восстановителя;

C ок, C вос – соответственно концентрация окисленной и восстановленной форм вещества;

E 0 ок/вос – стандартный потенциал окисленной и восстановленной формы вещества.

Преобразовав данное выражение: подставить значения R, F , Т (298 °К) и перевести натуральный логарифм в десятичный, получаем.

Зная величину E ок/вос, можно определить окислительно-восстановительную активность веществ:

– чем меньше окислительно-восстановительный потенциал, тем большей восстановительной активностью обладает вещество и легче теряет свои электроны;

– чем больше окислительно-восстановительный потенциал, тем выше окислительная активность вещества и легче принимает электроны.

Для стандартных электродных потенциалов действительно выражение

∆G о = – nE 0 F ,

где ∆Gо – изменение энергии Гиббса для электродной реакции Ме + m H 2 O = Ме n+ · m H 2 O + nē, протекающей в условиях, когда все реагирующие вещес тва находятся в стандартном состоянии при активности, равной единице; n – число электронов; F – число Фарадея.

Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) - ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциалов между точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически.

45. Электродный потенциал. Уравнение Нернста.

Электро́дный потенциа́л - разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).

Вывод уравнения Нернста

E - электродный потенциал, E 0 - стандартный электродный потенциал, измеряется в вольтах;

R - универсальная газовая постоянная, равная 8.31 Дж/(моль·K);

T - абсолютная температура;

F - постоянная Фарадея, равная 96485,35 Кл·моль −1 ;

т - число моль электронов, участвующих в процессе;

И - активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.

Если в формулу Нернста подставить числовые значения констант R и F и перейти от натуральных логарифмов к десятичным, то при получим

46. Газовые электроды. Уравнение Нернста для расчета потенциалов газовых электродов

Газовые электроды состоят из проводника 1-го рода, контактирующего одновременно с газом и раствором, содержащим ионы этого газа. Проводник 1-го рода служит для подвода и отвода электронов и, кроме того, является катализатором электродной реакции (ускоряет установление равновесия на электроде). Проводник 1-го рода не должен посылать в раствор собственные ионы. Лучше всего удовлетворяют этому условию платина и платиновые металлы, поэтому они чаще всего используются при создании газовых электродов. Так как в равновесных электродных реакциях газовых электродов участвуют газообразные компоненты, то электродные потенциалы этих электродов зависят от парциальных давлений газов. Это можно показать на примерах водородного и кислородного электродов. Равновесие на водородном электроде выражается уравнением 2Н + +3е↔Н 2 . Уравнение для расчетов потенциалов водородного электрода можно вывести так же, как было введено уравнение для расчета потенциала металлического электрода. Оно имеет вид: = или для 298 Кlg

47. Гальванический элемент. Расчет эдс гальванического элемента.

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ- химический источник тока, в котором лектрическаяэнергиявырабатывается в результате прямого преобразования химической энергии окислительно-восстановительной реакцией. В состав гальванического элемента входят два разнородных электрода (один- содержащий окислитель, другой - восстановитель), контактирующие с электролитом. Различают гальванические элементы одноразового использования (т. н. первичные элементы, напр.Лекланше элемент), многоразового действия (электрические аккумуляторы) и с непрерывной подачей реагентов (топливные элементы). Ранеетермин"гальванический элемент" относился только к первичным элементам.

ЭДС гальванического элемента определяется как разность электродных потенциалов. По уравнению НЕРНСТА

Каждая окислительно-восстановительная реакция слагается из полуреакций окисления и восстановления. Когда реакция протекает в гальваническом элементе или осуществляется путем электролиза, то каждая полуреакция протекает на соответствующем электроде; поэтому полуреакции называют также электродными процессами.

В § 98 было показано, что протекающей в гальваническом элементе окислительно-восстановительной реакции соответствует э. д. с. этого элемента Е, связанная с изменением энергии Гиббса AC реакции уравнением:

В соответствии с разделением окислительно-восстановительной реакции на две полуреакции электродвижущие силы также принято представлять в виде разности двух величин, каждая из которых отвечает данной полуреакции. Эти величины называются электродными потенциалами.

Для медно-цинкового элемента реакция, протекающая при его работе

разбивается на полуреакции:

Соответственно э. д. с. этого элемента (E) можно представить как разность электродных потенциалов (ср), один из которых (Cp 1) отвечает первой, а другой (ср 2) - второй из записанных полуреакций:

При этом изменение энергии Гиббса AC 1 , которое отвечает термодинамически обратимому восстановлению одного моля ионов меди, равно

а изменение энергии Гиббса AC 2 , отвечающее термодинамически обратимому окислению одного моля атомов цинка, равно

В общем случае любому электродному процессу

соответствует электродный потенциал ср и изменение энергии Гиббса AG, равное:

Здесь Red и Ox - сокращения латинских слов, обозначающие восстановленную и окисленную формы веществ, участвующих в электродном процессе.

В дальнейшем, говоря об электродных процессах, мы будем записывать их уравнения в сторону восстановления (за исключением, конечно, тех случаев, когда речь будет идти именно об окислении).

В результате изучения потенциалов различных электродных процессов установлено, что их величины зависят от следующих трех факторов: 1) от природы веществ - участников электродного процесса; 2) от соотношения между концентрациями этих веществ и 3) от температуры системы. Эта зависимость выражается уравнением:

где ср° - стандартный электродный потенциал данного процесса - константа, физический смысл которой рассмотрен ниже; R - газовая постоянная; T - абсолютная температура; 2 - число электронов, принимающих участие в процессе; F - постоянная Фарадея; [Ох] и - произведения концентраций веществ, участвующих в процессе в окисленной (Ox) и в восстановленной (Red) формах.

Физический смысл величины ф° становится ясным при рассмотрении случая, когда концентрации (активности) всех веществ, участвующих в данном электродном процессе, равны единице. При этом условии второе слагаемое правой части уравнения обращается в нуль (lg 1 = 0) и уравнение принимает вид:

Концентрации (активности), равные единице, называются стандартными концентрациями (активностями). Поэтому и потенциал, отвечающий этому случаю, называется стандартным потенциалом. Итак, стандартный электродный потенциал - это потенциал данного электродного процесса при концентрациях (точнее говоря, активностях) всех участвующих в нем веществ, равных единице.

Таким образом, в уравнении электродного потенциала первое слагаемое (ср°) учитывает влияние на его величину природы веществ,

а второе - их концентраций. Кроме того, оба члена

изменяются с температурой.

Для обычной при электрохимических измерениях стандартной температуры (25 0 C = 298 К), при подстановке значений постоянных величин R = 8,31 ДжДмоль К), F= 96 500 Кл/моль] уравнение принимает вид:

Для построения численной шкалы электродных потенциалов нужно потенциал какого-либо электродного процесса принять равным нулю. В качестве эталона для создания такой шкалы принят электродный процесс:

Изменение энергии Гиббса, связанное с протеканием этой полу- реакции при стандартных условиях, принимается равным нулю. В соответствии с этим и стандартный потенциал данного электродного процесса принят равным нулю. Все электродные потенциалы, приводимые в настоящей книге, а также в большинстве других современных изданий, выражены по этой так называемой водородной шкале.

Приведенный выше электродный процесс осуществляется на водородном электроде. Последний представляет собой платиновую пластинку, электролитически покрытую губчатой платиной и погруженную в раствор кислоты, через который пропускается водород (рис. 84). Водород хорошо растворяется в платине; при этом молекулы водорода частично распадаются на атомы (пластина катализирует этот распад). На поверхности соприкосновения платины с раствором кислоты может протекать окисление атомов или восстановление ионов водорода. Платина при этом практически не принимает участия в электродных реакциях и играет как бы роль губки, пропитанной атомарным водородом.

Потенциал водородного электрода воспроизводится с очень высокой точностью. Поэтому водородный электрод и принят в качестве эталона при создании шкалы электродных потенциалов.

Установим, какой вид принимает общее уравнение электродного потенциала для водородного электрода. В соответствии с уравнением электродного процесса 2 = 2, [Ох] = 2 , = . Концентрация

Рис.

Рис. 85.

слева - электрод, потенциал которого нужно измерить; справа - каломельный электрод; в середине - соединительный сосуд

растворенного в платине водорода пропорциональна его парциальному давлению рщ.

где k - постоянная при данной температуре величина. Включая ее в значение ф°, получим:

Обычно парциальное давление водорода рщ поддерживается равным нормальному атмосферному давлению, которое условно принимается за единицу. В этом случае последний член полученного уравнения обращается в нуль (lg 1 = 0). Тогда

Поскольку стандартный потенциал рассматриваемого процесса принят равным нулю, то

или, учитывая, что Ig [Н + ] = -pH, окончательно получаем:

Для определения потенциала того или иного электродного процесса нужно составить гальванический элемент из испытуемого и стандартного водородного электродов и измерить его э. д. с. Поскольку потенциал стандартного водородного электрода равен нулю, то измеренная э. д. с. будет представлять собой потенциал данного электродного процесса.

Практически при измерениях потенциалов в качестве электрода сравнения пользуются не стандартным водородным, а другими электродами, более удобными в обращении, потенциалы которых по отношению к стандартному водородному электроду известны. При этом необходимо рассчитать э. д. с. элемента согласно уравнению:

где E - э. д. с. элемента; ф ср - известный потенциал электрода сравнения; ф г - потенциал испытуемого электрода.

Решая уравнение относительно ф х, получаем:

В качестве электродов сравнения чаще всего применяют хлор-серебряный и каломельный электроды. Хлорсеребряный электрод - это серебряная проволочка, покрытая слоем AgCl и погруженная в раствор соляной кислоты или ее соли. При замкнутой цепи на нем протекает реакция:

Каломельный электрод представляет собой ртуть, покрытую взвесью каломели Hg 2 Cl 2 в растворе КС1. Потенциалы этих электродов воспроизводятся с высокой точностью. На рис. 85 изображена цепь с каломельным электродом.

Для того чтобы найти значение электродного потенциала, необходимо измерить не напряжение работающего элемента, а именно его э. д. с. При измерениях э. д. с. сопротивление внешней цепи (т.е. измерительного устройства) очень велико. Реакция в элементе при этом практически не протекает. Таким образом, электродные потенциалы отвечают обратимому протеканию процессов или, что то же самое, состоянию электрохимического равновесия на электродах. Поэтому электродные потенциалы часто называют равновесными электродными потенциалами или просто равновесными потенциалами.

Ниже представлено общее уравнение электродного потенциала в важнейших случаях.

1. Электродный процесс выражается уравнением

где M обозначает атомы какого-либо металла, М г+ - его 2-зарядные ионы.

К этому случаю относятся оба электрода медно-цинкового элемента и вообще любой металлический электрод в растворе соли этого же металла. Здесь окисленной формой металла являются его ионы, а воестановленной - атомы. Следовательно, [Ох] = [М 2+ ], a = const, так как концентрация атомов в металле при постоянной температуре - величина постоянная. Включая значение этой постоянной в величину ф°, получим:

Например, для процесса а для процесса

2. Электродный процесс выражается уравнением:

В этом случае и окисленная (М), и восстановленная (M) формы металла находятся в растворе и их концентрации - величины переменные. Поэтому

Например, для процесса

В этом и в рассматриваемых ниже случаях электрод, на котором протекает электродный процесс, изготовляется из инертного материала. Чаще всего в качестве такого материала применяют платину.

Мы рассмотрели примеры, когда в электродных процессах принимали участие только ионы, состоящие из одного элемента. Однако часто окисляющееся или восстанавливающееся вещество состоит не из одного, а из двух или большего числа элементов. Чаще всего в составе окислителя содержится кислород; при этом в электродном процессе обычно принимают участие также вода и продукты ее диссоциации - ионы водорода (в кислой среде) или гидроксид-ионы (в щелочной среде). Рассмотрим, как будут выглядеть в таких случаях уравнения потенциалов электродных процессов.

3. Электродный процесс выражается уравнением:

Эта полуреакция (при протекании ее в сторону восстановления) играет очень большую роль при коррозии металлов (см. § 196). Кислород - самый распространенный окислитель, вызывающий коррозию металлов в водных средах.

В рассматриваемом электродном процессе в результате восстановления кислорода, протекающего с участием ионов водорода, образуется вода. Следовательно, = 2 , а [Ох] = 4 . Концентрацию воды в разбавленных растворах можно считать постоянной. Концентрация кислорода в растворе пропорциональна его парциальному давлению над раствором ( = kp 02). Выполнив необходимые преобразования и обозначив сумму постоянных величин через ф°, получим:

Для рассматриваемого процесса ф° = 1,228 В, следовательно

При парциальном давлении кислорода, равном нормальному атмосферному давлению (которое условно принимается равным единице), Ig Pq 2 = 0, и последнее уравнение принимает вид

4. Для электродных процессов, записываемых более сложными уравнениями, в выражениях для потенциалов содержится большее число переменных концентраций. Рассмотрим, например, электродный процесс:

Эта полуреакция протекает (в сторону восстановления) при взаимодействии перманганата калия с большинством восстановителей в кислой среде.

Концентрации всех веществ, участвующих в рассматриваемом электродном процессе, кроме воды, - величины переменные. Для этого процесса ф° = 1,507 В. Уравнение электродного потенциала имеет вид:

Примеры 3 и 4 показывают, что в случае электрохимических процессов, протекающих с участием воды, концентрация ионов водорода входит в числитель логарифмического члена уравнения потенциала. Поэтому электродные потенциалы таких процессов зависят от pH раствора и имеют тем большую величину, чем кислее раствор.

Как уже отмечалось, зависимость электродного потенциала от природы веществ - участников электродного процесса учитывается велиТаблица 18

Электродные потенциалы в водных растворах при 25 °С и при парциальном давлении газов, равном нормальному атмосферному давлению

Электродный процесс

Окончание

Электродный процесс

Уравнение электродного потенциала

чиной ср°. В связи с этим все электродные процессы принято располагать в ряд по величине их стандартных потенциалов. В табл. 18 уравнения важнейших электродных процессов и соответствующие электродные потенциалы приведены в порядке возрастания величин ср°.

Положение той или иной электрохимической системы в этом ряду характеризует ее окислительно-восстановительную способность. Под электрохимической системой здесь подразумевается совокупность всех веществ - участников данного электродного процесса.

Окислительно-восстановительная способность - понятие, характеризующее именно электрохимическую систему, но часто говорят и об окислительно-восстановительной способности того или иного вещества (или иона). При этом следует, однако, иметь в виду, что многие вещества могут окисляться или восстанавливаться до различных продуктов. Например, перманганат калия (ион MnOJ) может в зависимости от условий, прежде всего от pH раствора, восстанавливаться либо до иона Mn 2+ , либо до MnO 2 , либо до иона МпО|“.

Соответствующие электродные процессы выражаются уравнениями:

Поскольку стандартные потенциалы этих трех электродных процессов различны (см. табл. 18), то различно и положение этих трех систем в ряду ср°. Таким образом, один и тот же окислитель (MnOJ) может занимать в ряду стандартных потенциалов несколько мест.

Элементы, проявляющие в своих соединениях только одну степень окисленности, имеют простые окислительно-восстановительные характеристики и занимают в ряду стандартных потенциалов мало мест. К их числу относятся в основном металлы главных подгрупп I-III групп периодической системы. Много же мест в ряду ср° занимают те элементы, которые образуют соединения различных степеней окисленности - неметаллы и многие металлы побочных подгрупп периодической системы.

Ряд стандартных электродных потенциалов позволяет решать вопрос о направлении самопроизвольного протекания окислительно-восстановительных реакций. Как и в общем случае любой химической реакции, определяющим фактором служит здесь знак изменения энергии Гиббса реакции. Если из двух электрохимических систем составить гальванический элемент, то при его работе электроны будут самопроизвольно переходить от отрицательного полюса элемента к положительному, т.е. от электрохимической системы с более низким значением электродного потенциала к системе с более высоким его значением. Но это означает, что первая из этих систем будет выступать в качестве восстановителя, а вторая - в качестве окислителя. Следовательно, в гальваническом элементе окислительно-восстановительная реакция может самопроизвольно протекать в таком направлении, при котором электрохимическая система с более высоким значением электродного потенциала выступает в качестве окислителя, т.е. восстанавливается. При непосредственном взаимодействии веществ возможное направление реакции будет, конечно, таким же, как и при ее осуществлении в гальваническом элементе.

Если окислитель и восстановитель расположены далеко друг от друга в ряду ср°, то направление реакции практически полностью определяется их взаимным положением в этом ряду. Например, цинк (ф° = -0,763 В) будет вытеснять медь (ф° = +0,337 В) из водного раствора ее соли при любой практически осуществимой концентрации этого раствора. Если же величины ф° для окислителя и восстановителя близки друг к другу, то при решении вопроса о направлении самопроизвольного протекания реакции необходимо учитывать влияние на электродные потенциалы также и концентраций соответствующих веществ. Например, реакция

может самопроизвольно идти как слева направо, так и справа налево. Направление ее протекания определяется концентрациями ионов железа и ртути. В этой реакции участвуют две электрохимические системы:

Соответствующим электродным процессам отвечают потенциалы:

Величины Cp 1 и ср 2 при моль/1000

г H 2 O равны соответственно:

Таким образом, при взятом соотношении концентраций Cp 1 > ср 2 и реакция протекает слева направо.

Теперь подсчитаем Cp 1 и ср 2 при обратном соотношении концентраций. Пусть

Следовательно, при этих концентрациях ср 2 > Cp 1 и реакция протекает справа налево.

Если окислительно-восстановительная реакция протекает с участием воды и ионов водорода или гидроксид-ионов, то необходимо учитывать также величину pH среды.

В табл. 18 включено 39 полуреакций; комбинируя их друг с другом, можно решить вопрос о направлении самопроизвольного протекания 39 38/2 = 741 реакции.

Пример. Установить направление возможного протекания реакции:

Запишем уравнение реакции в ионно-молекулярной форме:

В табл. 18 находим стандартные электродные потенциалы электрохимических систем, участвующих в реакции:

Окислителем всегда служит электрохимическая система с более высоким значением электродного потенциала. Поскольку здесь ср 2 ° значительно больше, чем Cp 1 0 , то практически при любых концентрациях взаимодействующих веществ бромид-ион будет служить восстановителем и окисляться диоксидом свинца: реакция будет самопроизвольно протекать слева направо.

Чем дальше находится та или иная система в ряду стандартных потенциалов, т.е. чем больше ее стандартный потенциал, тем более сильным окислителем является ее окисленная форма. И, наоборот, чем раньше расположена система в ряду, т.е. чем меньше значение ср°, тем более сильный восстановитель ее восстановленная форма. Действительно, среди окисленных форм систем конца ряда мы находим такие сильные окислители, как F 2 , H 2 O 2 , МП4. Самые же сильные восстановители - восстановленные формы систем начала ряда: щелочные и щелочноземельные металлы.

При протекании окислительно-восстановительных реакций концентрации исходных веществ падают, а продуктов реакции - возрастают. Это приводит к изменению величин потенциалов обеих полуре- акций: электродный потенциал окислителя падает, а электродный потенциал восстановителя возрастает. Когда потенциалы обоих процессов становятся равными друг другу, реакция заканчивается - наступает состояние химического равновесия.

  • Строго говоря, величина электродного потенциала зависит от соотношения неконцентраций, а активностей (см. § 86) веществ; во всех рассматриваемых далее уравнениях вместо концентрации должна стоять активность. Но при невысоких концентрациях растворов погрешность, вносимая заменой активности на концентрацию, невелика.