Импульс тела определение. Закон сохранения импульса

Инструкция

Найдите массу движущегося тела и измерьте его движения. После его взаимодействия с другим телом, у исследуемого тела изменится скорость. В этом случае от конечной (после взаимодействия) отнимите начальную скорость и умножьте разность на массу тела Δp=m∙(v2-v1). Мгновенную скорость измерьте радаром, массу тела - весами. Если после взаимодействия тело начало двигаться в сторону, противоположную той, кода двигалось до взаимодействия, то конечная скорость будет отрицательной. Если положительное – он вырос, если отрицательное – уменьшился.

Поскольку причиной изменения скорости любого тела является сила, то она же и является причиной изменения импульса. Чтобы рассчитать изменение импульса любого тела, достаточно найти импульс силы, действовавшей на данное тело в некоторого времени. С помощью динамометра измерьте силу, которая заставляет тело изменять скорость, придавая ему ускорение. Одновременно с помощью секундомера измерьте время, которое эта сила действовала на тело. Если сила заставляет тело двигаться , то считайте ее положительной, если же тормозит его движение – считайте ее отрицательной. Импульс силы, равный изменению импульса будет произведению силы на время ее действия Δp=F∙Δt.

Определение мгновенной скорости спидометром или радаром Если движущееся тело оборудовано спидометром (), то на его шкале или электронном табло будет непрерывно отображаться мгновенная скорость в данный момент времени. При наблюдении за телом с неподвижной точки (), направьте на него сигнал радара, на его табло отобразится мгновенная скорость тела в данный момент времени.

Видео по теме

Сила – это физическая величина, действующая на тело, которая, в частности, сообщает ему некоторое ускорение. Чтобы найти импульс силы , нужно определить изменение количества движения, т.е. импульс а самого тела.

Инструкция

Движение материальной точки воздействием некоторой силы или сил, которые придают ей ускорение. Результатом приложения силы определенной величины в течение некоторого является соответствующее количество . Импульсом силы называется мера ее действия за определенный промежуток времени:Pс = Fср ∆t, гдеFср – средняя сила, действующая на тело;∆t – временной интервал.

Таким образом, импульс силы равен изменению импульс а тела:Pc = ∆Pт = m (v – v0), гдеv0 – начальная скорость;v – конечная скорость тела.

Полученное равенство отображает второй закон Ньютона применительно к инерциальной системе отсчета: производная функции материальной точки по времени равна величине постоянной силе, действующей на нее:Fср ∆t = ∆Pт → Fср = dPт/dt.

Суммарный импульс системы нескольких тел может измениться только под воздействием внешних сил, причем его значение прямо пропорционально их сумме. Это утверждение является следствием второго и третьего законов Ньютона. Пусть из трех взаимодействующих тел, тогда верно:Pс1 + Pc2 + Pc3 = ∆Pт1 + ∆Pт2 + ∆Pт3, гдеPci – импульс силы , действующей на тело i;Pтi – импульс тела i.

Это равенство показывает, что если сумма внешних сил нулевая, то общий импульс замкнутой системы тел всегда постоянен, несмотря на то, что внутренние силы

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона ) следует:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения ). Импульс тела - векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с) .

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы . Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом:

И зменение импульса тела (количества движения) равно импульсу силы .

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси OY ). Пусть тело свободно падает с начальной скоростью υ 0 под действием силы тяжести; время падения равно t . Направим ось OY вертикально вниз. Импульс силы тяжести F т = mg за время t равен mgt . Этот импульс равен изменению импульса тела

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения . В этом примере сила оставалась неизменной по модулю на всем интервале времени t . Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы F ср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Выберем на оси времени малый интервал Δt , в течение которого сила F (t ) остается практически неизменной. Импульс силы F (t ) Δt за время Δt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до t разбить на малые интервалы Δt i , а затем просуммировать импульсы силы на всех интервалах Δt i , то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Δt i → 0) эта площадь равна площади, ограниченной графиком F (t ) и осью t . Этот метод определения импульса силы по графику F (t ) является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции F (t ) на интервале .

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t 1 = 0 с до t 2 = 10 с равен:

В этом простом примере

В некоторых случаях среднюю силу F ср можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой 0,415 кг может сообщить ему скорость υ = 30 м/с. Время удара приблизительно равно 8·10 -3 с.

Импульс p , приобретенный мячом в результате удара есть:

Следовательно, средняя сила F ср, с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов , на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью под углом α к нормали (ось OX ) и отскочил от нее со скоростью под углом β. Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

При нормальном падении мяча массой m на упругую стенку со скоростью ,после отскока мяч будет иметь скорость . Следовательно, изменение импульса мяча за время отскока равно

В проекциях на ось OX этот результат можно записать в скалярной форме Δp x = -2m υx . Ось OX направлена от стенки (как на рис. 1.16.2), поэтому υx < 0 и Δp x > 0. Следовательно, модуль Δp изменения импульса связан с модулем υ скорости мяча соотношением Δp = 2m υ.

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона ) следует:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения ). Импульс тела – векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с) .

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы . Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом:

И зменение импульса тела (количества движения) равно импульсу силы .

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси OY ). Пусть тело свободно падает с начальной скоростью υ 0 под действием силы тяжести; время падения равно t . Направим ось OY вертикально вниз. Импульс силы тяжести F т = mg за время t равен mgt . Этот импульс равен изменению импульса тела

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения . В этом примере сила оставалась неизменной по модулю на всем интервале времени t . Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы F ср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Выберем на оси времени малый интервал Δt , в течение которого сила F (t ) остается практически неизменной. Импульс силы F (t ) Δt за время Δt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до t разбить на малые интервалы Δt i , а затем просуммировать импульсы силы на всех интервалах Δt i , то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Δt i → 0) эта площадь равна площади, ограниченной графиком F (t ) и осью t . Этот метод определения импульса силы по графику F (t ) является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции F (t ) на интервале .

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t 1 = 0 с до t 2 = 10 с равен:

В этом простом примере

В некоторых случаях среднюю силу F ср можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой 0,415 кг может сообщить ему скорость υ = 30 м/с. Время удара приблизительно равно 8·10 –3 с.

Импульс p , приобретенный мячом в результате удара есть:

Следовательно, средняя сила F ср, с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов , на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью под углом α к нормали (ось OX ) и отскочил от нее со скоростью под углом β. Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

При нормальном падении мяча массой m на упругую стенку со скоростью ,после отскока мяч будет иметь скорость . Следовательно, изменение импульса мяча за время отскока равно

В проекциях на ось OX этот результат можно записать в скалярной форме Δp x = –2m υx . Ось OX направлена от стенки (как на рис. 1.16.2), поэтому υx < 0 и Δp x > 0. Следовательно, модуль Δp изменения импульса связан с модулем υ скорости мяча соотношением Δp = 2m υ.

Импульс в физике

В переводе с латинского «импульс» означает «толчок». Эту физическую величину называют также «количеством движения». Она была введена в науку примерно в то же время, когда были открыты законы Ньютона (в конце XVII века).

Разделом физики, изучающим движение и взаимодействие материальных тел, является механика. Импульс в механике – это векторная величина, равная произведению массы тела на его скорость: p=mv. Направления векторов импульса и скорости всегда совпадают.

В системе СИ за единицу импульса принимают импульс тела массой 1 кг, которое движется со скоростью 1 м/с. Поэтому единица импульса в СИ – это 1 кг∙м/с.

В расчетных задачах рассматривают проекции векторов скорости и импульса на какую-либо ось и используют уравнения для этих проекций: к примеру, если выбрана ось x, тогда рассматривают проекции v(x) и p(x). По определению импульса, эти величины связаны соотношением: p(x)=mv(x).

В зависимости от того, какая выбрана ось и куда она направлена, проекция вектора импульса на нее может быть как положительной, так и отрицательной величиной.

Закон сохранения импульса

Импульсы материальных тел при их физическом взаимодействии могут меняться. Например, при столкновении двух шариков, подвешенных на нитях, их импульсы взаимно изменяются: один шарик может прийти в движение из неподвижного состояния или увеличить свою скорость, а другой, наоборот, уменьшить скорость или остановиться. Однако в замкнутой системе, т.е. когда тела взаимодействуют только между собой и не подвергаются воздействию внешних сил, векторная сумма импульсов этих тел остается постоянной при любых их взаимодействиях и движениях. В этом заключается закон сохранения импульса. Математически его можно вывести из законов Ньютона.

Закон сохранения импульса применим также к таким системам, где какие-то внешние силы действуют на тела, но их векторная сумма равна нулю (например, сила тяжести уравновешивается силой упругости поверхности). Условно такую систему тоже можно считать замкнутой.

В математической форме закон сохранения импульса записывается так: p1+p2+…+p(n)=p1’+p2’+…+p(n)’ (импульсы p – векторы). Для системы из двух тел это уравнение выглядит как p1+p2=p1’+p2’, или m1v1+m2v2=m1v1’+m2v2’. К примеру, в рассмотренном случае с шариками суммарный импульс обоих шаров до взаимодействия будет равен суммарному импульсу после взаимодействия.

Пуля 22-го калибра имеет массу всего 2 г. Если кому-нибудь бросить такую пулю, то он легко сможет поймать ее даже без перчаток. Если же попытаться поймать такую пулю, вылетевшую из дула со скоростью 300 м/с, то даже перчатки тут не помогут.

Если на тебя катится игрушечная тележка, ты сможешь остановить ее носком ноги. Если на тебя катится грузовик, следует уносить ноги с его пути.


Рассмотрим задачу, которая демонстрирует связь импульса силы и изменения импульса тела.

Пример. Масса мяча равна 400 г, скорость, которую приобрел мяч после удара - 30 м/с. Сила, с которой нога действовала на мяч - 1500 Н, а время удара 8 мс. Найти импульс силы и изменение импульса тела для мяча.


Изменение импульса тела

Пример. Оценить среднюю силу со стороны пола, действующую на мяч во время удара.

1) Во время удара на мяч действуют две силы: сила реакции опоры , сила тяжести .

Сила реакции изменяется в течение времени удара, поэтому возможно найти среднюю силу реакции пола.

2) Изменение импульса тела изображено на рисунке

3) Из второго закона Ньютона

Главное запомнить

1) Формулы импульса тела, импульса силы;
2) Направление вектора импульса;
3) Находить изменение импульса тела

Вывод второго закона Ньютона в общем виде

График F(t). Переменная сила

Импульс силы численно равен площади фигуры под графиком F(t).


Если же сила непостоянная во времени, например линейно увеличивается F=kt , то импульс этой силы равен площади треугольника. Можно заменить эту силу такой постоянной силой, которая изменит импульс тела на ту же величину за тот же промежуток времени

Средняя равнодействующая сила

ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА

Тестирование онлайн

Замкнутая система тел

Это система тел, которые взаимодействуют только друг с другом. Нет внешних сил взаимодействия.

В реальном мире такой системы не может быть, нет возможности убрать всякое внешнее взаимодействие. Замкнутая система тел - это физическая модель, как и материальная точка является моделью. Это модель системы тел, которые якобы взаимодействуют только друг с другом, внешние силы не берутся во внимание, ими пренебрегают.

Закон сохранения импульса

В замкнутой системе тел векторная сумма импульсов тел не изменяется при взаимодействии тел. Если импульс одного тела увеличился, то это означает, что у какого-то другого тела (или нескольких тел) в этот момент импульс уменьшился ровно на такую же величину.

Рассмотрим такой пример. Девочка и мальчик катаются на коньках. Замкнутая система тел - девочка и мальчик (трением и другими внешними силами пренебрегаем). Девочка стоит на месте, ее импульс равен нулю, так как скорость нулевая (см. формулу импульса тела). После того как мальчик, движущийся с некоторой скоростью, столкнется с девочкой, она тоже начнет двигаться. Теперь ее тело обладает импульсом. Численное значение импульса девочки ровно такое же, на сколько уменьшился после столкновения импульс мальчика.

Одно тело массой 20кг движется со скоростью , второе тело массой 4кг движется в том же направлении со скоростью . Чему равны импульсы каждого тела. Чему равен импульс системы?


Импульс системы тел - это векторная сумма импульсов всех тел, входящих в систему. В нашем примере, это сумма двух векторов (так как рассматриваются два тела), которые направлены в одну сторону, поэтому

Сейчас вычислим импульс системы тел из предыдущего примера, если второе тело двигается в обратном направлении.


Так как тела двигаются в противоположных направлениях, получаем векторную сумму импульсов разнонаправленных. Подробнее о сумме векторов .

Главное запомнить

1) Что такое замкнутая система тел;
2) Закон сохранения импульса и его применение