Математик представил решение гипотезы Римана. Почему научное сообщество его критикует

Знаменитый британский математик Майкл Атья, профессор Оксфордского, Кембриджского и Эдинбургского институтов и лауреат почти десятка престижных премий в области математики, представил доказательство гипотезы , одной из «задач тысячелетия». Доказательство занимает всего 15 строк, а вместе с введением и списком литературы — пять страниц. Текст Атья выложил на сервисе Drive.

Гипотеза о распределении нулей дзета-функции Римана была сформулирована математиком Бернхардом Риманом в 1859 году.

Она описывает, как расположены на числовой прямой простые числа.

В то время как не найдено какой-либо закономерности, описывающей распределение простых чисел среди натуральных, Риман обнаружил, что количество простых чисел, не превосходящих x, — функция распределения простых чисел, обозначаемая π(x) — выражается через распределение так называемых «нетривиальных нулей» дзета-функции.

Гипотеза Римана утверждает, что все нетривиальные нули дзета-функции лежат на вертикальной линии Re=0,5 комплексной плоскости. Гипотеза Римана важна не только для чистой математики — дзета-функция постоянно всплывает в практических задачах, связанных с простыми числами, например, в криптографии.

По словам Атьи, решение он нашел, экспериментируя с постоянной тонкой структуры — фундаментальной физической постоянной, характеризующей силу электромагнитного взаимодействия. Она определяет размер очень малого изменения величины (расщепления) энергетических уровней атома и, следовательно, образования тонкой структуры — набора узких и близких частот в его спектральных линиях.

Гипотеза Римана входит в список семи «задач тысячелетия», за решение каждой из которых Математический институт Клэя в США обязывается выплатить награду в один миллион долларов США.

Если доказательство будет подтверждено, Атья получит награду.

Математический институт Клэя объявил о своем решении отдать премию Перельману 19 марта 2010 года. Работы, за которые математик удостоился награды, были написаны им в 2002 году, причем они были выложены в архив электронных препринтов, а не напечатаны в рецензируемом научном журнале. В своих выкладках Перельман завершил доказательство гипотезы геометризации Терстона, которая прямо связана с гипотезой Пуанкаре.

В 2005 году за эти работы Перельману была присуждена Филдсовская премия, которую часто называют Нобелевской премией для математиков. От этой награды российский математик также отказался.

В 2014 году математик из Казахстана Мухтарбай Отелбаев , что решил еще одну из «задач тысячелетия» — нашел условия системы уравнений Навье — Стокса, при которых для каждого набора параметров имеется единственное решение. Уравнения Навье — Стокса — система дифференциальных уравнений в частных производных, описывающая движение вязкой ньютоновской жидкости. Уравнения Навье — Стокса являются одними из важнейших в гидродинамике и применяются в математическом моделировании многих природных явлений и технических задач.

Для того чтобы признать решение Отелбаева верным, научное сообщество должно его проверить. Пока что результаты проверки неизвестны.

В 2010 году американский математик индийского происхождения Винай Деолаликар , что решил еще одну из задач тысячелетия — нашел доказательство неравенства классов сложности P и NP.

Данная проблема состоит в следующем: если положительный ответ на какой-то вопрос можно быстро проверить (за полиномиальное время), то правда ли, что ответ на этот вопрос можно быстро найти (за полиномиальное время и используя полиномиальную память), то есть действительно ли задачу легче проверить, чем решить?

Данных о том, что научное сообщество признало доказательство верным, пока что нет.

Я хотел более подробно рассказать о вроде бы доказанной недавно гипотезе Анри Пуанкаре, но потом решил «расширить задачу» и в сжатом виде рассказать «обо всём» . Итак, математический институт Клея в Бостоне в 2000 году определил «семь задач тысячелетия» и назначил премии в миллион долларов за решение каждой из них. Вот они:

1. Гипотеза Пуанкаре
2. Гипотеза Римана
3. Уравнение Навье-Стокса
4. Гипотеза Кука
5. Гипотеза Ходжа
6. Теория Янга-Миллиса
7. Гипотеза Берча-Свиннертона-Дайера

Про гипотезу Пуанкаре мы поговорим в следующий раз, сейчас в общих чертах расскажем о других проблемах

Гипотеза Римана (1859 г.)

Все знают что такое простые числа — это числа делящиеся на 1 и на самих себя. Т.е. 1, 2, 3, 5, 7, 11, 13, 17, 19 и т.д. Но что интересно, обозначить какую-либо закономерность в их размещении пока что оказывалось невозможным.
Так, считается, что в окрестности целого числа х среднее расстояние между последовательными простыми числами пропорционально логарифму х. Тем не менее, уже давно известны так называемые парные простые числа (простые числа-близнецы, разность между которыми равна 2, например 11 и 13, 29 и 31, 59 и 61. Иногда они образуют целые скопления, например 101, 103, 107, 109 и 113. Если такие скопления будут найдены и в области очень больших простых чисел, то стойкость криптографических ключей, используемых в настоящее время, может в одночасье оказаться под очень большим вопросом.
Риман предложил свой вариант, удобный для выявления больших простых чисел. Согласно ему, характер распределения простых чисел может существенно отличаться от предполагаемого в настоящее время. Риман обнаружил, что число P(x) простых чисел, не превосходящих x, выражается через распределение нетривиальных нулей дзета-функции Римана Z(s). Риман высказал гипотезу, не доказанную и не опровергнутую до сих пор, что все нетривиальные нули дзета-функции лежат на прямой линии R(z) = (1/2). (Извините, но я не знаю как изменить кодировку чтоб показывались греческие буквы).
В общем, доказав гипотезу Римана (если это вообще возможно) и подобрав соответствующий алгоритм, можно будет поломать многие пароли и секретные коды.

Уравнение Навье-Стокса. (1830 г.)

Нелинейный дифур описывающий тепловую конвекцию жидкостей и воздушных потоков. Является одним из ключевых уравнений в метеорологии.

p — давление
F – внешняя сила
r (ро) — плотность
n (ню)- вязкость
v — комплексная скорость

Наверное, его точное аналитическое решение интересно с чисто математической точки зрения, но приближенные методы решения давно существуют. Как обычно в таких случаях, нелинейный дифур разбивают на несколько линейных, другое дело что решения системы линейных дифуров оказалось необычайно чувствительным к начальным условиям. Это стало очевидно когда с введением компьютеров стало возможно обрабатывать большие массивы данных. Так в 1963 году американский метеоролог из Массачусетского технологического института Эдвард Лоренц задался вопросом: почему стремительное совершенствование компьютеров не привело к воплощению в жизнь мечты метеорологов – достоверному среднесрочному (на 2-3 недели вперед) прогнозу погоды? Эдвард Лоренц предложил простейшую модель, состоящую из трех обыкновенных дифференциальных уравнений, описывающую конвекцию воздуха, просчитал ее на компьютере и получил поразительный результат. Этот результат – динамический хаос – есть сложное непериодическое движение, имеющее конечный горизонт прогноза, в детерминированных системах (то есть в таких, где будущее однозначно определяется прошлым). Так был открыт странный аттрактор. Пpичина непpедсказуемости поведения этой и дpугих подобных систем заключается в не в том, что не веpна математическая теоpема о существовании и единственности pешения пpи заданных начальных условиях, а именно в необычайной чувствительности pешения к этим начальным условиям. Близкие начальные условия со вpеменем пpиводят к совеpшенно pазличному конечному состоянию системы. Пpичем часто pазличие наpастает со вpеменем экспоненциально, то есть чpезвычайно быстpо.

Гипотеза Кука (1971 г.)

Насколько быстро можно проверить конкретный ответ – вот нерешенная проблемой логики и компьютерных вычислений! Она была сформулирована Стивеном Куком следующим образом: «может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки?». Ршение этой проблемы могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных и продвинуть разработку алгоритма т.н. «квантовых компьютеров» что опять-таки поможет в ускорении алгоритма решения задач связанных с перебором кодов (например, тот же взлом паролей).
Пусть задана функция от 10000 переменных: f (х 1 …х 10000 ), для простоты примем что переменные могут принимать значения 0 или 1, результат функции тоже 0 или 1. Существует алгоритм, вычисляющий эту функцию для любого заданного набора аргументов за достаточно малое время (допустим, за t=0,1 сек).
Требуется узнать, существует ли набор аргументов, на котором значение функции равно 1. При этом сам набор аргументов, на котором функция равна 1, нас не интересует. Нам просто надо знать есть он или нет. Что мы можем сделать? Самое простое – взять и тупо перебрать всю последовательность от 1 до 10000 во всех комбинациях вычисляя значение функции на разных наборах. В самом неблагоприятном случае мы на это потратим 2 tN или 2 1000 секунд что во много раз больше возраста Вселенной.
Но если мы знаем природу функции f, то
можно сократить перебор, отбросив наборы аргументов, на которых функция заведомо равна 0. Для многих реальных задач это позволят решить их за приемлемое время. В то же время есть задачи (так называемые NP-полные задачи), для которых даже после сокращения перебора, общее время решения остается неприемлемым.

Теперь, что касается физической стороны. Известно, что квант
может находиться в состоянии 0 или 1 с какой-то вероятностью. И что интересно, можно узнать, в каком из состояний она находится:

A: 0 с вероятностью 1
В: 1 с вероятностью 1
С: 0 с вероятностью р, 1 с вероятностью 1-р

Суть вычислений на квантовом компьютере состоит в том, чтобы взять 1000 квантов в состоянии С и подать их на вход функции f. Если на выходе будет получен квант в состоянии А, это значит, что на всех возможных наборах f=0. Ну а если на выходе будет получен квант в состоянии
B или С, это значит, что существует набор, на котором f=1.
Очевидно. что «квантовый компьютер» значительно ускорит задачи связанные с перебором данных, но будет малоэффективен в плане ускорения записи или считывания данных.

Теория Янга-Миллса

Вот это, наверное, единственный из обозначенных семи вопросов имеющих по-настоящему фундаментальное значение. Решение его существенно продвинет создание «единой теории поля», т.е. выявлению детерминированной связи между четырьмя известными типами взаимодействий

1. Гравитационным
2. Электромагнитным
3. Сильным
4. Слабым

В 1954 году Янг Чжэньнин (представитель желтой корневой расы) и Роберт Миллс предложили теорию, в соответствии с которой были объединены электромагнитное и слабое взаимодействие (Глэшоу, Вайнберг, Салам — Ноб. Премия 1979). Более того, она до сих пор служит основой квантовой теории поля. Но здесь уже начал давать сбой математический аппарат. Дело в том, что «квантовые частицы» ведут себя совсем не так как «большие тела» в ньютоновской физике. И хотя есть общие моменты, например, заряженная частица создает электромагнитное поле, а частица с ненулевой массой — гравитационное; или, например, частица эквивалентна совокупности полей, которые она создает, ведь любое взаимодействие с другими частицами производится посредством этих полей; с точки зрения физики, рассматривать поля, порожденные частицей, — то же, что рассматривать саму частицу.
Но это так сказать «в первом приближении».
При квантовом подходе одну и ту же частицу можно описывать двумя разными способами: как частицу с некоторой массой и как волну с некоторой длиной. Единая частица-волна описывается не своим положением в пространстве, а волновой функцией (обычно обозначаемой как Y), и ее местонахождение имеет вероятностную природу — вероятность обнаружить частицу в данной точке x в данное время t равна Y = P(x,t)^2. Казалось бы ничего необычного, но на уровне микрочастиц возникает следующий «неприятный» эффект — если на частицу действуют несколько полей сразу, их совокупный эффект уже нельзя разложить на действие каждого из них поодиночке, классический принцип суперпозиции не работает. Так получается потому, что в этой теории друг к другу притягиваются не только частицы материи, но и сами силовые линии поля. Из-за этого уравнения становятся нелинейными и весь арсенал математических приёмов для решения линейных уравнений к ним применить нельзя. Поиск решений и даже доказательство их существования становятся несравнимо более сложной задачей.
Вот почему решить ее «в лоб», наверное, невозможно, во всяком случае, теоретики выбрали другой путь. Так, опираясь на выводы Янга и Миллза Мюррей Гелл-Манн построил теорию сильного взаимодействия (Ноб. премия).
Главная «фишка» теории – введение частиц с дробным электрическим зарядом – кварков.

Но чтобы математически «привязать» к друг другу электромагнитное, сильное и слабое взаимодействие, нужно чтобы выполнились три условия:

1. Наличие «щели» в спектре масс, по английский — mass gap
2. Кварковый конфайнмент: кварки заперты внутри адронов и принципиально не могут быть получены в свободном виде
3. Нарушения симметрии

Эксперименты показали, что эти условия в реале выполняются, но строгого математического доказательства – нет. Т.е. по сути, нужно теорию Я-М адаптировать к 4-мерному пространству обладающими тремя означенными свойствами. По мне, так это задача тянет куда больше чем на миллион. И хотя в существовании кварков ни один приличный физик не сомневается, эксперементально их обнаружть не удалось. Предполагается что на на масштабе 10 -30 между электромагнитным, сильным и слабым взаимодействием утрачивается какое-либо различие (т.н. «Великое Объединение»), другое дело что нужная для таких экспериментов энергия (более 10 16 ГэВ) не может быть получена на ускорителях. Но вы не волнуйтесь — проверка Великого Объединения — дело ближайших лет, если, конечно, на человечество не свалятся какие-нибудь избыточные проблемы. Физики уже разработали проверочный эксперимент связанный с нестабильностью протона (следствие теории Я-М). Но эта тема выходит за рамки нашего сообщения.

Ну и будем помнить, что это еще не всё. Остается последний бастион – гравитация. О ней мы реально ничего не знаем, кроме того, что «все притягивается» и «искривляется пространство-время». Понятно, что все силы в мире сводятся к одной суперсиле или, как говорят, «Суперобъединению». Но какой принцип суперобъединения? Алик Эйнштейн считал что этот принцип геометрический, как и принцип ОТО. Вполне может быть. Т.е. физика на самом начальном уровне — всего лишь геометрия.

Гипотеза Берча и Свиннертон-Дайера

Помните Большую Теорему Ферма, вроде бы доказанную каким-то инглизом в 1994 году? 350 лет на это потребовалось! Так вот теперь проблема получила продолжение — нужно описать все решения в целых числах
x, y, z алгебраических уравнений, то есть уравнений от нескольких переменных
с целыми коэффициентами. Примером алгебраического уравнения является уравнение
x 2 + y 2 = z 2 . Евклид дал полное описание
решений этого уравнения, но для более сложных уравнений получение решения
становится чрезвычайно трудным (например, доказательство отсутствия целых
решений уравнения x n + y n = z n).
Берч и Свиннертон-Дайер предположили, что число решений определяется значением связанной с уравнением дзета-функци ζ(s) в точке 1: если значение дзета-функции ζ(s) в точке 1 равно 0, то имеется бесконечное число решений, и наоборот, если не равно 0, то имеется только конечное число таких решений. Здесь задача, кстати, перекликается с гипотезой Римана, только там исследовалось распределение нетривиальных нулей дзета-функции ζ(s)

Гипотеза Ходжа
Наверное самая абстрактная тема.
Как известно, для описания свойств сложных геометрических объектов их свойства аппроксимируются. Ну например шар (хотя он совсем несложный) можно представить как поверхность состоящую из маленьких квадратиков. Но если имеются поверхности более сложные, то возникает вопрос, до какой степени мы можем аппроксимировать форму данного объекта, склеивая вместе простые тела возрастающей размерности? Этот метод оказался эффективным при описании разнообразных объектов встречающихся в математике, но в некоторых случаях было необходимо прибавлять части, которые не имели никакого геометрического истолкования.
Я просмотрел на эту тему заумную книжку Гельфанда-Манина, там описывается теория Ходжа для гладких некомпактных образований, но честно говоря мало что понял, я вообще аналитическую геометрию как то не очень понимаю. Там смысл в том, что интегралы по некоторым циклам можно вычислить через вычеты, а это современные компы хорошо умеют.
Сама гипотеза Ходжа состоит в том, что для некоторых типов пространств, называемых проективными алгебраическими многообразиями, т.н. циклы Ходжа являются комбинациями объектов, имеющих геометрическую интерпретацию, — алгебраических циклов.

Ответ редакции

Профессор Оксфордского, Кембриджского и Эдинбургского университетов, а также лауреат почти десятка престижных премий в области математики Майкл Фрэнсис Атья представил доказательство гипотезы Римана , одной из семи «проблем тысячелетия», которая описывает, как расположены на числовой прямой простые числа.

Доказательство Атьи небольшое, вместе с введением и списком литературы оно занимает пять страниц. Ученый утверждает, что нашел решение гипотезы, анализируя проблемы, связанные с постоянной тонкой структуры, а в качестве инструмента использовал функцию Тодда. Если научное сообщество сочтет доказательство корректным, то за него британец получит $1 млн от Института математики Клея (Clay Mathematics Institute, Кембридж, Массачусетс).

На приз претендуют также другие ученые. В 2015 году о решении гипотезы Римана заявлял профессор математики Опиеми Энох (Opeyemi Enoch) из Нигерии, а в 2016 году свое доказательство гипотезы представил российский математик Игорь Турканов . По словам представителей Института математики, для того чтобы достижение было зафиксировано, его необходимо опубликовать в авторитетном международном журнале с последующим подтверждением доказательства научным сообществом.

В чем суть гипотезы?

Гипотезу еще в 1859 году сформулировал немецкий математик Бернхард Риман . Он определил формулу, так называемую дзета-функцию, для количества простых чисел до заданного предела. Ученый выяснил, что нет никакой закономерности, которая бы описывала, как часто в числовом ряду появляются простые числа, при этом он обнаружил, что количество простых чисел, не превосходящих x , выражается через распределение так называемых «нетривиальных нулей» дзета-функции.

Риман был уверен в правильности выведенной формулы, однако он не мог установить, от какого простого утверждения полностью зависит это распределение. В результате он выдвинул гипотезу, которая заключается в том, что все нетривиальные нули дзета-функции имеют действительную часть, равную ½, и лежат на вертикальной линии Re=0,5 комплексной плоскости.

Доказательство или опровержение гипотезы Римана очень важно для теории распределения простых чисел, говорит аспирант факультета математики Высшей школы экономики Александр Калмынин . «Гипотеза Римана — это утверждение, которое эквивалентно некоторой формуле для количества простых чисел, не превосходящих данное число x . Гипотеза, например, позволяет достаточно быстро и с большой точностью посчитать количество простых чисел, не превосходящих, к примеру, 10 млрд. Это не единственная ценность гипотезы, потому что у нее есть еще целый ряд довольно далеко идущих обобщений, которые известны как обобщенная гипотеза Римана, расширенная гипотеза Римана и большая гипотеза Римана. Они имеют еще большее значение для разных разделов математики, но в первую очередь важность гипотезы определяется теорией простых чисел», — говорит Калмынин.

По словам эксперта, при помощи гипотезы можно решать ряд классических задач теории чисел: задачи Гаусса о квадратичных полях (проблема десятого дискриминанта), задачи Эйлера об удобных числах, гипотезу Виноградова о квадратичных невычетах и т. д. В современной математике данной гипотезой пользуются для доказательства утверждений о простых числах. «Мы сразу предполагаем, что верна какая-то сильная гипотеза типа гипотезы Римана, и смотрим, что получается. Когда у нас это получается, то мы задаемся вопросом: можем ли мы это доказать без предположения гипотезы? И, хотя такое утверждение пока за пределами того, чего мы можем достигнуть, оно работает как маяк. За счет того, что есть такая гипотеза, мы можем смотреть, куда нам двигаться», — говорит Калмынин.

Доказательство гипотезы также может повлиять на совершенствование информационных технологий, поскольку процессы шифрования и кодирования сегодня зависят от эффективности разных алгоритмов. «Если мы возьмем два простых больших числа по сорок знаков и перемножим, то у нас получится большое восьмидесятизначное число. Если поставить задачу разложить это число на множители, то это будет очень сложная вычислительная задача, на основе которой как раз построены многие вопросы информационной безопасности. Все они заключаются в создании разных алгоритмов, которые завязаны на сложностях подобного рода», — говорит Калмынин.

8 августа 1900 года на 2-м Международном конгрессе математиков в Париже один из величайших математиков современности Давид Гильберт сформулировал двадцать три задачи, которые во многом предопределили развитие математики XX столетия. В 2000 году специалисты из Clay Mathematics Institute решили, что грешно входить в новое тысячелетие, не наметив новую программу развития, -тем более что от двадцати трех проблем Гильберта остались лишь две[Еще две считаются слишком расплывчатыми или нематематическими, еще одна была решена частично, а по поводу еще одной - знаменитой континуум-гипотезы - консенсус пока не достигнут ()].

В результате появился знаменитый список из семи задач, за полное решение любой из которых обещан миллион долларов из специально учрежденного фонда. Чтобы получить деньги, нужно опубликовать решение и подождать два года; если в течение двух лет никто его не опровергнет (будьте уверены - попытаются), вы получите миллион вожделенных зеленых бумажек.
Я попытаюсь изложить суть одной из этих задач, а также постараюсь (в меру своих скромных сил) объяснить ее сложность и важность. Настойчиво рекомендую зайти на официальный сайт конкурса www.claymath.org/millennium ; опубликованные там описания проблем полны и интересны, и именно они стали главным источником при написании статьи.

Гипотеза Римана

Однажды один из моих научных руководителей, выдающийся петербургский алгебраист Николай Александрович Вавилов, начал занятие своего спецкурса с формулы

1 + 2 + 3 + 4 + 5 + … = –1/12.

Нет, занятие не было посвящено гипотезе Римана, и узнал я о ней вовсе не от Николая Александровича. Но формула, тем не менее, имеет к гипотезе самое прямое отношение. И что удивительно - это кажущееся абсурдным равенство действительно верно. Точнее сказать, не совсем оно, но дьявол деталей тоже вскоре будет удовлетворен.

В 1859 году Бернард Риман (Bernhard Riemann) опубликовал статью (или, как тогда выражались, мемуар), которой была суждена очень долгая жизнь. В ней он изложил совершенно новый метод асимптотической оценки распределения простых чисел. В основе метода лежала функция, связь которой с простыми числами обнаружил еще Леонард Эйлер, но которая все же получила имя математика, продолжившего ее на всю комплексную плоскость: так называемая дзета-функция Римана. Определяется она очень просто:

ς (s) = 1/1 s + 1/2 s + 1/3 s + 1/3 s + … .

Любой студент, прослушавший курс математического анализа, тут же скажет, что этот ряд сходится для всякого вещественного s > 1. Более того, он сходится и для комплексных чисел, вещественная часть которых больше единицы. Еще более того, функция ς (s) - аналитическая в этой полуплоскости.

Рассматривать формулу для отрицательных s кажется дурной шуткой: ну какой смысл складывать, например, все положительные целые числа или, тем более, их квадраты или кубы? Однако комплексный анализ - упрямая наука, и свойства дзета-функции таковы, что ее можно продолжить на всю плоскость. Это и было одной из идей Римана, изложенных в мемуаре 1859 года. У полученной функции только одна особая точка (полюс): s = 1, а, например, в отрицательных вещественных точках функция вполне определена. Именно значение аналитически продолженной дзета-функции в точке –1 и выражает формула, с которой я начал этот раздел.

(Специально для патриотов и неравнодушных к истории науки людей отмечу в скобках, что, хотя мемуар Бернарда Римана внес в теорию чисел много свежих идей, он не был первым исследованием, в котором распределение простых чисел изучалось аналитическими методами. Впервые это сделал наш соотечественник Пафнутий Львович Чебышёв, 24 мая 1848 года прочитавший в петербургской Академии наук доклад, в котором изложил ставшие классическими асимптотические оценки количества простых чисел.)

Но вернемся к Риману. Ему удалось показать, что распределение простых чисел - а это центральная проблема теории чисел - зависит от того, где дзета-функция обращается в нуль. У нее есть так называемые тривиальные нули - в четных отрицательных числах (–2, –4, –6, …). Задача состоит в том, чтобы описать все остальные нули дзета-функции.

Этот орешек вот уже полторы сотни лет не могут разгрызть самые талантливейшие математики планеты.

Правда, мало кто сомневается в том, что гипотеза Римана верна. Во-первых, численные эксперименты более чем убедительны; о последнем из них рассказывает статья Хавьера Гурдона (Xavier Gourdon), название которой говорит само за себя: «Первые 10 13 нулей дзета-функции Римана и вычисление нулей на очень большой высоте» (вторая часть названия означает, что предложен метод вычисления не только первых нулей, но и некоторых, пусть и не всех, более далеких, вплоть до нулей с номером около 10 24). Эта работа пока венчает более чем столетнюю историю попыток проверки гипотезы Римана для некоторого количества первых нулей. Разумеется, контрпримеров к гипотезе Римана не найдено. Кроме того, строго установлено, что больше 40% нулей дзета-функции гипотезе удовлетворяют.

Второй аргумент напоминает одно из доказательств существования Бога, опровергнутых еще Иммануилом Кантом. Если Риман все же ошибся, то неверной станет очень много красивой и правдоподобной математики, построенной в предположении, что гипотеза Римана правильна. Да, этот аргумент не имеет научного веса, но все же… математика - это наука, где красота играет ключевую роль. Красивое, но неверное доказательство сплошь и рядом оказывается полезнее, чем верное, но некрасивое. Так, например, из неудачных попыток доказать великую теорему Ферма выросло не одно направление современной алгебры. И еще одно эстетическое замечание: теорема, аналогичная гипотезе Римана, была доказана в алгебраической геометрии. Получившаяся теорема Делиня (Deligne) по праву считается одним из самых сложных, красивых и важных результатов математики XX столетия.
Итак, гипотеза Римана, по всей видимости, верна - но не доказана. Кто знает, возможно, сейчас этот журнал читает человек, которому суждено войти в историю математики, доказав гипотезу Римана. В любом случае, как и со всеми остальными великими задачами, сразу предупреждаю: не пытайтесь повторить эти трюки дома. Иными словами, не пытайтесь решать великие проблемы, не поняв теории, которая их окружает. Сэкономите нервы и себе, и окружающим.

На десерт - еще немного интересного о дзета-функции. Оказывается, у нее есть и практические применения, и даже физический смысл. Более того, и гипотеза Римана (точнее говоря, ее обобщение, считающееся столь же сложным, сколь и она сама) имеет прямые практические следствия. Например, одной из важных вычислительных задач является проверка чисел на простоту (дано число, нужно сказать, простое оно или нет). Самый теоретически быстрый на данный момент алгоритм решения этой задачи - тест Миллера-Рабина (Miller-Rabin test) - работает за время O(log 4 n), где n - данное число (соответственно log n - длина входа алгоритма). Однако доказательство того, что он работает так быстро, опирается на гипотезу Римана.

Впрочем, тест на простоту - не слишком сложная проблема с точки зрения теории сложности (в 2002 году был разработан не зависящий от гипотезы Римана алгоритм, который медленнее теста Миллера-Рабина, но тоже полиномиален). Раскладывать числа на простые сомножители гораздо интереснее (и прямые криптографические приложения налицо - стойкость схемы RSA зависит от того, можно ли быстро разложить число на простые), и здесь гипотеза Римана тоже является необходимым условием для доказательства оценок времени работы некоторых быстрых алгоритмов.

Обратимся к физике. В 1948 году голландский ученый Хендрик Казимир (Hendrik Casimir) предсказал эффект, носящий теперь его имя[Эффект Казимира долгое время оставался лишь изящной теоретической идеей; однако в 1997 году Стив Ламоро (Steve K. Lamoreaux), Умар Мохидин (Umar Mohideen) и Анушри Руа (Anushri Roy) смогли провести подтверждающие предшествующую теорию эксперименты]. Оказывается, если сблизить две незаряженные металлические пластины на расстояние в несколько атомных диаметров, они притянутся друг к другу за счет флуктуаций расположенного между ними вакуума - постоянно рождающихся пар частиц и античастиц. Этот эффект чем-то напоминает притяжение подплывших слишком близко друг к другу судов в океане (еще больше он напоминает теорию Стивена Хокинга о том, что черные дыры все же излучают энергию, - впрочем, тут трудно сказать, кто кого напоминает). Расчеты физической модели этого процесса показывают, что сила, с которой притягиваются пластины, должна быть пропорциональна сумме частот стоячих волн, возникающих между пластинами. Вы уже догадались - эта сумма сводится к сумме 1+2+3+4+…. И более того - правильным значением этой суммы для расчетов эффекта Казимира является именно –1/12.

Но и это еще не все. Некоторые исследователи считают, что дзета-функция играет важную роль… в музыке! Возможно[Я пишу «возможно», потому что единственный источник, который мне удалось разыскать, это переписка в usenet-конференции sci.math . Если вы (читатели) сможете найти более авторитетные источники, мне будет очень интересно об этом услышать], максимумы дзета-функции соответствуют значениям частот, которые могут служить хорошей основой для построения музыкальной шкалы (такой, как наш нотный стан). Что ж, Герман Гессе в своей «Игре в бисер» не зря объявил Игру комбинацией математики и музыки: между ними и впрямь много общего…

Энциклопедичный YouTube

    1 / 5

    ✪ #170. ГИПОТЕЗА РИМАНА - ПРОБЛЕМА ТЫСЯЧЕЛЕТИЯ!

    ✪ Science show. Выпуск 30. Гипотеза Римана

    ✪ Гипотеза Римана. Решена проблема тысячелетия (но это не точно) | трушин ответит #031 +

    ✪ Гипотеза Римана. Решена проблема тысячелетия (но это не точно). Часть II | трушин ответит #032 +

    ✪ Что доказал Григорий Перельман?

    Субтитры

    Если натуральное число имеет только два делителя - само себя и единицу, то его называют простым. Наименьшее простое число - это два, тройка тоже делится лишь на саму себя и на единичку, а вот дважды-два - четыре, и это число составное, из пяти квадратиков можно лишь составить прямоугольник со сторонами 5 и 1, а вот шесть квадратиков можно выстроить не только в один ряд, но еще и прямоугольником 2х3. Интерес к простым числам появился еще в древности: первые записи по теме, известные нам, относятся ко второму тысячелетию до нашей эры - древние египтяне знали толк в математике. В Античные времена Евклид доказал, что простых чисел - бесконечно много, а, кроме того, у него было представление об основной теореме арифметики. Эратосфен в свою очередь придумал (или по крайней мере зафиксировал) алгоритм поиска простых чисел. Это очень крутая штука, называемая решетом Эратосфена, смотрите: сейчас мы быстро с его помощью определим в первой сотне натуральных чисел все простые. Единичка не является простым по определению, двойка - первое простое: вычеркиваем все числа кратные ей, ведь они обязательно составные. Ну вот, кандидатов уже вдвое меньше! Берем следующее простое число - три, вычеркиваем все числа, кратные трем. Заметьте, пятерка выбивает не так уж и много чисел, ведь многие уже оказались кратны двум или трем. Но что самое удивительное - наш алгоритм можно закончить на числе семь! Подумайте, почему это так! И если догадались, напишите в комментариях, на каком числе можно закончить процедуру при работе с первом десятком тысяч натуральных чисел! Итак, всего в первой сотне у нас оказалось двадцать пять простых чисел. Хм… а сколько простых чисел в первой тысяче или, скажем, миллионе? Этот вопрос потревожил самые светлые умы человечества не на шутку, никому тогда даром не нужны была практическая польза криптографии: математика - это скорее разговор с Богом или, во всяком случае, один из способов его услышать. Ну а простые числа - это как в химии атомы и как в литературе алфавит. Ладно, ближе к теме! Эстафету древнегреческих ученых спустя века принимает вся Европа: разрабатывает теорию чисел Пьер Ферма, огромный вклад вносит Леонард Эйлер, ну и, конечно, кем только не составляются огромные таблицы простых чисел. Однако закономерность появления наших особых нумеров среди составных обнаружить не удается. И только лишь в конце 18-го века Гауссом и Лежандром выдвигается предположение, что замечательнейшая функция π(x), которая подсчитывала бы количество простых чисел, меньших либо равных действительному числу x, устроена следующим образом π(x)=x/lnx. Кстати, у нас в первой сотне сколько чисел оказалось простых? Двадцать пять, правильно? Даже для таких малых значений функция выдает на выходе адекватный к истине результат. Хотя речь, скорее о пределе отношения π(x) и x/lnx: на бесконечности он равен единице. Вот это утверждение и есть теорема о распределении простых чисел. Существенный вклад в ее доказательство внес наш соотечественник Пафнутий Львович Чебышёв, а покончить с темой целиком можно было бы, сообщив вам напоследок, что эта теорема была доказана независимо Жаком Адамаром и Валле-Пуссеном еще в 1896 году. Ага…если бы не одно «но»! В своих рассуждениях они опирались на тезис одного коллеги-предшественника. И этим ученым с учетом того, что Эйнштейн еще не родился, был Бернхард Риман. Вот вам кадр с оригиналом рукописи Римана. Знаете, почему именно с этой темой он выступил: причина стара как наша образовательная система: простыми числами занимался научный руководитель Римана - Карл Фридрих Гаусс, король математики, между прочим! Вот здесь старая печатная версия доклада на немецком. Мне посчастливилось найти русский перевод, но даже стряхнув с него пыль, некоторые формулы трудно разглядеть, поэтому мы воспользуемся английским вариантом. Смотрим! Бернхард отталкивается от результатов Эйлера: справа с помощью заглавной греческой буквы сигма записана сумма всех натуральных чисел, а слева посредством заглавной и не менее греческой буквы Пи обозначено произведение, притом малая буква p пробегает все простые числа. Это очень красивое соотношение - призадумайтесь! Далее вводится дзета-функция и развиваются идеи, связанные с ней. А затем повествование посредством тернистой дороги математического анализа идет к заявленной теореме о распределении простых чисел, хотя и несколько с другого ракурса. А теперь взглянем сюда: уравнение, в котором слева - кси-функция, тесно связанная с дзетой, а справа -нолик. Риман пишет: «Вероятно все нули кси-функции действительные, во всяком случае было бы желательно найти строгое доказательство этого предложения». Затем добавляет, что после нескольких напрасных, не очень настойчивых попыток разыскать таковое, он временно от них отказался, так как для дальнейшей цели в этом надобности нет. Ну вот, так и родилась гипотеза Римана! На современный лад и со всеми уточнениями она звучит следующим образом: все нетривиальные нули дзета-функции имеют действительную часть, равную ½. Есть, конечно, и другие эквивалентные формулировки. В 1900-ом году Давид Гильберт включил гипотезу Римана в знаменитый список 23 нерешенных проблем. Кстати, вам не кажется странным, что Гильберт работал на той же кафедре Гёттингенского университета, что и Риман в свое время. Если это было проявление землячества, то с чистой совестью еще раз добавляю сюда последовательно кадры березки и Чебышёва. Отлично! Можем двигаться дальше. В 2000-ом году институт Клэя включил гипотезу Римана в список семи открытых проблем тысячелетия, и теперь за ее решение полагается 10⁶ ($). Да-а, понимаю, что вас, как настоящих математиков, деньги не сильно манят, но все-таки это хороший повод осознать суть гипотезы Римана. Поехали! Все очень легко и понятно! Во всяком случае было таковым для Римана. Вот дзета-функция в явном виде. Как и всегда, мы бы смогли увидеть нули функции, если бы нарисовали ее график. Хм… Ладно, попробуем это сделать! Если взять вместо аргумента s двоечку, получим знаменитую базельскую проблему - нужно будет вычислить сумму ряда обратных квадратов. Но это не беда, с задачай давным-давно справился Эйлер: ему сразу стало очевидно, что эта сумма равна π²/6. Хорошо, тогда возьмем s=4 - а, впрочем, Эйлер посчитал и это! Очевидно, π⁴/90. В общем, вы уже поняли, кто вычислил значения дзета-функции, в точках 6, 8, 10 и так далее. Так, а это что такое? Дзета-функция Римана от единички? Давайте посмотрим! А-а-а, так это же гармонический ряд! Итак, как вы думаете, чему равна сумма вот такого вот ряда? Слагаемые маленькие-маленькие, но все-таки побольше, чем в ряде обратных квадратов, правда? Кликните паузу, подумайте немного и дайте ваше оценочное значение. Ну сколько здесь? Два? Или, может быть, три? Барабанная дробь… гармонический ряд расходится! В бесконечность улетает эта сумма, понимаете, нет?! Вот смотрите, берем ряд, у которого каждое из слагаемых не превосходит соответствующих членов гармонического ряда. И видим: ½, затем еще ½, снова ½ и так далее до бесконечности! Это я к чему клоню? Дзета-функция от единички не определена! Ну что ж, теперь, кажется, понятно, как выглядит график дзеты. Одно только непонятно, где же нули дзета-функции? Ну покажите мне, где нетривиальные нули дзета-функции, а еще действительная часть, равная одной второй! Ведь если мы возьмем аргументом дзета-функции ½, то все члены полученного ряда будут не меньше гармонического, а значит, грусть, расходимость, бесконечность. То есть вообще при любом действительном s меньшем или равном единице, ряд расходится. И уж, конечно, при s=-1 дзета предстанет суммой всех натуральных чисел и не поравняется ни с каким конкретным числом. Ага… есть только одно «но»! Если моего смекалистого дружка попросить вычислить дзета-функцию в точке -1, то он, будучи бездушной железякой, выдаст значение -1/12. Да и вообще, дзета у него определена для любых аргументов, кроме единички, притом и нули достигаются - в четных отрицательных значениях! Да-а-а, приехали, с чем же это может быть связано? О, хорошо, что под рукой есть учебник по теории функции комплексного переменного: тут наверняка найдется ответ. Так и есть, так и есть! Оказывается, у некоторых функций есть аналитическое продолжение! Речь идет о функциях, которые дифференцируются сколь угодно много раз, в ряд Тейлора раскладываются, помните такие? Они имеют продолжение в виде некоторой другой функции, кстати говоря, единственной. И в частности нашу родную дзета-функцию для действительного аргумента, коль скоро под все условия она подходит, можно расширить на всю комплексную плоскость по принципу аналитического продолжения. И Риман с этим справился на ура! Сразу скажу, что всевозможные значения комплексного аргумента можно было бы изобразить только на плоскости. Но если аргумент пробегает точки плоскости, то как изобразить значения функции? На плоскости можно ограничиться нулями функции, а можно взять на вооружение третье измерение, хотя по-хорошему для дзеты их нужно четыре. Ну а еще можно попробовать использовать цвет. Сами смотрите! По оси абсцисс откладывается действительная часть аргумента, по оси ординат -мнимая. Ну что ж, теперь держите ухо востро: все нетривиальные нули дзета-функции имеют действительную часть, равную ½. Тут уж и сказке конец, а кто слушал - молодец! Домашнее задание - доказать или опровергнуть гипотезу Римана, и не вздумайте списывать у Атьи! Мыслите критически, занимайтесь математикой, счастливо! [Играет музыка]

Формулировка

Эквивалентные формулировки

Соображения об истинности гипотезы

Среди данных, позволяющих предполагать истинность гипотезы, можно выделить успешное доказательство сходных гипотез (в частности, гипотезы Римана о многообразиях над конечными полями ). Это наиболее сильный теоретический довод, позволяющий предположить, что условие Римана выполняется для всех дзета-функций , связанных с автоморфными отображениями (англ.) русск. , что включает классическую гипотезу Римана. Истинность аналогичной гипотезы уже доказана для дзета-функции Сельберга (англ.) русск. , в некоторых отношениях сходной с функцией Римана, и для дзета-функции Госса (англ.) русск. (аналог дзета-функции Римана для функциональных полей).

С другой стороны, некоторые из дзета-функций Эпштейна (англ.) русск. не удовлетворяют условию Римана, хотя они имеют бесконечное число нулей на критической линии. Однако эти функции не выражаются через ряды Эйлера и не связаны напрямую с автоморфными отображениями.

К «практическим» доводам в пользу истинности Римановской гипотезы относится вычислительная проверка большого числа нетривиальных нулей дзета-функции в рамках проекта ZetaGrid .

Связанные проблемы

Две гипотезы Харди-Литтлвуда

  1. Для любого ε > 0 {\displaystyle \varepsilon >0} существует T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} , такое что при и H = T 0 , 25 + ε {\displaystyle H=T^{0{,}25+\varepsilon }} интервал содержит нуль нечётного порядка функции .
  2. Для любого ε > 0 {\displaystyle \varepsilon >0} существуют такие T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} и c = c (ε) > 0 {\displaystyle c=c(\varepsilon)>0} , что при T ⩾ T 0 {\displaystyle T\geqslant T_{0}} и справедливо неравенство N 0 (T + H) − N 0 (T) ⩾ c H {\displaystyle N_{0}(T+H)-N_{0}(T)\geqslant cH} .

Гипотеза А. Сельберга

В 1942 году Атле Сельберг исследовал проблему Харди-Литтлвуда 2 и доказал, что для любого ε > 0 {\displaystyle \varepsilon >0} существуют T 0 = T 0 (ε) > 0 {\displaystyle T_{0}=T_{0}(\varepsilon)>0} и c = c (ε) > 0 {\displaystyle c=c(\varepsilon)>0} , такие что для T ⩾ T 0 {\displaystyle T\geqslant T_{0}} и H = T 0 , 5 + ε {\displaystyle H=T^{0{,}5+\varepsilon }} справедливо неравенство N (T + H) − N (T) ⩾ c H log ⁡ T {\displaystyle N(T+H)-N(T)\geqslant cH\log T} .

В свою очередь, Атле Сельберг высказал гипотезу, что можно уменьшить показатель степени a = 0 , 5 {\displaystyle a=0{,}5} для величины H = T 0 , 5 + ε {\displaystyle H=T^{0{,}5+\varepsilon }} .

В 1984 году А. А. Карацуба доказал , что при фиксированном с условием 0 < ε < 0,001 {\displaystyle 0<\varepsilon <0{,}001} , достаточно большом T {\displaystyle T} и H = T a + ε {\displaystyle H=T^{a+\varepsilon }} , a = 27 82 = 1 3 − 1 246 {\displaystyle a={\tfrac {27}{82}}={\tfrac {1}{3}}-{\tfrac {1}{246}}} промежуток (T , T + H) {\displaystyle (T,T+H)} содержит не менее c H ln ⁡ T {\displaystyle cH\ln T} вещественных нулей дзета-функции Римана ζ (1 2 + i t) {\displaystyle \zeta {\Bigl (}{\tfrac {1}{2}}+it{\Bigr)}} . Тем самым он подтвердил гипотезу Сельберга.

Оценки А. Сельберга и А. А. Карацубы являются неулучшаемыми по порядку роста при T → + ∞ {\displaystyle T\to +\infty } .

В 1992 году А. А. Карацуба доказал, что аналог гипотезы Сельберга справедлив для «почти всех» промежутков (T , T + H ] {\displaystyle (T,T+H]} , H = T ε {\displaystyle H=T^{\varepsilon }} , где ε {\displaystyle \varepsilon } - сколь угодно малое фиксированное положительное число. Метод, разработанный Карацубой, позволяет исследовать нули дзета-функции Римана на «сверхкоротких» промежутках критической прямой, то есть на промежутках (T , T + H ] {\displaystyle (T,T+H]} , длина H {\displaystyle H} которых растёт медленнее любой, даже сколь угодно малой, степени T {\displaystyle T} . В частности, он доказал, что для любых заданных чисел ε {\displaystyle \varepsilon } , ε 1 {\displaystyle \varepsilon _{1}} с условием 0 < ε , ε 1 < 1 {\displaystyle 0<\varepsilon ,\varepsilon _{1}<1} почти все промежутки (T , T + H ] {\displaystyle (T,T+H]} при H ⩾ exp ⁡ { (ln ⁡ T) ε } {\displaystyle H\geqslant \exp {\{(\ln T)^{\varepsilon }\}}} содержат не менее H (ln ⁡ T) 1 − ε 1 {\displaystyle H(\ln T)^{1-\varepsilon _{1}}} нулей функции ζ (1 2 + i t) {\displaystyle \zeta {\bigl (}{\tfrac {1}{2}}+it{\bigr)}} . Эта оценка весьма близка к той, что следует из гипотезы Римана.

См. также

Примечания

  1. Weisstein, Eric W. Riemann Hypothesis (англ.) на сайте Wolfram MathWorld .
  2. Rules for the Millennium Prizes
  3. Что несколько необычно, так как lim sup n → ∞ σ (n) n log ⁡ log ⁡ n = e γ . {\displaystyle \limsup _{n\rightarrow \infty }{\frac {\sigma (n)}{n\ \log \log n}}=e^{\gamma }.}
    Неравенство нарушается при n = 5040 и некоторых меньших значениях, но Гай Робин в 1984 году показал, что оно соблюдается для всех бóльших целых, тогда и только тогда, когда гипотеза Римана верна.