Мощность земной коры наибольшая. Мощность материковой коры. Земная кора континентального типа

ЛЕКЦИЯ 5. СОСТАВ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Формирование собственного земного вещества началось с вулканогенных образований, представленных лавами, выбросами горячих пеплов и газовых облаков, а также сопутствующими проявлениями дегазации недр. Вулканогенный материал поступал на перидотитовую поверхность Земли и в остаточную атмосферу - реликт исходного облака или туманности. Водных бассейнов в то время не существовало, и Земля не была планетой океанов, каковой она является сегодня. Образование географической оболочки началось, видимо, с ее литогенного основания, на которое стали «опираться» воздушные и водные массы. Разделение по времени формирования отдельных сфер планеты носит условный характер, так как практически все происходило почти одновременно, но с разной скоростью закрепления нового материала.

Внутреннее строение Земли включает три оболочки: земную кору, мантию и ядро. Оболочечное строение Земли установлено дистанционными методами, основанными на измерении скорости распространения сейсмических волн, имеющих две составляющие - продольные и поперечные волны.Продольные (Р) волны связаны с напряжениями растяжения (или сжатия), ориентированными по направлению их распространения.Поперечные (S ) волны вызывают колебания среды, ориентированные под прямым углом к направлению их распространения. Эти волны в жидкой среде не распространяются.

Земная кора - каменистая оболочка, сложенная твердым веществом с избытком кремнезема, щелочи, воды и недостаточным количеством магния и железа. Она отделяется от верхней мантии границей Мохоровичича (слоем Мохо), на которой происходит скачок скоростей продольных сейсмических волн примерно до 8 км/с.Этот рубеж, установленный в 1909 г. югославским ученым А. Мохоровичичем, как считают, совпадает с внешней перидотитовой оболочкой верхней мантии. Мощность земной коры (1% от общей массы Земли) составляет в среднем 35 км: под молодыми складчатыми горами на континентах она увеличивается до 80 км, а под срединно-океаническими хребтами уменьшается до 6 - 7 км (считая от поверхности океанского дна).

Мантия представляет собой наибольшую по объему и весу оболочку Земли, простирающуюся от подошвы земной коры до границы Гутенберга, соответствующей глубине приблизительно 2900 км и принимаемой за нижнюю границу мантии. Мантию подразделяют на нижнюю (50% массы Земли) и верхнюю (18%).По современным представлениям, состав мантии достаточно однороден вследствие интенсивного конвективного перемешивания внутримантийными течениями. Прямых данных о вещественном составе мантии почти нет. Предполагается, что она сложена расплавленной силикатной массой, насыщенной газами. Скорости распространения продольных и поперечных волн в нижней мантии возрастают, соответственно, до 13 и 7 км/с. Верхняя мантия с глубины 50-80 км (под океанами) и 200-300 км (под континентами) до 660-670 км называетсяастеносферой. Это слой повышенной пластичности вещества, близкого к температуре плавления.

Ядро представляет собой сфероид со средним радиусом около 3500 км. Прямые сведения о составе ядра также отсутствуют. Известно, что оно является наиболее плотной оболочкой Земли. Ядро также подразделяется на две сферы: внешнее, до глубины 5150 км, находящееся в жидком состоянии, и внутреннее - твердое.Во внешнем ядре скорость распространения продольных волн падает до 8 км/с, а поперечные волны не распространяются вовсе, что принимается за доказательство его жидкого состояния. Глубже 5150 км скорость распространения продольных волн возрастает и вновь проходят поперечные волны. На внутреннее ядро приходится 2% массы Земли, на внешнее - 29%.

Внешняя «твердая» оболочка Земли, включающая земную кору и верхнюю часть мантии, образует литосферу . Ее мощность составляет 50-200 км.

Литосферу и подстилающие подвижные слои астеносферы, где обычно зарождаются и реализуются внутриземные движения тектонического характера, а также часто находятся очаги землетрясений и расплавленной магмы, называют тектоносферой.

Состав земной коры. Химические элементы в земной коре образуют природные соединения -минералы, обычно твердые вещества, обладающие определенными физическими свойствами. В земной коре содержится более 3000 минералов, среди которых около 50 породообразующих.

Закономерные природные сочетания минералов образуют горные породы. Земная кора сложена горными породами разного состава и происхождения. По происхождению горные породы подразделяют на магматические, осадочные и метаморфические.

Магматические горные породы образуются за счет застывания магмы. Если это происходит в толще земной коры, то формируются интрузивные раскристаллизованные породы, а при излиянии магмы на поверхность создаются эффузивные образования. По содержанию кремнезема (SiO 2) различают следующие группы магматических горных пород: кислые (> 65% - граниты, липариты и др.), средние (65-53% - сиениты, андезиты и др.), основные (52-45% - габбро, базальты и др.) и ультраосновные (<45% - перидотиты, дуниты и др.).

Осадочные горные породы возникают на земной поверхности за счет отложения материала разными способами. Часть из них образуется в результате разрушения горных пород. Это обломочные, или пластические, породы. Величина обломков варьирует от валунов и галек до пылеватых частиц, что позволяет различать среди них породы разного гранулометрического состава - валунники, галечники, конгломераты, пески, песчаники и др. Органогенные породы создаются при участии организмов (известняки, угли, мел и др.). Значительное место занимают хемогенные породы, связанные с выпадением вещества из раствора при определенных условиях.

Метаморфические породы образуются в результате изменения магматических и осадочных пород под воздействием высоких температур и давлений в недрах Земли. К ним относятся гнейсы, кристаллические сланцы, мрамор и др.

Около 90% объема земной коры составляют кристаллические породы магматического и метаморфического генезиса. Для географической оболочки большую роль играет относительно маломощный и прерывистый слой осадочных горных пород (стратисфера), которые непосредственно контактируют с разными компонентами географической оболочки. Средняя мощность осадочных пород около 2,2 км, реальная мощность колеблется от 10- 14 км в прогибах до 0,5-1 км на океаническом ложе. По исследованиям А.Б.Ронова, наиболее распространенными среди осадочных пород являются глины и глинистые сланцы (50 %), пески и песчаники (23,6%), карбонатные образования (23,5%). В составе земной поверхности важную роль играют лёссы и лёссовидные суглинки внеледниковых регионов, несортированные толщи морен ледниковых регионов и интразональные скопления галечно-песчаных образований водного происхождения.

Строение земной коры. По строению и мощности (рис. 5.1) различают два основных типа земной коры - материковый (континентальной) и океанический.Различия их химического состава видны из табл. 5.1.

Материковая кора состоит из осадочного, гранитного и базальтового слоев. Последний выделен условно потому, что скорости прохождения сейсмических волн равны скоростям в базальтах. Гранитный слой состоит из пород, обогащенных кремнием и алюминием (SIAL), породы базальтового слоя обогащены кремнием и магнием (SIAM). Контакт между гранитным слоем со средней плотностью пород около 2,7 г/см 3 и базальтовым слоем со средней плотностью порядка 3 г/см 3 известен как граница Конрада (названа по имени немецкого исследователя В.Конрада, обнаружившего ее в 1923 г.).Океаническая кора двухслойная. Ее основная масса сложена базальтами, на которых лежит маломощный осадочный слой. Мощность базальтов превышает 10 км, в верхних частях достоверно установлены прослои осадочных позднемезозойских пород. Мощность осадочного покрова, как правило, не превышает 1-1,5 км.

Рис. 5.1. Строение земной коры: 1 - базальтовый слой; 2 - гранитный слой; 3 - стратисфера и кора выветривания;4 - базальты океанического дна;5 - районы с низкой биомассой;6 - районы с высокой биомассой; 7 - океанские воды;8 - морские льды; 9 - глубинные разломы континентальных склонов

Базальтовый слой на материках и океанском дне принципиально различается. На материках это контактные формирования между мантией и древнейшими земными породами, как бы первичная корочка планеты, возникшая до или в начале ее самостоятельного развития (возможно, свидетельство «лунной» стадии эволюции Земли). В океанах это реальные базальтовые образования в основном мезозойского возраста, возникшие за счет подводных излияний при раздвижении литосферных плит. Возраст первых должен составлять несколько миллиардов лет, вторых - не более 200 млн лет.

Таблица 5.1. Химический состав континентальной и океанической коры

Континентальная кора

Океаническая кора

Местами наблюдается переходный тип земной коры, для которого характерны значительная пространственная неоднородность. Он известен в окраинных морях Восточной Азии (от Берингова до Южно-Китайского), Зондском архипелаге и некоторых других районах земного шара.

Наличие разных типов земной коры обусловлено различиями в развитии отдельных частей планеты и их возрасте. Эта проблема чрезвычайно интересна и важна с точки зрения реконструкции географической оболочки. Ранее предполагалось, что океаническая кора первична, а материковая - вторична, хотя она на многие миллиарды лет ее древнее. Согласно современным представлениям, океаническая кора возникла за счет внедрения магмы по разломам между континентами.

Структурные элементы земной коры. Земная кора формировалась не менее 4 млрд лет, в течение которых она усложнялась под. воздействием эндогенных (главным образом под воздействием тектонических движений) и экзогенных (выветривание и др.) процессов. Проявляясь с разной интенсивностью и в разное время, тектонические движения формировали структуры земной коры, которые образуютрельеф планеты.

Крупные формы рельефа называются морфоструктурами (например, горные хребты, плато). Сравнительно мелкие формы рельефа образуют морфоскульптуры (например, карст).

Основные планетарные структуры Земли - материки и океаны. В пределах материков выделяют крупные структуры второго порядка - складчатые пояса и платформы, которые отчетливо выражены в современном рельефе.

Платформы - это устойчивые в тектоническом отношении участки земной коры обычно двухъярусного строения: нижний, образованный древнейшими породами, называют фундаментом, верхний, сложенный преимущественно осадочными породами более позднего возраста - осадочным чехлом. Возраст платформ оценивают по времени формирования фундамента. Участки платформ, где фундамент погружен под осадочный чехол, называют плитами (например, Русская плита). Места выхода на дневную поверхность пород фундамента платформы называют щитами (например, Балтийский щит).

На дне океанов выделяются тектонически устойчивые участки - талассократоны и подвижные тектонически активные полосы -георифтогенали. Последние пространственно соответствуют срединно-океаническим хребтам с чередованием поднятий (в виде подводных гор) и опусканий (в виде глубоководных впадин и желобов). Совместно с вулканическими проявлениями и локальными поднятиями океанического дна океанические геосинклинали создают специфические структуры островных дуг и архипелагов, выраженных на северных и западных окраинах Тихого океана.

Контактные зоны между континентами и океанами подразделяют на два типа: активные ипассивные. Первые представляют собой очаги сильнейших землетрясений, активного вулканизма и значительного размаха тектонических движений. Вторые являют пример постепенной смены континентов через шельфы и материковые склоны к океаническому дну.

Динамика литосферы. Представления о механизме формирования земных структур разрабатываются учеными различных направлений, которые можно объединить в две группы. Представителиф иксизма исходят из утверждения о фиксированном положении Континентов на поверхности Земли и преобладании вертикальных движений в тектонических деформациях пластов земной коры. Сторонники мобилизма первостепенную роль отводят горизонтальным движениям. Основные идеи мобилизма были сформулированы А. Вегенером (1880-1930) какгипотеза дрейфа материков. Новые данные, полученные во второй половинеXXв., позволили развить это направление до современной теориинеомобилизма, объясняющей динамику процессов в земной коре дрейфом крупных литосферных плит.

Согласно современному строению земной коры, в центральных частях океанов границами литосферных плит являются срединно-океанические хребты с рифтовыми (разломными) зонами вдоль их осей. По периферии океанов, в переходных зонах между континентами и ложем океанического бассейна, сформировалисьгеосинклинальные подвижные пояса со складчато-вулканическими островными дугами и глубоководными желобами вдоль их внешних окраин. Существует три варианта взаимодействия литосферных плит:расхождение, или спрединг;столкновение, сопровождающееся в зависимости от типа контактирующих плит субдукцией, эдукцией или коллизией; горизонтальноескольжение одной плиты относительно другой. Касаясь проблемы возникновения океанов и материков, надо отметить, что в настоящее время она чаще всего решается путем признания раздробленности земной коры на ряд плит, раздвижение которых и вызвало образование огромных понижений, занятых океанскими водами.

Формирование современного облика Земли. В течение всей истории Земли расположение и конфигурация континентов и океанов постоянно изменялись. Согласно геологическим данным, континенты Земли объединялись четыре раза. Реконструкция этапов их становления за последние 570 млн лет (в фанерозое) свидетельствует о существовании последнего суперконтинента -Пангеи с достаточно мощной, до 30-35 км континентальной корой, сформировавшегося 250 млн лет назад, который распался наГондвану, занявшую южную часть земного шара, иЛавразию, объединившей северные континенты. Распад Пангеи привел к раскрытию водного пространства, первоначально - в видепалео-Тихого океана и океанаТетис, а в дальнейшем (65 млн лет назад) - современных океанов. Сейчас мы наблюдаем, как континенты расходятся. Трудно предположить, какова будет дислокация современных континентов и океанов в будущем. По данным С. В. Аплонова, возможно их объединение в пятый суперконтинент, центром которого станет Евразия. В. П. Трубицын считает, что через миллиард лет материки вновь могут собраться у Южного полюса.

Атмосфера - это внешняя газовая оболочка Земли. Нижней границей атмосферы является земная поверхность. Верхняя граница проходит на высоте 3000 км, где плотность воздуха становится равной плотности вещества в Космосе.

Воздух атмосферы удерживается у земной поверхности силой притяжения. Общий вес атмосферы равен 5,13610 15 т (по другим источникам - 5,910 15 т), что соответствует весу равномерно распределенного по Земле слоя воды в 10 м или слоя ртути толщиной в 76 см. Вес вышележащего столба воздуха определяет величину атмосферного давления, которое у земной поверхности в среднем составляет 760 мм рт. ст., или 1 атм (1013 гПа, или 1013 мбар).

Плотность воздуха на уровне моря при температуре 15°С в среднем составляет 1,2255 кг/м 3 , или 0,0012 г/см 3 , на высоте 5 км - 0,735 кг/см 3 , 10 км - 0,411 кг/см 3 , 20 км - 0,087 кг/см 3 . На высоте 300 км плотность воздуха уже в 100 млрд раз меньше, чем у поверхности Земли.

Состав атмосферы. Атмосфера состоит из постоянных и переменных компонентов (табл. 5.2). К постоянным относятся азот (78% по объему), кислород (21%) и инертные газы (0,93%).Постоянство количества активных компонентов азота и кислорода определяется равновесием между процессами выделения свободного кислорода и азота (преимущественно живыми организмами) и их поглощением в ходе химических реакций. Инертные газы не участвуют в реакциях, происходящих в атмосфере.Переменными составляющими являются диоксид углерода, водяной пар, озон, аэрозоли.

Таблица 5.2. Состав атмосферы

Постоянные компоненты

Кислород

Переменные компоненты

Водяной пар

Диоксид углерода

Оксид азота

Озон (тропосферный)

Озон (стратосферный)

Аэрозоли (частицы)

Водяной пар задерживает до 60% теплового излучения планеты. Водяной пар выполняет и другую важную функцию, за что его называют «основным топливом» атмосферных процессов. При испарении влаги (а именно таким путем атмосфера пополняется водяным паром) значительная часть энергии (примерно 2500 Дж) переходит в открытую форму, а затем выделяется при конденсации. Обычно это происходит на высоте облачного покрова. В результате таких фазовых переходов большое количество энергии перемещается в пределах географической оболочки, «питая» различные атмосферные процессы, в частности - тропические циклоны.

Водяной пар и диоксид углерода служат природными атмосферными фильтрами, задерживающими длинноволновое тепловое излучение земной поверхности. Благодаря этому возникает парниковый эффект, который определяет общее повышение температуры земной поверхности на 38°С (ее среднее значение +15°С вместо -23°С).

Аэрозольные частицы - это находящиеся во взвешенном состоянии минеральная и вулканическая пыль, продукты горения (дым), кристаллики морских солей, споры и пыльца растений, микроорганизмы. Содержание аэрозолей определяет уровень прозрачности атмосферы. В связи с активной антропогенной деятельностью запыленность атмосферы увеличилась. Как показывают эксперименты, при большой запыленности величина приходящей к Земле солнечной радиации может понижаться, что ведет к изменениям погоды и климата планеты. Наиболее крупные аэрозоли -ядра конденсации - способствуют превращению водяного пара в водяные капли (облака).

Вертикальное строение атмосферы . Атмосферу подразделяют на пять оболочек.

Нижняя часть атмосферы, непосредственно прилегающая к земной поверхности, называется тропосферой. Она простирается над полюсами до высоты 8 км, в умеренных широтах - до 10-11 км, над экватором - до 16-17 км. Здесь сосредоточено около 80% всей массы атмосферы. Наблюдаемое понижение температуры в этом слое (в среднем 0,6°С на 100 м) связано с расширением воздуха под воздействием уменьшения с высотой внешнего давления, а также с переносом теплоты от земной поверхности. При средней для всей Земли годовой температуре воздуха +15°С на уровне моря, на верхней границе тропосферы она понижается до -56°С. Понижение температуры воздуха, так же как и других метеорологических величин, не всегда выдерживается, а в ряде случаев отклоняется от нормального, образуяинверсии. Последние определяются местными географическими причинами.

Физические свойства воздуха тропосферы во многом обусловлены характером взаимодействия с подстилающей поверхностью. Вследствие непрерывного перемешивания воздуха его состав во всей толще тропосферы постоянный. Тропосфера содержит основное количество всей атмосферной влаги.

Вблизи верхней границы тропосферы располагается переходный слой - тропопауза мощностью около 1 км. Выше тропопаузы не поднимаются вертикальные токи воздуха, обусловленные различиями его нагревания и увлажнения от земной поверхности (атмосферная конвекция).

Выше тропосферы, примерно до 50 км, располагается стратосфера. Ранее ее принимали за изотермический слой со средней температурой -56°С. Однако новые данные показали, что изотермия наблюдается только в ее нижней части, приблизительно до 20 км, а у верхней границы температура повышается до 0°С.Стратосфера охвачена мощной горизонтальной циркуляцией с элементами вертикальных движений, что способствует активному перемешиванию воздуха. Антропогенное загрязнение фактически исключено, но сюда проникают продукты интенсивных вулканических выбросов, сохраняющиеся довольно длительное время и влияющие на космическое излучение, включая солнечное.

Особенностью стратосферы является озоновый слой, в формировании которого принимает участие следующий физико-химический механизм. Поскольку атмосфера избирательно пропускает через себя электромагнитное излучение Солнца, солнечная радиация распределяется на земной поверхности неравномерно. Входящий в состав воздуха кислород взаимодействует с коротковолновой ультрафиолетовой (УФ) радиацией, и когда молекула кислорода О 2 поглощает УФ свет достаточной энергии, она распадается:

О 2 + УФ свет → О + О

Атомарный кислород очень активен и присоединяет молекулу кислорода, образуя молекулу озона:

атомарный кислород (О) + молекулярный кислород (О 2) → озон (О 3)

Обычно это происходит на высоте примерно 25-28 км от земной поверхности, где и образуется слой озона. Озон сильно адсорбирует ультрафиолетовые лучи, которые губительны для живых организмов.

Над стратосферой до высоты 80-90 км располагается мезосфера. Температура в этом слое вновь понижается и достигает -107°С. На высоте 75-90 км наблюдаются «серебристые облака», состоящие из кристалликов льда.

До высоты примерно 800-1000 км располагается термосфера. Здесь температура воздуха снова повышается до 220°С на высоте 150 км и 1500°С - на высоте 600 км.Воздух термосферы состоит преимущественно из азота и кислорода, однако выше 90-100 км короткие волны солнечной радиации вызывают распад молекул О 2 на атомы и здесь преобладает атомарный кислород. Выше 325 км азот также диссоциирует. Соотношение между азотом и кислородом, характерное для нижних слоев атмосферы (78 и 21%), на высоте 200 км меняется и составляет соответственно 45 и 55%. Под действием ультрафиолетовых и космических лучей частицы воздуха в термосфере электрически заряжены, с чем связано возникновение полярных сияний. Термосфера поглощает рентгеновское излучение солнечной короны и способствует распространению радиоволн.

Выше 1000 км располагается экзосфера. Скорость движения атомов и молекул газов достигает здесь третьей космической скорости (11,2 км/с), что позволяет им преодолевать земное притяжение и рассеиваться в космическом пространстве.

Основные черты воздушной циркуляции в тропосфере. Воздушная циркуляция обусловлена неравномерным распределением атмосферного давления у земной поверхности, следствием чего являются системы ветров - направленных перемещений воздуха из области высокого давления в область низкого. Барическое поле слагаемое различными воздушными массами, состоит из отдельных барических систем, среди которых различают циклоны (область низкого давления в центре и движение воздуха против часовой стрелки) и антициклоны (область высокого давления в центре и движение воздуха по часовой стрелке), барические депрессии и гребни ложбины и седловины. Различают постоянные центры действия атмосферы - области высокого или низкого давления, существующие круглый год или в определенный сезон (Исландский и Алеутский минимумы, Азорский, Гавайский, Сибирский максимумы). Преобладающие переносы воздушных масс и их динамика проявляются в пассатных, муссонных, бризовых циркуляциях, в формировании и миграции квазистационарных воздушных фронтов на поверхности Земли (типа внутритропической зоны конвергенции) Особый интерес представляют тропические циклоны, называемые в Атлантическом океане ураганами, в Тихом - тайфунами которые весьма значительно вмешиваются в повседневную жизнь жителей многих прибрежных стран Центральной Америки, Юго-Восточной Азии и других регионов. Основными параметрами барических систем являются траектория, скорость перемещения, радиус действия, атмосферное давление в центре образования. Перемещающиеся циклоны оказывают влияние на подстилающую поверхность, нарушая нормальное распределение гидрометеорологических величин, обусловливая штормы на суше и море .

Характерная черта эволюции Земли — дифференциация вещества, выражением которой служит оболочечное строение нашей планеты. Литосфера, гидросфера, атмосфера, биосфера образуют основные оболочки Земли, отличающиеся химическим составом, мощностью и состоянием вещества.

Внутреннее строение Земли

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см 3 .

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро

Ядро (рис. 3) расположено в центре Земли, его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см 3 (сравните: вода — 1 г/см 3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Земная кора

Земная кора - внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см 3 .

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы - глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Название породы

Размер облом кон (частиц)

Более 50 см

5 мм — 1 см

1 мм — 5 мм

Песок и песчаники

0,005 мм — 1 мм

Менее 0,005 мм

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования - скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного. Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся ло глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

Существует два основных типа земной коры: океанская и материковая. Выделяется также переходный тип земной коры.

Океанская земная кора. Мощность океанской земной коры в современную геологическую эпоху колеблется от 5 до 10 км. Она состоит из следующих трех слоев:

  • 1) верхний тонкий слой морских осадков (мощность не более 1 км);
  • 2) средний базальтовый слой (мощность от 1,0 до 2,5 км);
  • 3) нижний слой габбро (мощность около 5 км).

Материковая (континентальная) земная кора. Материковая земная кора имеет более сложное строение и большую мощность, чем океанская земная кора. Ее мощность в среднем составляет 35-45 км, а в горных странах увеличивается до 70 км. Она состоит также их трех слоев, но существенно отличается от океанской:

  • 1) нижний слой, сложенный базальтами (мощность около 20 км);
  • 2) средний слой занимает основную толщу материковой коры и условно называется гранитным. Он сложен в основном гранитами и гнейсами. Под океаны этот слой не распространяется;
  • 3) верхний слой - осадочный. Его мощность в среднем составляет около 3 км. В некоторых районах мощность осадков достигает 10 км (например, в Прикаспийской низменности). В отдельных районах Земли осадочный слой отсутствует вообще и на поверхность выходят гранитный слой. Такие районы называются щитами (например, Украинский щит, Балтийский щит).

На материках в результате выветривания горных пород образуется геологическая формация, получившая название коры выветривания.

Гранитный слой от базальтового отделен поверхностью Конрада, на которой скорость сейсмических волн возрастает от 6,4 до 7,6 км/ сек.

Граница между земной корой и мантией (как на материках, так и на океанах) проходит по поверхности Мохоровичича (линия Мохо). Скорость сейсмических волн на ней скачкообразно увеличивается до 8 км/ час.

Кроме двух основных типов - океанского и материкового - есть также участки смешанного (переходного) типа.

На материковых отмелях или шельфах кора имеет мощность около 25 км и в целом сходна с материковой корой. Однако в ней может выпадать слой базальта. В Восточной Азии в области островных дуг (Курильские острова, Алеутские острова, Японские острова и др.) земная кора переходного типа. Наконец, весьма сложна и пока мало изучена земная кора срединных океанических хребтов. Здесь нет границы Мохо, и вещество мантии по разломам поднимается в кору и даже на ее поверхность.

Понятие «земная кора» следует отличать от понятия «литосфера». Понятие «литосфера» является более широким, чем «земная кора». В литосферу современная наука включает не только земную кору, но и самую верхнюю мантию до астеносферы, то есть до глубины примерно около 100 км.

Понятие об изостазии . Изучение распределения силы тяжести показало, что все части земной коры - материки, горные страны, равнины - уравновешены на верхней мантии. Это уравновешенное их положение называется изостазией (от лат. isoc - ровный, stasis - положение). Изостатическое равновесие достигается благодаря тому, что мощность земной коры обратно пропорциональна ее плотности. Тяжелая океаническая кора тоньше более легкой материковой.

Изостазия - в сущности это даже и не равновесие, а стремление к равновесию, непрерывно нарушаемое и вновь восстанавливаемое. Так, например, Балтийский щит после стаивания материковых льдов плейстоценового оледенения поднимается примерно на 1 метр в столетие. Площадь Финляндии все время увеличивается за счет морского дна. Территория Нидерландов, наоборот, понижается. Нулевая линия равновесия проходит в настоящее время несколько южнее 60 0 с.ш. Современный Санкт-Петербург находится примерно на 1,5 м выше, чем Санкт-Петербург времен Петра Первого. Как показывают данные современных научных исследований, даже тяжесть больших городов оказывается достаточной для изостатического колебания территории под ними. Следовательно, земная кора в зонах больших городов весьма подвижна. В целом же рельеф земной коры является зеркальным отражением поверхности Мохо, подошвы земной коры: возвышенным участкам соответствуют углубления в мантию, пониженным - более высокий уровень ее верхней границы. Так, под Памиром глубина поверхности Мохо составляет 65 км, а в Прикаспийской низменности - около 30 км.

Термические свойства земной коры . Суточные колебания температуры почвогрунтов распространяются на глубину 1,0-1,5 м, а годовые в умеренных широтах в странах с континентальным климатом до глубины 20-30 м. На той глубине, где прекращается влияние годовых колебаний температуры вследствие нагревания земной поверхности Солнцем, находится слой постоянной температуры грунта. Он называется изотермическим слоем. Ниже изотермического слоя вглубь Земли температура повышается, и это вызывается уже внутренней теплотой земных недр. В формировании климатов внутреннее тепло не участвует, но оно служит энергетической основой всех тектонических процессов.

Число градусов, на которое увеличивается температура на каждые 100 м глубины называется геотермическим градиентом. Расстояние в метрах, при опускании на которое температура возрастает на 1 0 С называется геотермической ступенью. Величина геотермической ступени зависит от рельефа, теплопроводности горных пород, близости вулканических очагов, циркуляции подземных вод и др. В среднем геотермическая ступень равна 33 м. В вулканических областях геотермическая ступень может быть равной всего около 5 м, а в геологически спокойных областях (например, на платформах) она может достигать 100 м.

Материки в свое время были сформированы из массивов земной коры, которая в той или иной степени выступает над уровнем воды в виде суши. Эти глыбы земной коры не один миллион лет раскалывались, сдвигались, части их сминались, чтобы предстать в том виде, которым известен нам сейчас.

Сегодня мы рассмотрим наибольшую и наименьшую мощность земной коры и особенности ее строения.

Немного о нашей планете

В начале формирования нашей планеты здесь действовали множественные вулканы, происходили постоянные столкновения с кометами. Лишь после того, как бомбардировки прекратились, раскаленная поверхность планеты застыла.
То есть ученые уверены, что изначально наша планета представляла собой бесплодную пустыню без воды и растительности. Откуда на ней взялось столько воды - до сих пор остается загадкой. Но не так давно под землей были обнаружены большие запасы воды, возможно, именно они и стали основой наших океанов.

Увы, все гипотезы о происхождении нашей планеты и ее составе являются скорее предположениями, чем фактами. Согласно утверждениям А. Вегенера, изначально Землю покрывал тонкий слой гранита, который в палеозойскую эру преобразовался в праматерик Пангею. В мезозойскую эру Пангея начала раскалываться на части, образовавшиеся материки постепенно отплывали друг от друга. Тихий океан, утверждает Вегенер, - это остаток первичного океана, а Атлантический и Индийский рассматриваются как вторичные.

Земная кора

Состав земной коры практически аналогичен составу планет нашей Солнечной системы - Венеры, Марса и др. Ведь основой для всех планет Солнечной системы послужили одни и те же вещества. А с недавних пор ученые уверены, что столкновение Земли с еще одной планетой, названной Теей, вызвало слияние двух небесных тел, а от отколовшегося осколка образовалась Луна. Это объясняет то, что минеральный состав Луны схож с составом нашей планеты. Ниже мы рассмотрим строение земной коры - карту ее слоев на суше и океане.

Кора составляет всего 1% от массы Земли. Преимущественно она состоит из кремния, железа, алюминия, кислорода, водорода, магния, кальция и натрия и еще 78 элементов. Предполагается, что в сравнении с мантией и ядром кора Земли - оболочка тонкая и хрупкая, состоящая преимущественно из легких веществ. Тяжелые же вещества, как считают геологи, спускаются к центру планеты, а самые тяжелые сосредоточены в ядре.

Строение земной коры и карта его слоев представлены на рисунке ниже.

Материковая земная кора

Кора Земли имеет 3 слоя, каждый из которых неровными пластами покрывает предыдущий. Большая часть ее поверхности - это континентальные и океанические равнины. Континенты также окружает шельф, который после обрывчатого изгиба переходит в континентальный склон (область подводной окраины материка).
Земная материковая кора делится на слои:

1. Осадочный.
2. Гранитный.
3. Базальтовый.

Осадочный слой покрывают осадочные, метаморфические и магматические горные породы. Мощность материковой земной коры составляет наименьший процент.

Типы материковой земной коры

Осадочные горные породы представляют собой скопления, среди которых находятся глина, карбонат, вулканогенные горные породы и другие твердые вещества. Это своеобразный осадок, который сформировался в результате тех или иных природных условий, которые раньше существовали на Земле. Он позволяет исследователям делать выводы по поводу истории нашей планеты.

Гранитный слой состоит из магматических и метаморфических горных пород, схожих с гранитом по своим свойствам. То есть не только гранит составляет второй слой земной коры, но вещества эти по составу очень с ним схожи и имеют примерно аналогичную прочность. Скорость его продольных волн достигает 5,5-6,5 км/с. Состоит он из гранитов, кристаллических сланцев, гнейсов и т. д.

Базальтовый слой слагается из веществ, по составу схожих с базальтами. Является более плотным в сравнении с гранитным слоем. Под базальтовым слоем протекает тягучая мантия из твердых веществ. Условно мантию от коры отделяет так называемая граница Мохоровичича, которая, по сути, разделяет слои различного химического состава. Характеризуется резким нарастанием скорости сейсмических волн.
То есть относительно тонкий слой земной коры является хрупкой преградой, отделяющей нас от раскаленной мантии. Толщина самой мантии составляет в среднем 3 000 км. Вместе с мантией движутся и тектонические плиты, которые, как часть литосферы, являются участком земной коры.

Ниже рассмотрим мощность материковой земной коры. Составляет она до 35 км.

Мощность материковой коры

Толщина земной коры варьируется от 30 до 70 км. И если под равнинами слой ее составляет всего 30-40 км, то под горными системами достигает 70 км. Под Гималаями толщина слоя доходит до 75 км.

Мощность материковой земной коры составляет от 5 до 80 км и напрямую зависит от ее возраста. Так, холодные древние платформы (Восточно-Европейская, Сибирская, Западно-Сибирская) имеют достаточно высокую мощность - 40-45 км.

При этом каждый из слоев имеет свою мощность и толщину, которая в разных областях материка может изменяться.

Мощность материковой земной коры составляет:

1. Осадочный слой - 10-15 км.

2. Гранитный слой - 5-15 км.

3. Базальтовый слой - 10-35 км.

Температура коры Земли

Температура повышается по мере углубления в нее. Считается, что температура ядра составляет до 5 000 С, однако эти цифры остаются условными, так как вид и состав его до сих пор не ясен ученым. По мере углубления в земную кору температура ее повышается каждые 100 м, однако ее цифры варьируются в зависимости от состава элементов и глубины. Океаническая земная кора имеет более высокую температуру.

Океаническая земная кора

Изначально, по предположениям ученых, Земля покрылась именно океаническим слоем коры, который несколько отличается по толщине и составу от материкового слоя. вероятно, возникла из верхнего дифференцированного слоя мантии, то есть по составу она очень близка к ней. Мощность земной коры океанического типа в 5 раз меньше, чем мощность материкового типа. При этом ее состав в глубоких и неглубоких районах морей и океанов друг от друга отличается несущественно.

Слои материковой коры

Мощность океанической земной коры составляют:

1. Слой океанической воды, толщина которого составляет 4 км.

2. Слой неплотных осадков. Мощность составляет 0,7 км.

3. Слой, сложенный из базальтов с карбонатными и кременистыми породами. Средняя мощность - 1,7 км. Он не выделяется резко и характеризуется уплотнением осадочного слоя. Этот вариант его строения называют субокеаническим.

4. Базальтовый слой, не отличающийся от континентальной коры. Мощность океанической земной коры составляет в этом слое 4,2 км.

Базальтовый слой океанической коры в зонах субдукции (зона, в которых один слой коры поглощает другой) превращается в эклогиты. Их плотность настолько высока, что они погружаются вглубь коры на глубину более 600 км, а затем опускаются в нижнюю мантию.

Учитывая, что наименьшая мощность земной коры наблюдается под океанами и составляет всего 5-10 км, ученые давно вынашивают идею начать бурение коры на глубине океанов, что позволило бы более подробно изучить внутреннее строение Земли. Однако слой океанической земной коры очень прочен, а исследования на глубине океана делают эту задачу еще более сложной.

Заключение

Земная кора, пожалуй, единственный слой, подробно изученный человечеством. А вот то, что находится под ней, до сих пор волнует геологов. Остается лишь надеяться, что однажды неизведанные глубины нашей Земли будут изучены.

Cтраница 1


Мощность земной коры здесь не превышает 5 - 7 км, в ее составе отсутствует гранитный слой, а мощность осадочного слоя незначительна, что резко снижает перспективы нефтегазоносное этих территорий.  

Мощность земной коры в целом уменьшается, если геотерма смещается ближе к оси температур, что обеспечивается высокой теплопроводностью, связанной с циркуляцией масс воды от свободной поверхности вплоть до нижней коры, как, например, в случае Паннонского бассейна.  

В настоящее время мощность земной коры в среднем принимается равной / о диаметра Земли.  

Особенностью континентальной коры является наличие корней гор - резкого увеличения мощности земной коры под крупными горными системами. Под Гималаями, на-мощность коры, по-ви-достигает 70 - 80 км.  

Примерно такими же были условия и в последующий, катархейский, период развития Земли, продолжавшийся, вероятно, 0 5 млрд. лет (4 0 - 3 5 млрд. лет назад), когда постепенно увеличивалась мощность земной коры и, вероятно, происходила ее дифференциация на более мощные и стабильные и менее мощные и подвижные участки.  

Страна горы и низменности Дальнего Востока имеет условную границу: на западе и севере она совпадает с долинами рек Олек-ма, Алдан, Юдома и Охота, на востоке включает шельф Охотского и Японского морей, на юге проходит по государственной границе. Мощность земной коры достигает 30 - 45 км и зеркально отражает основные крупные орографические единицы.  

Южное крыло Большого Кавказа (на севере и северо-востоке региона) представляет собой веерообразную складчатую асимметричную структуру, сложенную преимущественно юрскими и меловыми отложениями, и характеризуется значительной сейсмичностью. Мощность земной коры составляет 45 - 80 км. Здесь расположены оба выделенных нами аномальных района. По данным магнитотеллурического зондирования [ Шолпо, 1978 ], слой повышенной проводимости расположен под Большим Кавказом в узкой полосе вдоль главного хребта и южного склона, но на востоке она расширяется и захватывает районы Дагестана, где развиты известняковые отложения. Этот слой имеет толщину порядка 5 - 10 км и расположен на глубине 20 - 25 км под осевой зоной мегантиклинория. По простиранию происходит постепенное погружение этого слоя до 60 - 75 км на периклиналях. Малый Кавказ (на юго-западе региона) с морфологически отчетливо выраженными вулканическими аппаратами делится на три крупных мегаблока. Западное крыло Малого Кавказа характеризуется развитием мезозойских вулканогенно-оса-дочных формаций и интрузий. Оно отличается пологой складчатостью.  

Структурно-тектоническая схема сверхглубокой части Тунгусской системы рифтов (составили Ю.Т. Афанасьев, Ю.С. Кувыкин с использованием Карты нефте-газоносности СССР.  

Для выделяемых массивов характерен континентальный тип разрезов земной коры, в системах рифтов ее мощность значительно уменьшена. Другие расчеты [ Коган, 1975 ] оценивают мощность земной коры до 25 - 20 км в центральных частях Тунгусской и Вилюйской впадин, до 25 - 30 км в Саяно-Енисейской впадине и до 30 - 35 км - в меридиональной системе рифтов, разделяющих Анабарский и Оленек-ский массивы.  

Южно-Каспийская депрессия имеет разрез земной коры океанического типа. Гранитный слой отсутствует в пределах глубоководных частей Южного Каспия, а мощность земной коры не превышает 50 км. В пределах СГД выявлены следующие крупные геоструктурные элементы: на море - это Апшероно-Прибалханская зона поднятий. Бакинский архипелаг, Туркменская структурная терраса и глубоководная зона Южного Каспия, а на суше - Куринская впадина, которая зоной Талыш-Вандам - ского максимума делится на Нижнекуринскую и Среднекуринскую депрессии. Апшероно-Прибалханская зона поднятий пересекает Южный Каспий в субширотном направлении.  

Возникновение в результате проявления эндогенных факторов крупных горных сооружений стимулирует деятельность поверхностных, экзогенных, агентов, направленную на разрушение гор. Вместе с тем, сглаживание, выравнивание рельефа действием экзогенных факторов приводит к сокращению мощности земной коры, уменьшению ее нагрузки на более глубокие оболочки Земли и часто сопровождается всплытием, возды-манием коры. Так, таяние мощного ледника и разрушение гор на севере Европы, по мнению ученых, является причиной ного воздымания Скандинавии.  

Мощность земной коры в разных частях земного шара не остается постоянной. Наибольшей мощности кора достигает на континентах, и особенно под горными сооружениями (здесь толщина гранитной оболочки достигает 30 - 40 км); предполагается, чтб под океанами мощность земной коры, лишенной гранитной оболочки, не превышает 6 - 8 км.