Наблюдения Джеймса Брэдли. Чему равна скорость света в вакууме

Действительно, как? Как измерить самую высокую скорость во Вселенной в наших скромных, Земных условиях? Нам уже не нужно ломать над этим голову – ведь за несколько веков столько людей трудилось над этим вопросом, разрабатывая методы измерения скорости света. Начнем рассказ по порядку.

Скорость света – скорость распространения электромагнитных волн в вакууме. Она обозначается латинской буквой c . Скорость света равняется приблизительно 300 000 000 м/с.

Сначала над вопросом измерения скорости света вообще никто не задумывался. Есть свет – вот и отлично. Затем, в эпоху античности, среди ученых философов господствовало мнение о том, что скорость света бесконечна, то есть мгновенна. Потом было Средневековье с инквизицией, когда главным вопросом мыслящих и прогрессивных людей был вопрос «Как бы не попасть в костер?» И только в эпохи Возрождения и Просвещения мнения ученых расплодились и, конечно же, разделились.


Так, Декарт , Кеплер и Ферма были того же мнения, что и ученые античности. А вот считал, что скорость света конечна, хоть и очень велика. Собственно, он и произвел первое измерение скорости света. Точнее, предпринял первую попытку по ее измерению.

Опыт Галилея

Опыт Галилео Галилея был гениален в своей простоте. Ученый проводил эксперимент по измерению скорости света, вооружившись простыми подручными средствами. На большом и известном расстоянии друг от друга, на разных холмах, Галилей и его помощник стояли с зажженными фонарями. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. К сожалению, для того, чтобы этот эксперимент увенчался успехом, Галилею и его помощнику нужно было выбрать холмы, которые находятся на расстоянии в несколько миллионов километров друг от друга. Хотелось бы напомнить, что вы можете , оформив заявку на сайте.


Опыты Рёмера и Брэдли

Первым удачным и на удивление точным опытом по определению скорости света был опыт датского астронома Олафа Рёмера . Рёмер применил астрономический метод измерения скорости света. В 1676 он наблюдал в телескоп за спутником Юпитера Ио, и обнаружил, что время наступления затмения спутника меняется по мере отдаления Земли от Юпитера. Максимальное время запаздывания составило 22 минуты. Посчитав, что Земля удаляется от Юпитера на расстояние диаметра земной орбиты, Рёмер разделил примерное значение диаметра на время запаздывания, и получил значение 214000 километров в секунду. Конечно, такой подсчет был очень груб, расстояния между планетами были известны лишь примерно, но результат оказался относительно недалек от истины.


Опыт Брэдли. В 1728 году Джеймс Брэдли оценил скорость света наблюдая абберацию звезд. Абберация – это изменение видимого положения звезды, вызванное движением земли по орбите. Зная скорость движения Земли и измерив угол абберации, Брэдли получил значение в 301000 километров в секунду.

Опыт Физо

К результату опыта Рёмера и Брэдли тогдашний ученый мир отнесся с недоверием. Тем не менее, результат Брэдли был самым точным на протяжении сотни с лишним лет, аж до 1849 года. В тот год французский ученый Арман Физо измерил скорость света методом вращающегося затвора, без наблюдений за небесными телами, а здесь, на Земле. По сути, это был первый после Галилея лабораторный метод измерения скорости света. Приведем ниже схему его лабораторной установки.


Свет, отражаясь от зеркала, проходил через зубья колеса и отражался от еще одного зеркала, удаленного на 8,6 километров. Скорость колеса увеличивали до того момента, пока свет не становился виден в следующем зазоре. Расчеты Физо дали результат в 313000 километров в секунду. Спустя год подобный эксперимент с вращающимся зеркалом быо проведен Леоном Фуко, получившим результат 298000 километров в секунду.

С появлением мазеров и лазеров у людей появились новые возможности и способы для измерение скорости света, а развитие теории позволило также рассчитывать скорость света косвенно, без проведения прямых измерений.


Самое точное значение скорости света

Человечество накопило огромный опыт по измерению скорости света. На сегодняшний день самым точным значением скорости света принято считать значение 299 792 458 метров в секунду , полученное в 1983 году. Интересно, что дальнейшее, более точное измерение скорости света, оказалось невозможным из-за погрешностей в измерении метра . Сейчас значение метра привязано к скорости света и равняется расстоянию, которое свет проходит за 1 / 299 792 458 секунды.

Напоследок, как всегда, предлагаем посмотреть познавательное видео. Друзья, даже если перед Вами стоит такая задача, как самостоятельное измерение скорости света подручными средствами, Вы можете смело обратиться за помощью к нашим авторам. вы можете оформив заявку на сайте Заочника. Желаем Вам приятной и легкой учебы!

Художественное представление космического корабля, совершающего прыжок к "скорости света". Предоставлено: NASA/Glenn Research Center.

С древних времен философы и ученые стремились понять свет. Кроме того, пытаясь определить его основные свойства (т.е. из чего он состоит - частица или волна и т.д.), они также стремились проделать конечные измерения того, как быстро он движется. С конца 17 века ученые делают именно это, и с возрастающей точностью.

Поступая таким образом, они получили лучшее понимание механики света, и какую важную роль он играет в физике, астрономии и космологии. Проще говоря, свет движется с невероятной скоростью, и это самый быстро движущийся объект во Вселенной. Его скорость является постоянной и неприступным барьером и используется в качестве измерения расстояния. Но насколько же быстро он движется?

Скорость света (с):

Свет движется с постоянной скоростью 1 079 252 848,8 км/ч (1,07 млрд). Что получается 299 792 458 м/с. Расставим все по своим местам. Если вы могли бы двигаться со скоростью света, вы смогли бы обогнуть земной шар примерно семь с половиной раз в секунду. Между тем, у человека, летящего со средней скоростью 800 км/ч, заняло бы более 50 часов, чтобы обогнуть планету.

Иллюстрация, показывающая расстояние, которое свет проходит между Землей и Солнцем. Предоставлено: LucasVB/Public Domain.

Рассмотрим это с астрономической точки зрения, среднее расстояние от до 384 398,25 км. Поэтому свет проходит это расстояние примерно за секунду. Между тем, среднее 149 597 886 км, что означает, что свету требуется всего около 8 минут, чтобы совершить это путешествие.

Неудивительно тогда, почему скорость света - это показатель, используемый для определения астрономических расстояний. Когда мы говорим, что звезда, такая как , находится в 4,25 световых годах, мы подразумеваем, что для того, чтобы добраться туда, потребуется, путешествуя с постоянной скоростью 1,07 млрд км/ч, около 4 лет и 3 месяцев. Но как же мы пришли к этому весьма конкретному значению скорости света?

История изучения:

До 17 века ученые были уверены в том, что свет путешествовал с конечной скоростью, или мгновенно. Со времен древних греков до средневековых исламских богословов и ученых нового времени шли дебаты. Но до тех пор, пока ни появилась работа датского астронома Оле Рёмера (1644-1710), в которой были проведены первые количественные измерения.

В 1676 году Рёмер наблюдал, что периоды самой внутренней луны Юпитера Ио казались короче, когда Земля приближалась к Юпитеру, чем когда она удалялась. Из этого он заключил, что свет движется с конечной скоростью, и по оценкам, ему требуется около 22 минут, чтобы пересечь диаметр орбиты Земли.


Профессор Альберт Эйнштейн на 11-й лекции Джозайи Уилларда Гиббса в Технологическом Институте Карнеги 28 декабря 1934 года, где он разъясняет свою теорию о том, что материя и энергия - это одно и то же в разных формах. Предоставлено: AP Photo.

Христиан Гюйгенс использовал эту оценку и объединил её с оценкой диаметра орбиты Земли, чтобы получить оценку в 220000 км/с. Исаак Ньютон также рассказывал о расчетах Рёмера в своей основополагающей работе "Оптика" 1706 года. Внося поправки для расстояния между Землей и Солнцем, он подсчитал, что свету потребуется семь или восемь минут, чтобы добраться от одного к другому. В обоих случаях была сравнительно небольшая погрешность.

Более поздние измерения, проведенные французскими физиками Ипполитом Физо (1819-1896) и Леоном Фуко (1819-1868), уточнили эти показатели, приведя к значению 315000 км/с. И ко второй половине 19 века ученым стало известно о связи между светом и электромагнетизмом.

Это было достигнуто физиками за счет измерения электромагнитных и электростатических зарядов. Затем они обнаружили, что числовое значение было очень близко к скорости света (как измерил Физо). Исходя из его собственной работы, которая показала, что электромагнитные волны распространяются в пустом пространстве, немецкий физик Вильгельм Эдуард Вебер предположил, что свет был электромагнитной волной.

Следующий большой прорыв произошёл в начале 20-го века. В своей статье под названием "К электродинамике движущихся тел" Альберт Эйнштейн утверждает, что скорость света в вакууме, измеренная наблюдателем, имеющим постоянную скорость, одинакова во всех инерциальных системах отсчета и не зависит от движения источника или наблюдателя.


Лазерный луч, светящий через стакан с водой, показывает, скольким изменениям он подвергается, когда проходит из воздуха в стекло, в воду и обратно в воздух. Предоставлено: Bob King.

Взяв это утверждение и принцип относительности Галилео за основу, Эйнштейн вывел специальную теорию относительности, в которой скорость света в вакууме (с) является фундаментальной константой. До этого соглашение среди ученых гласило, что космос был заполнен "светоносным эфиром", который отвечает за его распространение - т.е. свет, движущийся через движущуюся среду будет плестись в хвосте среды.

Это в свою очередь означает, что измеренная скорость света была бы простой суммой его скорости через среду плюс скорость той среды. Тем не менее, теория Эйнштейна сделала концепцию неподвижного эфира бесполезной и изменила представление о пространстве и времени.

Она (теория) не только продвинула идею о том, что скорость света одинакова во всех инерциальных системах, но также была высказана мысль о том, что происходят серьезные изменения, когда вещи движутся близко к скорости света. К ним относятся пространственно-временные рамки движущегося тела, кажущегося замедляющимся, и направление движения, когда измерение происходит с точки зрения наблюдателя (т.е. релятивистские замедление времени, где время замедляется при приближении к скорости света).

Его наблюдения также согласуются с уравнениями Максвелла для электричества и магнетизма с законами механики, упрощают математические расчеты, уходя от несвязанных аргументов других ученых, и согласовываются с непосредственным наблюдением скорости света.

Насколько похожи материя и энергия?

Во второй половине 20-го века всё более точные измерения с помощью метода лазерных интерферометров и резонансных полостей далее уточняли оценки скорости света. К 1972 году группа в Национальном бюро стандартов США в Боулдере, Колорадо, использовала метод лазерной интерферометрии, чтобы получить принятое в настоящее время значение 299 792 458 м/с.

Роль в современной астрофизике:

Теория Эйнштейна о том, что скорость света в вакууме не зависит от движения источника и инерциальный системы отсчета наблюдателя, с тех пор неизменно подтверждается множеством экспериментов. Она также устанавливает верхний предел скорости, с которой все безмассовые частицы и волны (включая свет) могут распространяться в вакууме.

Один из результатов этого в том, что космологии теперь рассматривают пространство и время как единую структуру, известную как пространство-время, в которой скорость света может быть использована для определения значения обоих (т.е. световые года, световые минуты и световые секунды). Измерение скорости света также может стать важным фактором при определении ускорения расширения Вселенной.

В начале 1920-х с наблюдениями Леметра и Хаббла ученым и астрономам стало известно, что Вселенная расширяется из точки происхождения. Хаббл также заметил, чем дальше галактика, тем быстрее она движется. То, что сейчас называют постоянной Хаббла - это скорость, с которой расширяется Вселенная, она равна 68 км/с на мегапарсек.

Как быстро расширяется Вселенная?

Это явление, представленное в виде теории, означает, что некоторые галактики на самом деле могут двигаться быстрее скорости света, что может наложить ограничение на то, что мы наблюдаем в нашей Вселенной. По сути, галактики, движущиеся быстрее скорости света, пересекли бы "космологический горизонт событий", где они больше не видны для нас.

Кроме того, к 1990-м измерения красного смещения далёких галактик показали, что расширение Вселенной ускоряется за последние несколько миллиардов лет. Это привело к теории "Темной Энергии", где невидимая сила движет расширением самого пространства, а не объектов, движущихся через него (при этом не поставив ограничение на скорость света или нарушение относительности).

Наряду со специальной и общей теорией относительности современное значение скорости света в вакууме сформировалось из космологии, квантовой механики и Стандартной модели физики элементарных частиц. Она остается постоянной, когда речь идет о верхнем пределе, с которым могут двигаться безмассовые частицы и остается недостижимым барьером для частиц, имеющих массу.

Вероятно, когда-нибудь мы найдем способ превысить скорость света. Пока у нас нет практических идей о том, как это может происходить, похоже "умные деньги" на технологиях позволят нам обойти законы пространства-времени, либо путем создания варп-пузырей (ака. варп-двигатель Алькубьерре) либо туннелирование через него (ака. червоточины).

Что такое червоточины?

До этого времени мы просто будем вынуждены довольствоваться Вселенной, которую мы видим, и придерживаться исследования той части, до которой можно добраться с помощью обычных методов.

Название прочитанной вами статьи "Что такое скорость света?" .

СКОРОСТЬ СВЕТА

СКОРОСТЬ СВЕТА

В свободном пространстве (вакууме) с, распространения любых электромагнитных волн (в т. ч. световых); одна из фундам. физических постоянных; представляет собой предельную скорость распространения любых физ. воздействий (см. ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ) и инвариантна при переходе от одной системы отсчёта к другим. Величина с связывает массу и полную энергию материального тела; через неё выражаются преобразования координат, скоростей и времени при изменении системы отсчёта (Лоренца преобразования); она входит во мн. др. соотношения. С. с. в с р е д е с" зависит от показателя преломления среды n, различного для разных частот n излучения (Дисперсия света): с"(n) =c/n(n). Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если идёт не о монохроматическом сеете (для С. с. в вакууме эти две величины совпадают). Экспериментально определяя с", всегда измеряют групповую С. с. либо т. н. скорость сигнала, или скорость передачи энергии, только в нек-рых спец. случаях не равную групповой.

Впервые С. с. определил в 1676 дат. астроном О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера. В 1728 её установил англ. астроном Дж. Брадлей, исходя из своих наблюдений аберрации света звёзд. На Земле С. с. первым измерил - по времени прохождения светом точно известного расстояния (базы) - в 1849 франц. физик А. И. Л. Физо. (Показатель преломления воздуха очень мало отличается от единицы, и наземные измерения дают величину, весьма близкую к с.) В опыте Физо пучок света от источника S, отражённый полупрозрачным зеркалом N, периодически прерывался вращающимся зубчатым диском W, проходил базу MN (ок. 8 км) и, отразившись от зеркала М, возвращался к диску (рис. 1). Падая при этом на зубец, не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через Е. По известным скоростям вращения диска определялось прохождения светом базы.

Рис. 1. Определение скорости света методом Физо.

Физо получил значение с=313300 км/с. В 1862 франц. физик Ж. Б. Л. Фуко реализовал высказанную в 1838 франц. учёным Д. Араго идею, применив вместо зубчатого диска быстро вращающееся (512 об/с) . Отражаясь от зеркала, пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на нек-рый малый угол (рис. 2). При базе всего в 20м Фуко нашёл, что С. с. равна 298000± ±500 км/с.

Рис. 2. Определение скорости света методом вращающегося зеркала (методом Фуко). S - источник света; R - быстровращаюшееся зеркало; С - неподвижное вогнутое зеркало, центр кривизны к-рого совпадает с осью вращения R (поэтому свет, отражённый С, всегда попадает обратно на R); М - полупрозрачное зеркало; L - ; Е - окуляр; RС - точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RC и обратно, и обратный ход пучка лучей через L. Объектив L собирает отражённый пучок в точке S", а не в точке S, как это было бы при неподвижном зеркале R. Скорость света устанавливают, измеряя смещение SS".

Схемы и осн. идеи опытов Физо и Фуко были многократно использованы в последующих работах по определению С. с. Полученное амер. физиком А. Майкельсоном (см. МАЙКЕЛЬСОНА ОПЫТ) в 1926 значение c=299796±4 км/с было тогда самым точным и вошло в интернац. таблицы физ. величин.

Измерения С. с. в 19 в. сыграли большую роль в физике, дополнительно подтвердив волн. теорию света (выполненное Фуко в 1850 сравнение С. с. одной и той же частоты v в воздухе и воде показало, что скорость в воде и=c/n(n), как и предсказывала волновая теория), а также установили связь оптики с теорией электромагнетизма - измеренная С. с. совпала со скоростью эл.-магн. волн, вычисленной из отношения эл.-магн. и электростатич. единиц электрич. заряда (опыты нем. физиков В. Вебера и Р. Кольрауша в 1856 и последующие более точные измерения англ. Дж. К. Максвелла). Это совпадение явилось одним из отправных пунктов при создании Максвеллом эл.-магн. теории света в 1864-73.

В совр. измерениях С. с. используется модернизир. метод Физо (модуляц. метод) с заменой зубчатого колеса на электрооптич., дифракц., интерференционный или к.-л. иной модулятор света, полностью прерывающий или ослабляющий (см. МОДУЛЯЦИЯ СВЕТА). Приёмником излучения служит или фотоэлектронный умножитель. Применение лазера в кач-ве источника света, УЗ модулятора со стабилизир. частотой и повышение точности измерения длины базы позволили снизить и получить значение с=299792,5±0,15 км/с. Помимо прямых измерений С. с. по времени прохождения известной базы, широко применяются т. н. косвенные методы, дающие большую . Так, с помощью микроволнового вакуумиров. резонатора (англ. физик К. Фрум, 1958) при длине излучения l=4 см получено значение с=299792,5±0,1 км/с. С ещё меньшей погрешностью определяется С. с. как частное от деления независимо найденных l и n ат. или мол. спектральных линий. Амер. учёный К. Ивенсон и его сотрудники в 1972 по цезиевому стандарту частоты (см. КВАНТОВЫЕ СТАНДАРТЫ ЧАСТОТЫ) нашли с точностью до 11-го знака частоту излучения СН4-лазера, а по криптоновому стандарту частоты - его длину волны (ок. 3,39 мкм) и получили с=299792456,2±0,2 м/с. Однако эти результаты требуют дальнейшего подтверждения. Решением Генеральной ассамблеи Международного комитета по численным данным для науки и техники - КОДАТА (1973) С. с. в вакууме принято считать равной 299792458±1,2 м/с.

Как можно более точное величины с чрезвычайно важно не только в общетеоретич. плане и для определения значений др. физ. величин, но и для практич. целей. К ним, в частности, относится определение расстояний по времени прохождения радио- или световых сигналов в радиолокации, оптической локации, светодальнометрии, в системах слежения за ИСЗ и т. д.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

СКОРОСТЬ СВЕТА

в свободном пространстве (вакууме) - скоростьраспространения любых электромагнитных волн (в т. ч. световых);одна из фундам. физ. постоянных; представляет собой предельную скоростьраспространения любых физ. воздействий (см. Относительности теория )и инвариантна при переходе от одной системы отсчёта к другой.

С. с. в среде с" зависит от показателя преломления среды n, различногодля разных частот v излучения ( Дисперсия света):. Эта зависимость приводит к отличию групповой скорости от фазовойскорости света в среде, если речь идёт не о монохроматич. свете (дляС. с. в вакууме эти две величины совпадают). Экспериментально определяя с", всегда измеряют групповую С. с. либо т. н. с к о р о с т ь сигнала, Впервые С. с. определил в 1676 О. К. Рёмер (О. Ch. Roemer) по изменениюпромежутков времени между затмениями спутников Юпитера. В 1728 её установилДж. Брадлей (J. Bradley), исходя из своих наблюдений аберрации света звёзд. . (рис. 1), отражённый полупрозрачным зеркалом N, периодическипрерывался вращающимся зубчатым диском W, проходил базу MN (ок. 8 км) н, отразившись от зеркала М, возвращался к диску. Попадаяна зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцамисвет можно было наблюдать через окуляр Е. По известным скоростямвращения диска определялось время прохождения светом базы. Физо получилзначение с = 313300 км/с В 1862 Ж . Б. Л. Фуко (J. В. L. Foucault)реализовал высказанную в 1838 идею Д. Араго (D. Arago), применив вместозубчатого диска быстровращающееся (512 об/с) зеркало. Отражаясь от зеркала, 500 км/с. Схемы и осн. идеи опытов Физо и Фуко были многократно использованыв последующих работах по определению С. с. Полученное А. Майкельсоном (A.Michelson) (см. Майкельсона опыт )в 1926 значение км/с было тогда самым точным и вошло в интернац. таблицы физ. величин.

Рис. 1. Определение скорости света методом Физо.

Рис. 2. Определение скорости света методом вращающегося зеркала (методомФуко): S - источник света; R - быстровращающееся зеркало; С - неподвижноевогнутое зеркало, центр которого совпадает с осью вращения Я (поэтому свет,

Измерения С. с. в 19 в. сыграли большую роль в физике, дополнительноподтвердив волновую теорию света. Выполненное Фуко в 1850 сравнение С. в соответствии с предсказанием волновой теории. Была также установленасвязь оптики с теорией электромагнетизма: измеренная С. с. совпала со скоростьюэл.-магн. волн, вычисленной из отношения эл.-магн. и эл.-статич. единицэлектрич. заряда [опыты В. Вебера (W. Weber) и Ф. Кольрауша (F. Kohlrausch)в 1856 и последующие более точные измерения Дж. К. Максвелла (J. С. Maxwell)].Это совпадение явилось одним из отправных пунктов при создании Максвелломв 1864-73 эл.-магн. теории света.

В совр. измерениях С. с. используется модернизиров. метод Физо (модуляц. Модуляция света). Приёмником излучения служит фотоэлементпли фотоэлектронный умножитель. Применение лазера в качествеисточника света, УЗ-модулятора со стабилизиров. частотой и повышение точностиизмерения длины базы позволили снизить погрешности измерений и получитьзначение км/с. Помимо прямых измерений С. с. по времени прохождения известной базы, = 4 см получено значение км/с. С ещё меньшей погрешностью определяется С. с. как частное от делениянезависимо найденных и v атомарных или молекулярных спектральных линий. К. Ивенсон (К.Evenson) и его сотрудники в 1972 по цезиевому стандарту частоты (см. Квантовыестандарты частоты )нашли с точностью до 11-го знака частоту излученияСН 4 -лазера, а по криптоновому стандарту частоты - его длинуволны (ок. 3,39 мкм) и получили ± 0,8 м/с. Решением Генеральной ассамблеи Международного комитета по численнымданным для науки и техники - КОДАТА (1973), проанализировавшей все имеющиесяданные, их достоверность и погрешность, С. с. в вакууме принято считатьравной 299792458 ±1,2 м/с.

Как можно более точное измерение величины с чрезвычайно важно не тольков общетеоретич. плане и для определения значении др. физ. величин, но идля практич. целей. К ним, в частности, относится определение расстоянийпо времени прохождения радио-или световых сигналов в радиолокации, оптическойлокации, светодальнометрии, в системах слежения ИСЗ и др.

Лит.: Вафиади В. Г., Попов Ю. В., Скорость света и ее значениев науке и технике, Минск, 1970; Тейлор В., Паркер В., Лангенберг Д., Фундаментальныеконстанты и , пер. с англ., М., 1972. А. М.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "СКОРОСТЬ СВЕТА" в других словарях:

    СКОРОСТЬ СВЕТА, скорость распространения электромагнитных волн. В вакууме скорость света c > 299,79?106 м/с; это предельная скорость распространения физических воздействий. В среде скорость света меньше, так, например, в стекле в 3 раза, а в воде … Современная энциклопедия

    Скорость света - СКОРОСТЬ СВЕТА, скорость распространения электромагнитных волн. В вакууме скорость света c » 299,79´106 м/с; это предельная скорость распространения физических воздействий. В среде скорость света меньше, так, например, в стекле в 3 раза, а в… … Иллюстрированный энциклопедический словарь

    Скорость распространения электромагнитных волн. В вакууме скорость света c = 299 792 458 .1,2 м/с (на 1980). Это предельная скорость распространения любых физических воздействий (см. Относительности теория). В среде скорость света зависит от его… … Большой Энциклопедический словарь

    скорость света - Скорость распространения электромагнитного излучения. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики физическая оптика EN velocity of light DE… … Справочник технического переводчика

    СКОРОСТЬ СВЕТА - одна из основных фундаментальных физических постоянных (обозначается с). С. с. равна скорости распространения любых электромагнитных волн (включая и световые) в вакууме: с = 299792458 м/с, или округлённо 300000 км/с = 3∙108 м/с. Величина с… … Большая политехническая энциклопедия

    Солнечному свету требуется около 8 минут 19 секунд, чтобы достигнуть Земли Точные значения … Википедия

    В свободном пространстве (вакууме) с, скорость распространения любых электромагнитных волн (См. Электромагнитные волны) (в т. ч. световых); одна из фундаментальных физических постоянных (См. Физические постоянные), огромная роль которой в … Большая советская энциклопедия

    Скорость распространения электромагнитных волн. В вакууме скорость света с = 299792458 ± 1,2 м/с (на 1980). Это предельная скорость распространения любых физических воздействий (см. Относительности теория). В среде скорость света зависит от его… … Энциклопедический словарь

    скорость света - šviesos greitis statusas T sritis automatika atitikmenys: angl. light velocity vok. Lichtgeschwindigkeit, f rus. скорость света, f pranc. vitesse de la lumière, f … Automatikos terminų žodynas

    скорость света - šviesos greitis statusas T sritis Standartizacija ir metrologija apibrėžtis Elektromagnetinių bangų sklidimo laisvoje erdvėje (vakuume) greitis. Tai fizikinė konstanta: c = 299 792 458 m/s. atitikmenys: angl. speed of light; velocity of light vok … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Книги

  • Человек знания. Сокровища тонкого мира. Превосходя скорость света (комплект из 3 книг) (количество томов: 3) , Похабов Алексей Борисович. "Человек знания. Здесь было высшее 171;Я 187;" . Перед вами 171;книга-перевертыш 187;, которая включает в себя два произведения, объединенных общей идеей и духовными отношениями…

Человека всегда интересовала природа света, о чем свидетельствуют мифы, легенды, дошедшие до нас философские споры и научные наблюдения. Свет всегда был поводом для дискуссий древних философов, а попытки его изучения предпринимались еще во времена возникновения эвклидовой геометрии - за 300 лет до н.э. Уже тогда было известно о прямолинейности распространения света, равенстве углов падения и отражения, явлении преломления света, обсуждались причины возникновения радуги. Аристотель считал, что скорость света бесконечно велика, а значит, логически рассуждая, и света не подлежит обсуждению. Типичный случай, когда проблема своей глубиной опережает эпоху понимания ответа.

Каких-то 900 лет назад Авиценна предположил, что какой бы большой ни была скорость света она, все-таки, имеет конечную величину. Такого мнения был не только он, но никому не удавалось доказать это экспериментально. Гениальный Галилео Галилей предложил эксперимент механистического понимания проблемы: два человека, стоящие на расстоянии нескольких километров друг от друга, подают сигналы, открывая заслонку фонаря. Как только второй участник увидит свет от первого фонаря, он открывает свою заслонку и первый участник фиксирует время получения ответного светового сигнала. Затем расстояние увеличивается и все повторяется. Ожидалось зафиксировать увеличение задержки и на этой основе выполнить расчет скорости света. Эксперимент закончился ничем, потому как «все было не внезапно, но чрезвычайно быстро».

Первым измерил скорость света в вакууме в 1676 году астроном Оле Ремер - он воспользовался открытием Галилея: тот обнаружил в 1609 году четыре у которых в течение полугода разница времени между двумя затмениями спутника составляла 1320 секунд. Пользуясь астрономическими сведениями своего времени Ремер получил значение скорости света равным 222000 км в секунду. Потрясающим оказалось то, что сам метод измерения невероятно точен - применение ныне известных данных диаметра Юпитера и времени запаздывания затемнения спутника дает скорость света в вакууме, на уровне современных значений, полученных другими способами.

Поначалу к опытам Ремера была только одна претензия - необходимо было провести измерения земными средствами. Прошло почти 200 лет, и Луи Физо построил остроумную установку, в которой луч света отражался от зеркала на расстоянии более 8 км и приходил обратно. Тонкость была в том, что он проходил по дороге туда-обратно через впадины зубчатого колеса, и если скорость вращения колеса увеличивать, то настанет момент, когда свет перестанет быть виден. Остальное - дело техники. Результат измерения - 312000 км в секунду. Мы сейчас видим, что Физо был еще ближе к истине.

Следующий шаг в измерении скорости света сделал Фуко, который заменил зубчатое колесо Это позволило уменьшить габариты установки и увеличить точность измерения до 288000 км в секунду. Не меньшей важности был и проделанный Фуко эксперимент, в котором он определил скорость света в среде. Для этого между зеркалами установки была помещена труба с водой. В этом опыте было установлено уменьшение скорости света при его распространении в среде в зависимости от коэффициента преломления.

Во второй половине 19-го века наступило время Майкельсона, который посвятил 40 лет своей жизни измерениям в области света. Венцом его работы стала установка, на которой он измерил скорость света в вакууме используя вакуумированную металлическую трубу длиной более полутора километров. Другим фундаментальным достижением Майкельсона было доказательство того факта, что для любой длины волны скорость света в вакууме одинаковая и в качестве современного эталона составляет 299792458+/- 1.2 м/c. Такие измерения проводились на основании уточненных значений эталонного метра, определение которого утверждено с 1983 г. в качестве международного стандарта.

Мудрый Аристотель был неправ, но чтобы это доказать понадобилось почти 2000 лет.

Свет во все времена занимал немаловажное место в выживании людей и создании ими развитой цивилизации, которую мы видим на сегодняшний день. Скорость света на протяжении всей истории развития человечества будоражила умы сначала философов и естествоиспытателей, а потом ученых и физиков. Это основополагающая константа существования нашей Вселенной.

Многие ученые в разные времена стремились выяснить, чему равняется распространения света в разнообразных средах. Наибольшее значение для науки имело вычисление значения, которое имеет скорость света в вакууме. Данная статья поможет вам разобраться в этом вопросе и узнать много интересного о том, как ведет себя свет в вакууме.

Свет и вопрос скорости

Свет в современной физике играет ключевую роль, ведь, как выяснилось, преодолеть значение его скорости на данном этапе развития нашей цивилизации невозможно. Много лет потребовалось для того, чтобы измерить, чему равна скорость света. До этого ученые провели немало исследований, пытаясь дать ответ на самые важный вопрос «чему равна скорость распространения в вакууме света?».
На данный момент времени ученые доказали, что скорость распространения света (СРС) обладает следующими характеристиками:

  • она постоянна;
  • она неизменна;
  • она недостижима;
  • она конечна.

Обратите внимание! Скорость света на текущий момент развития науки является абсолютно недостижимой величиной. У физиков существуют только некоторые предположения, что происходит с объектом, который гипотетически достигает значения скорости распространения светового потока в вакууме.

Скорость светового потока

Почему же так важно, с какой быстротой продвигается свет в вакууме? Ответ прост. Ведь вакуум находится в космосе. Поэтому узнав, какой цифровой показатель имеет скорость света в вакууме, мы сможем понять, с какой максимально возможной быстротой можно перемещаться по просторам Солнечной системы и за ее пределами.
Элементарными частичками, которые переносят свет в нашей Вселенной, являются фотоны. А быстрота, с которой продвигается свет в вакууме, считается абсолютной величиной.

Обратите внимание! Под СРС подразумевается быстрота продвижения электромагнитных волн. Интересно, что свет одномоментно являет собой элементарные частицы (фотоны) и волну. Это следует из корпускулярно-волновой теории. Согласно ней при определенных ситуациях свет ведет себя подобно частице, а при других – подобно волне.

На данный момент времени распространение света в космосе (вакууме) считается фундаментальной постоянной, которая не зависит от выбора используемой инерциальной системы отсчета. Данное значение относится к физическим фундаментальным постоянным. При этом значение СРС характеризует в целом основные свойства геометрии пространства-времени.
Современные представления характеризуют СРС как константу, которая является предельной допустимым значением для движения частиц, а также распространения их взаимодействия. В физике эта величина обозначается латинской буквой «с».

История изучения вопроса

В древние времена, как ни удивительно, еще античные мыслители задавались вопросом распространения света в нашей вселенной. Тогда считалось, что это бесконечная величина. Первую оценку физическому явлению скорости света дал Олаф Ремер лишь в 1676 г. Согласно его расчетам распространение света составляло примерно 220 тысяч км/с.

Обратите внимание! Олаф Ремер дал приблизительное значение, но, как в последствии выяснилось, не очень отдаленное от реального.

Правильное значение скоростного показателя, с которым продвигается свет в вакууме, было определенно только через полвека после Олафа Ремера. Это смог сделать французский физик А.И.Л. Физо, проведя особый эксперимент.

Эксперимент Физо

Он смог измерить это физическое явление путем измерения времени, за которое луч прошел определенный и точно измеренный участок.
Опыт имел следующий вид:

  • источник S испускал световой поток;
  • он отражался от зеркала (3);
  • после этого световой поток прерывался при помощи зубчатого диска (2);
  • затем оно проходил базу, расстояние которого равнялось 8 км;
  • после этого световой поток отражался зеркалом (1) и отправлялся в обратный путь к диску.

В ходе эксперимента световой поток попадал в промежутки между зубцами диска, и его можно было наблюдать через окуляр (4). Физо определял время прохождения луча по скорости вращения диска. В результате этого эксперимента он получил значение с = 313300 км/с.
Но это не конец исследований, которые были посвящены данному вопросу. Конечная формула расчета физической константы появилась благодаря многим ученым, включая и Альберта Эйнштейна.

Эйнштейн и вакуум: конечные результаты расчета

Сегодня каждый человек на Земле знает, что предельно допустимой величиной перемещения материальных объектов, а также любых сигналов, считается именно скорость света в вакууме. Точное значение этого показателя — почти 300 тыс. км/с. Если быть точным, то скорость распространения в вакууме света составляет 299 792 458 м/с.
Теорию о том, что невозможно превысить данное значение, выдвинул известный физик прошлого Альберт Эйнштейн в своей специальной теории относительности или СТО.

Обратите внимание! Теория относительности Эйнштейна считается незыблемой до момента появления реальных доказательств того, что передача сигнала возможна на скоростях, превышающих СРС в вакууме.

Теория относительности Эйнштейна

Но сегодня некоторые исследователи открыли явления, которые могут служить предпосылкой к тому, что СТО Эйнштейна может быть изменена. При некоторых специально заданных условиях имеется возможность отслеживать появление сверхсветовых скоростей. Интересно то, что при этом нарушение теории относительности не происходит.

Почему нельзя двигаться быстрее света

На сегодняшний день в данном вопросе существуют некоторые «подводные камни». Например, почему при обычных условиях константа СРС не может быть преодолена? По принятой теории в этой ситуации будет нарушаться фундаментальный принцип строения нашего мира, а именно — закон причинности. Он утверждает, что следствие по определению не способно опережать свою причину. Образно говоря, не может быть такого, что сначала медведь упадет замертво, а только потом раздастся выстрел охотника, застрелившего его. А вот если СРС превысить, то события должны начать происходить в обратной последовательности. В результате время начнет свой обратный бег.

Так чему все же равна скорость распространения светового луча?

После многочисленных исследований, которые приводились с целью определения точного значения, чему равно СРС, были получены конкретные цифры. На сегодняшний день с = 1 079 252 848,8 километров/час или 299 792 458 м/c. а в планковских единицах данный параметр определяется как единица. Это означает, что энергия света за 1 единицу планковского времени проходит 1 планковскую единицу длины.

Обратите внимание! Эти цифры справедливы только для условий, которые имеются в вакууме.

Формула значения постоянной

Но в физике для более простого способа решения задач используется округленное значение — 300 000 000 м/c.
Это правило в нормальных условиях касается всех объектов, а также рентгеновских лучей, гравитационных и световых волн видимого для нас спектра. Кроме этого ученые доказали, что частицы, обладающие массой, могут приближаться к скорости светового луча. Но они не в состоянии достичь ее или превысить.

Обратите внимание! Максимальная скорость, приближенная к световой, была получена при исследовании космических лучей, разгоняемых в специальных ускорителях.

Стоит отметить, что эта физическая константа зависит от того, в какой среде она измеряется, а именно от показателя преломления. Поэтому ее реальный показатель может разниться в зависимости от частот.

Как посчитать значение фундаментальной константы

На сегодняшний день существуют различные методы определения СРС. Это могут быть:

  • астрономические способы;
  • усовершенствованный метод Физо. Здесь зубчатое колесо заменяют на современный модулятор.

Обратите внимание! Ученые доказали, что показатели СРС в воздухе и в вакууме практически совпадают. А воде он меньше примерно на 25%.

Для расчета величины распространения светового луча используют следующую формулу.

Формула для расчета скорости света

Эта формула подходит для расчета в вакууме.

Заключение

Свет в нашем мире очень важен и тот момент, когда ученые смогут доказать возможность существования сверхсветовых скоростей сможет полностью изменить наш привычный мир. Что это открытие будет значить для людей даже сложно оценить. Но однозначно, это будет невероятный прорыв!

Как подобрать и установить датчики объема для автоматического управления светом
Самодельные регулируемые транзисторные блоки питания: сборка, применение на практике