Нанороботы уже внедряются в тело человека? Нанороботы

Введение

Ученые утверждаю, что настанет тот день, когда с помощью нанотехнологий в кровяные клетки человека можно будет встраивать микроскопические датчики, предупреждающие о появление признаков радиационного излучения или развития болезни. Прогнозируемый срок реализации - 1-ая половина XXI века.

А пока ученые трудятся над созданием медицинских нанороботов, журналисты и общественность спорят, могут ли наносенсоры повлиять губительно на организм человека? Ведь неизвестно как отреагирует организм на введенные в него чужеродные тела? Как выразился Эрик Дрекслер: «невидимое оружие всемирного переворота, покрывающие землю «серая слизь» (gray goo)». Короче говоря, крохотная причина конца света.

Действительно ли, нанотехнологии могут стать причиной конца света или это всего лишь богатая фантазия некоторых ученых?

Что такое нанотехнологии?

Прежде чем говорить о возможных рисках и перспективах нанотехнологий сначала надо сказать, что же это такое? Для этого понятия не существует исчерпывающего определения. «Нанотехнологии» - это технологии, оперирующие величинами порядка нанометра. Это ничтожно малая величина, в сотни раз меньше длины волны видимого света и сопоставимая с размерами атомов. Развитие нанотехнологии ведется в 3-ех направлениях:

Изготовление электронных схем размером с молекулу (атом);

Разработка и изготовление машин;

Манипуляция атомами и молекулами.

Что такое наномедицина?

«Наномедицина» - это слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя разработанные нанороботы и наноструктуры (Р. Фрейтас).

В настоящее время наномедицины пока не существует, есть только проекты, воплощение которых в реальность и приведет к наномедицине. Через несколько лет, когда уже, наконец, будет создан первый наноробот, знания накопленные наномедициной воплотятся в жизнь. А тогда за считанные минуты вы избавитесь от вируса гриппа или избавитесь от раннего атеросклероза. Нанороботы смогут вернуть даже очень старого человека в то состояние, в котором он был в молодости. От операции в органах мы перейдем на операции на молекулах и таким образом стане «бессмертными».

Перспективы развития

Ученые из штата Мичиган утверждают, что с помощью нанотехнологий можно будет встраивать микроскопические датчики в кровяные клетки человека, которые будут предупреждать о признаках радиации или развития болезни. Так в США, по предложению NASA, ведется разработка таких наносенсоров. Джейм Бейнер представляет себе «наноборьбу» с космическими излучениями так перед стартом астронавт используя шприц для подкожных инъекций, вводят в кроваток прозрачную жидкость, насыщенную миллионами наночастиц на время полета он вставляет себе в ухо маленькое устройство (наподобие слухового аппарата). В течение полета это устройство будет использовать маленький лазер для поиска светящихся клеток. Это возможно, т.к. клетки проходят по капиллярам барабанной перепонки. По беспроводной связи информация клеток будет передаваться на главный компьютер космического корабля, а затем обрабатывается. В случае чего будут приниматься необходимые меры.

Все это может воплотиться в реальность примерно через 5-10 лет. А наночастицы ученые используют уже более 5 лет.

А сейчас, сенсоры тоньше человеческого волоса могут оказаться в 1000 раз чувствительнее стандартных анализов ДНК. Американские ученые, разработавшие эти наносенсоры, полагают, что врачи смогут проводить целый спектр различных анализов, пользуясь лишь одной каплей крови. Одним из преимуществ этой системы является возможность моментально пересылать результаты анализа на карманный компьютер. Исследователи полагают, что на разработку полностью функциональной модели наносенсора, которым смогут воспользоваться врачи в повседневной работе, понадобиться около пяти лет.

С помощью нанотехнологий медицина сможет не только с любой болезнью, но и предотвращать ее появление, сможет помогать адоптации человека в космосе.

Могут ли влиять «устаревшие нанороботы» на человека?

Когда механизм завершит свою работу, нанодоктора должны будут удалять нанороботов из организма человека. Поэтому опасность того, что «устаревшие нанороботы», оставшиеся в теле человека будут работать неверно, очень мала. Нанороботы должны будут спроектированы так, чтобы избежать сбоев в работе и уменьшить медицинский риск. А как нанороботы будут удалены из тела? Некоторые из них будут способны к самоудалению из организма человека путем естественных каналов. Другие же будут спроектированы таким образом, чтобы их могли удалить медики. Процесс удаления будет зависеть от устройства данного наноробота.

Что может быть сделано неправильно в течение лечения нанороботами человека?

Считается, что первостепенной опасностью для пациента будет некомпетентность лечащего врача. Но ведь ошибки могут происходить и в неожиданных случаях. Одним из непредвиденных случаев может быть взаимодействие между роботами при их столкновении. Такие неисправности трудно будет определить. Иллюстрацией такого случая может служить работа двух видов нанороботов А и В в организме человека. Если наноробот А будет удалять последствия работы робота В, то это приведет к повторной работе А, и этот процесс будет продолжаться до бесконечности, то есть нанороботы будут исправлять работу друг друга. Чтобы таких ситуаций не возникало лечащий врач должен постоянно следить за работой нанороботов и в случае чего перепрограммировать их. Поэтому квалификация врача является очень важным фактором.

Как будет реагировать организм человека на нанороботы?

Как известно, наша иммунная система реагирует на чужеродные тела. Поэтому размер наноробота будет играть важную роль при этом, так же как шероховатость поверхности и подвижность устройства. Утверждается что проблема биосовместимости не очень сложна. Выходом из этой проблемы будет создание роботов на основе алмазоидных материалов. Благодаря сильной поверхностной энергии и алмазоидной поверхности и сильной ее гладкости внешняя оболочка роботов будет химически инертной.

Нанотехнологии, применяемые в медицине в последнее время

Уже сейчас нанотехнологии применяются в медицине. Основными областями ее применения являются: технологии диагностики, лекарственные аппараты, протезирование и имплонтанты.

Ярким примером является открытие профессора Азиза. Людям, страдающим болезнью Паркинсона, через два крошечных отверстия в черепе внедряют в мозг электроды, которые подключены к стимулятору. Примерно через неделю больному вживляют и сам стимулятор в брюшную полость. Регулировать напряжение пациент может сам с помощью переключателя. С болью удается справиться уже в 80 % случаях:

У кого-то боль исчезает совсем, у кого-то затихает. Через метод глубокой стимуляции мозга прошло около четырех десятков людей.

Многие коллеги Азиза говорят, что этот метод не эффективен и может иметь негативные последствия. Профессор же убежден, что метод действенен. Ни то ни другое сейчас не доказано. Мне кажется надо верить лишь сорока пациентам, которые избавились от невыносимой боли. И снова захотели жить. И если уже 8 лет этот метод практикуется и не сказывается негативно на здоровье больных, почему бы тогда не расширить его применение.

Еще одним революционным открытием является биочип - небольшая пластинка с нанесенными на нее в определенном порядке молекулами ДНК или белка, применяемые для биохимических анализов. Принцип работы биочипа прост. На пластиковую пластинку наносят определенные последовательности участков расщепленной ДНК. При анализе на чип помещают исследуемый материал. Если он содержит такую же гинетическую информацию, то они сцепливаются. В результате чего можно наблюдать. Преимуществом биочипов являются большое количество биологических тестов со значительной экономией исследуемого материала, реактивов, трудозатрат и время на проведение анализа.

Вывод

Перспективы развития нанотехнологий с помощью нанотехнологий очень велики. Применяемые в настоящее время нанотехнологии безвредны, примером являются наночипы и солнцезащитная косметика на основе нанокристаллов. А такие технологии, как нанороботы и наносенсоры, пока еще находятся в процессе разработки. Разговоры о том, что из-за бесконечного процесса самовоспроизводства нанороботов толстый слой «серой слизи» может покрыть всю Землю,- являются пока лишь теорией, не подтвержденной никакими данными. Как я поняла в процессе написания своей работы, нанотехнология является той областью науки, которая подвергается жесточайшей критике, прежде чем вводит какие-либо новшества. Правдива ли эта критика или нет я судить не могу.

Ученые NASA говорят, что они успешно проводили испытания нанороботов на животных. Но стоит ли этому верить? Каждый решает это сам для себя. Лично я считаю, что использование, например, таких нанотехнологий как наносенсоры может иметь рискованный характер. Ведь любая даже самая простейшая система может давать сбои, что уж тогда говорить о таких передовых технологиях, как нанороботы? И кроме того надо учитывать индивидуальные физиологические особенности каждого человека.

И так, перспективы развития нанотехнологий велики. Утверждается, что в ближайшем будущем, с помощью них можно будет не только побороть любую физическую болезнь, но и предотвратить ее появление. Но вот о рисках ученые NASA ничего не говорят. Есть только бесчисленные статьи в желтой прессе о том, что люди под воздействием нанороботов станут неуправляемыми как зомби.

Я думаю, что возможные риски будут сопоставимы с перспективами. Так что общественности надо больше уделять внимания этому вопросу. Чтобы ученые не только рассматривали «обе стороны монеты», но и ставили общество в известность об этом.

Мир все чаще говорит о нанотехнологиях. Правительства многих государств вкладывают огромные средства в их разработку, подводя цивилизацию на порог новой научно-технической революции.

Революция в медицине

Впервые слово «нанотехнология» мир услышал еще в 1959 году. Прошло каких-то полвека, а о нанотехнологиях не говорит разве что ленивый. Хотя до сих пор так и не удалось понять до конца, что же это такое? Условно считается, что это технологии, которые позволяют манипулировать частицами размером от 1 до 100 нанометров – это миллионная доля кончика швейной иголки!

Ученые говорят, что с помощью нанотехнологий человечество получит карт-бланш для решения многих проблем, особенно в медицине . Хотя пока еще как таковой наномедицины не существует, есть все основания полагать, что она уже зарождается. Во многих странах, в т.ч. и в Украине разрабатываются проекты с применением наночастиц.

Говоря о наночастицах, нужно отметить, что, по сути, мы имеем дело с отдельными молекулами и атомами. Все мы знаем, что и графит в простом карандаше и алмаз состоят из углерода. Разница лишь в том, как атомы этого вещества расположены. Условно, то же самое мы можем говорить и о здоровом и нездоровом органе человека. Таким образом, с помощью нанотехнологий появится возможность существенно влиять на структуру материалов. И сюжеты фантастических фильмов, где люди научились выращивать отдельные ткани и органы человека, постепенно становятся реальностью.

Молекулярные врачи

Специалисты в области нанотехнологий уже всерьез занялись созданием молекулярных роботов-врачей, которые с очень высокой точностью и без хирургического вмешательства смогут устранять всяческие неполадки в организме человека. Такие нанороботы, к примеру, смогут устранять лишний , очищать кровеносные сосуды, уничтожать вирусные инфекции, а также доставлять лекарства непосредственно к тому органу, где это необходимо. В случае с лекарствами решится огромная проблема в устранении побочных эффектов. Уже сегодня создаются нанороботы, которые могут отличать раковые клетки от нормальных. Таким образом, появится возможность избирательно уничтожать плохие клетки в организме, не причиняя вред здоровым. Также решится проблема с генетическими отклонениями, ведь наследственные болезни считаются сегодня практически неизлечимыми, т.к. причина этих недуг кроется в нашем геноме, которого никак нельзя изменить. С помощью нанороботов (в виду их предельно малых размеров) появится возможность осуществлять «ремонт» генов, устраняя в них аномальные последовательности и иные структурные нарушения.

Победить старение

Известный американский изобретатель Рей Курцвейль, которого газета «Wall Street Journal» окрестила «неутомимым гением», уже к 2030 году пророчит масштабное сожительство людей и машин, в частности наномашин. К этому времени появится возможность запустить миллиарды нанороботов в кровеносную систему человека. Это как безупречно налаженные коммунальные службы города. Молекулярные роботы в нашем организме займутся «строительством» нового материала и устранением изношенного. Появится возможность восстанавливать отдельно взятую клетку путем налаженной сборки отдельных молекул. Причем эти хитроумные машины, путешествуя по магистралям наших , будут сами находить ту или иную неполадку в организме, и с легкостью с ней бороться. По сути дела, мы можем говорить о существенном замедлении старения организма, ведь все факторы, из-за которых мы стареем, будут сразу устраняться. Ряд ученых даже осмеливается прогнозировать бессмертие человека, в котором будут работать эти чудо-машины.

В скором будущем

Роботизированные системы в лечении зрения

Фемтосекундный лазер – наивысшее достижение мировой офтальмологии в области роботизированной хирургии глазных заболеваний. До недавнего времени операцию при помощи такой установки можно было сделать только в избранн

Говорить о том, когда именно человек сможет сожительствовать с нанороботами пока рано. Некоторые ученые осмеливаются предполагать, что это станет возможным в ближайшие 20 лет, другие же не так оптимистичны в прогнозах, и считают, что в лучшем случае подобный технологический прорыв станет возможным в конце этого века. Проблемы с прогнозами ученых во многом продиктованы не достаточными знаниями. До сих пор о наномире известно еще очень немного. В этой связи многие ученые с опаской смотрят на внедрение нанотехнологий в медицину. Ведь если нанороботы смогут менять гены человека, то это будет приводить к определенным трансформациям, которые будут происходить сразу, а не эволюционным путем на протяжении сотен тысяч лет.

Если же ученым удастся полностью проконтролировать этот процесс, то нанороботы смогут постоянно корректировать все физиологические функции организма, давая возможность человечеству избавиться от необходимости посещать врачей.

Медицина будущего будет строиться на работе нанороботов. Уже сейчас в этом направлении есть замечательные прорывы. Стоит отметить хотя бы респироцита – наноробота, который выполняет функции кровеносного эритроцита, но в отличие от последнего, способен “перевозить” в 256 раз больше кислорода. Но обо всем по порядку.

Итак, наноробот это устройство имеющее размеры 0,5 – 100 мкм. Такая разница в габаритах зависит от функционального назначения наноробота. Те устройства, которые будут введены в кровоток, должны иметь меньший диаметр для безопасного прохождения капилляров. Нанороботы, которые будут действовать в тканях, могут иметь больший диаметр.

Почему на нанороботов возлагается такая надежда? Давайте покажем на примере, уже упомянутого мной респироцита, все плюсы этой технологии. Представьте себе емкость, в которую можно закачать кислород под давлением 1000 атмосфер. Так как стенки емкости состоят из сверхпрочного алмаза, кислород будет хорошо заперт и высвободится только по “разрешению”.

Я уже писал, что респироцит это наноробот напоминающий эритроцит. Его главная задача перенос кислорода. Запустив его в участках организма, где этого газа в достатке, робот переносит его к нуждающимся клеткам. Один респироцит может заменит 256 эритроцитов. Но так как при инъекции в организм попадает до нескольких триллионов нанороботов, то можно спокойно задерживать дыхание на большой промежуток времени не боясь, что клетки недополучат кислород.

Конечно, перенос кислорода это простая функция, нанороботы будущего будут нацелены на выявление патагонных микроорганизмов. Уже сейчас разработана технология создания фагоцитов – нанороботов, которые уничтожают некоторые вирусы, бактерии и грибки.

Такое “популярное” недомогание как простуда, ни что иное, как биохимический процесс внутри организма, с которым легко справятся нанороботы, выявив и уничтожив болезнетворные организмы.
Респироциты — искусственные эритороциты
Большинство нанороботов будущего будут состоять из атомов изотопа углерода 13C. С помощью механосинтеза алмаза, когда в вакуумной среде к кристаллической решетке алмаза добавляют атомы, создается тело устройства. Его снабжают бортовым компьютером и передающим устройством.

В качестве топлива, нанороботы будут использовать локальные запасы глюкозы и аминокислот. Кроме этого, традиционного для нанороботов способа получения энергии, уже сегодня ведутся эксперименты по доставке акустической энергии для нанороботов.

Но как же иммунная система, которая призвана обезвреживать и выдворять за пределы организма всех нелегалов? Тут у разработчиков таких устройств есть богатый опыт производителей имплантатов. Проблема совместимости ими давно решена, и они легко помогут свои коллегам. Если же обойти проблему за счет структуры материалов, из которых будет изготовлен наноробот, не удастся, то можно воспользоваться иммуноподавляющими препаратами на время нахождения нанороботов внутри организма.

Ну и напоследок нужно сказать несколько слов о выводе нанороботов из организма. Большинство таких устройств будут иметь возможность выйти традиционным способом. Кроме того, некоторые нанороботы, вывести которые обычным способом не удастся, можно будет удалить из организма с помощью специально разработанных выводящее — подобных процессов. В некоторых источников такие процессы называют нановыводом или наноаперезисом.

Наномедицина позволит в будущем избавиться от большинства болезней XX века. Быть может уже через несколько лет из нашего обихода уйдет словосочетание “хирургический скальпель”. Все операции будут вестись с помощью микроскопических устройств, которые получили название нанороботы.

Как вы можете себе представить, задачи, стоящие перед инженерами, колоссальны. Жизнеспособный наноробот должен быть небольшим и достаточно гибким, чтобы перемещаться по человеческой системе кровообращения, невероятно сложной сети артерий и вен.

Робот также должен обладать возможностью переносить медикаменты или миниатюрные инструменты. Если предположить, что наноробот не должен оставаться в теле пациента навсегда, он также должен уметь выходить из него.

В этой статье мы узнаем о потенциальном применении нанороботов, различных способов навигации нанороботов по нашему телу, об инструментах, которые они будут использовать для лечения пациентов, и о прогрессе, который двигают команды по всему миру.

«Вот два бота, принимать на ночь вместе с едой!»

При должном исполнении нанороботы смогут лечить множество заболеваний и состояний человека. В то время как их размер означает, что они могут перенести лишь самую малую порцию медикаментов или оборудования, многие доктора и инженеры полагают, что точное применение этих инструментов будет более эффективным, нежели традиционных. К примеру, вводят мощный антибиотик пациенту через шприц, чтобы помочь его иммунной системе: антибиотик разбавляется кровотоком пациента, и в итоге только часть его достигает пункта назначения.

Тем не менее наноботы или целая команда наноботов может добраться прямо до очага инфекции и доставить небольшую дозу лекарств. Пациент будет меньше страдать от побочных эффектов лекарств.

Как нанороботы будут перемещаться по кровеносной системе?

Навигация нанороботов

Есть три основных момента, на которых должны сосредоточиться ученые, изучающие движение нанороботов по телу — навигация, питание и как нанороботы будут двигаться по кровеносным сосудам. Нанотехнологи рассматривают различные варианты для каждого из этих аспектов, и у всякого есть положительные и отрицательные стороны. Большинство вариантов можно разделить на две категории:

  • внешние системы и
  • бортовые системы.

Внешние навигационные системы могут использовать множество различных методов, чтобы доставить наноробота в нужное место. Один из таких методов — использование ультразвуковых сигналов для обнаружения местоположения наноробота и направления его в нужное место назначения. Врачам пришлось бы отправлять ультразвуковые сигналы в тело пациента. Сигналы проходили бы через тело и отражались обратно к источнику сигналов. Нанороботы могут излучать импульсы ультразвуковых сигналов, которые врачи могли бы регистрировать, используя специальное оборудование с ультразвуковыми датчиками.

Используя магнитно-резонансную томографию (МРТ), врачи могли бы определять местонахождение наноробота и отслеживать его, обнаруживая его магнитное поле. Врачи и инженеры из Политехнической школы Монреаля несколько лет назад показали, что могли бы обнаружить, отследить, управлять и даже передвигать наноробота с использованием МРТ. Они проверили свои выводы, маневрируя небольшим количеством малых магнитных частиц в артериях свиньи, используя специальное программное обеспечение на устройстве МРТ. Поскольку за рубежом во многих больницах есть МРТ, это может стать промышленным стандартом — больницам не придется инвестировать в дорогостоящие непроверенные технологии.

Врачи также могут отслеживать нанороботов путем введения радиоактивного красителя в кровоток пациента. Затем использовали бы флюороскоп или аналогичное устройство для обнаружения радиоактивного красителя по мере его движения в кровотоке. Сложные трехмерные изображения показали бы, где находятся нанороботы. В качестве альтернативы нанороботы сами могут распылять радиоактивную краску, оставляя след.

Другие методы обнаружения нанороботов включают использование рентгеновских лучей, радиоволн, микроволн или тепла. На данный момент наши технологии, использующие эти методы на наноразмерных объектах, ограничены, так что гораздо более вероятно, что будущие системы будут полагаться на другие методы.

Бортовые системы, или внутренние датчики, также могут сыграть большую роль в навигации. Нанороботы с химическими сенсорами могли бы обнаруживать и следовать по следам конкретных химических веществ для достижения правильного местоположения. Спектроскопический датчик позволил бы нанороботу забирать пробы и образцы окружающей ткани, анализировать их и идти дальше.

Как бы это странно не звучало, нанороботы могут быть оснащены миниатюрной телекамерой. Оператор мог бы управлять устройством во время просмотра живого видео, буквально вручную проводя корабль сквозь тело. Системы видеонаблюдения довольно сложны, поэтому понадобится по меньшей мере несколько лет, прежде чем нанотехнологи смогут создать надежную систему, которую можно будет поместить внутри крошечного робота.


Питание нанороботов

Так же, как о навигационных системах, нанотехнологи раздумывают о внешних и внутренних источниках питания. Некоторые проекты полагаются на нанороботов, использующих собственное тело пациента как способ выработки энергии. Другие проекты включают в себя небольшой источник энергии на борту самого робота. Наконец, некоторые проекты используют силы за пределами тела пациента для питания наноробота.

Нанороботы могут получать энергию непосредственно из кровотока. Наноробот с установленными электродами может сформировать батарею на основе электролитов, найденных в крови. Другой вариант заключается в создании химических реакций с кровью для превращения ее в энергию. Наноробот мог бы нести небольшой запас химических веществ, которые станут источником топлива в сочетании с кровью.

Наноробот может использовать тепло тела для выработки энергии, но должен быть градиент температур для управления этим процессом. Выработка энергии может быть результатом эффектом Зеебека. Эффект Зеебека возникает, когда два проводника из разных металлов соединены в двух точках, которые обладают разной температурой. Металлические проводники становятся термопарой, то есть создают напряжение, когда стыки находятся в разных температурах. Поскольку трудно рассчитать температурный градиент в теле, едва ли мы увидим нанороботов, использующих тепло тела для генерации энергии.

Поскольку есть возможность создания батарей, достаточно малых для размещения в нанороботах, они обычно не рассматриваются в качестве жизнеспособного источника питания. Проблема заключается в том, что батареи могут хранить относительно небольшое количество энергии, напрямую связанное с их размером и весом, и, таким образом, очень маленькая батарея обеспечит лишь малую часть необходимой нанороботу энергии. Более вероятным кандидатом является конденсатор, который имеет немного лучшее соотношение мощности к весу.

Инженеры работают над созданием небольших конденсаторов, которые смогут стать источником питания для нанороботов.

Еще один возможный источник питания нанороботов — ядерный источник энергии. Мысль о том, чтобы оснастить крошечного робота ядерной энергии может вызвать ужас у некоторых людей, но имейте в виду, что необходимое количество материала достаточно мало и, по мнению некоторых экспертов, его легко экранировать. Тем не менее общественное мнение по поводу ядерной энергии едва ли позволить сделать нанороботов на ее основе.

Внешние источники питания включают системы, когда нанороботы либо привязаны к внешнему миру, либо контролируются без физического поводка. Привязанная система потребует провода между наноботом и источником питания. Провод должен быть достаточно прочным, но также без проблем проходить сквозь тело человека, не нанося повреждений. Физический трос мог бы поставлять электроэнергию с помощь электричества или оптики. Оптические системы передают свет через оптоволокно, а он затем преобразуется в электричество на борту робота.

Внешние системы, которые не используют провода, могли бы полагаться на микроволны, ультразвуковые сигналы или магнитные поля. Микроволны наименее вероятны к использованию, поскольку могут повредить ткань пациента путем нагревания. Наноробот с пьезоэлектрической мембраной сможет подхватывать ультразвуковые сигналы и преобразовывать их в электричество. Системы, использующие магнитные поля, вроде тех врачей из Монреаля, о которых мы упоминали выше, могут также напрямую управлять нанороботом или индуцировать электрический ток в закрытой проводящей петле внутри робота.

Передвижение нанороботов

Если предположить, что нанороботы не будут привязаны или предназначены для пассивного течения через кровоток, им понадобится средство передвижения через тело. Поскольку им, возможно, придется плыть против течения крови, двигательная установка должна быть относительно мощная для своих размеров. Еще одним важным фактором является безопасность пациента — система должна быть в состоянии продвигать наноробота без ущерба хозяину.

Некоторые ученые наблюдают за микроорганизмами в поисках вдохновения. Парамеция может двигаться через среду, используя крошечные хвостики — реснички. Вибрируя ресничками, парамеция может плавать в любом направлении. Подобно ресничкам работают жгутики, более длинные хвостовые структуры. Организмы бьют жгутиками вокруг, чтобы двигаться в разных направлениях.

Израильские ученые создали микроробота, который всего несколько миллиметров в длину и использует маленькие придатки для захвата и ползания по кровеносным сосудам. Ученые манипулируют его конечностями, создавая магнитное поле за пределами тела пациента. Магнитное поле заставляет конечности робота вибрировать и толкать его по кровеносным сосудам. Ученые отмечают, что, поскольку вся энергия для наноробота берется из внешних источников, нет никакой необходимости оснащать механизм внутренним источником питания. Они надеются, что относительно простой дизайн позволит им сделать в скором времени еще более мелких роботов.

Другие устройства звучат еще более экзотически. Одно использует конденсаторы для генерации магнитных полей, которые бы протягивали проводящие жидкости из одного конца электромагнитного насоса и выстреливали бы их обратно. Наноробот двигался бы как реактивный самолет. Миниатюрные струйные насосы могут даже использовать плазму крови, чтобы подталкивать робота вперед, но, в отличие от электромагнитного насоса, в этих должны быть движущиеся части.

Другой потенциальный способ, которым могли бы передвигаться роботы — использование вибрирующей мембраны. Поочередно затягивая и ослабляя напряженность мембраны, нанороботы могли бы генерировать небольшую тягу. На наноуровне этой тяги может быть достаточно, чтобы стать основным источником движения.

Крошечные инструменты

Современные проверенные микророботы имеют всего несколько миллиметров в длину и около миллиметра в диаметре, но эти цифры уменьшаются ежегодно. По сравнению с наноуровнем, эти цифры просто огромны — нанометр представляет собой одну миллиардную долю метра, в то время как миллиметр — всего одну тысячную. Будущие нанороботы будут настолько малы, что вы сможете увидеть их только в микроскоп. Инструменты нанороботов должны быть еще меньше. Вот несколько вещей, которые вы можете обнаружить в инструментарии нанороботов:

  • Полость для медикаментов. Это пустая секция внутри наноробота, которая будет содержать небольшие дозы лекарств или химических веществ. Робот может высвобождать лекарства непосредственно в месте травмы или инфекции. Нанороботы также могут нести химические вещества, используемые в химиотерапии для лечения рака непосредственно на месте. Хотя количество лекарств будет относительно незначительным, применение их непосредственно к раковой ткани может быть более эффективным, чем традиционная терапия, которая опирается на систему кровообращения как способ перевозки химических веществ в теле пациента.
  • Зонды, ножи и стамески. Чтобы удалять блокады и бляшки, нанороботам нужно будет что-то, что сможет хватать и рушить. Также, возможно, понадобится устройство для разрушения тромбов на мелкие кусочки. Если часть тромба вырвется и попадет в кровоток, она может вызвать массу проблем.
  • Микроволновые излучатели и ультразвуковые генераторы. Чтобы уничтожать раковые клетки, врачам нужны методы, которые смогут убить клетку, не разрушив ее. Разорванная раковая клетка может выбросить химические вещества, которые спровоцируют дальнейшее распространение рака. Используя точные микроволны или ультразвуковые сигналы, наноробот может разрушить химические связи в раковой клетке, убив ее, не разрушая клеточные стенки. В качестве альтернативы робот может излучать микроволны или ультразвук для нагревания клетки, которого будет достаточно для ее уничтожения.
  • Электроды. Два электрода, выступающих из наноробота, смогут убить раковые клетки, генерируя электрический ток и нагревая клетку, пока она не умрет.
  • Лазеры. Крошечные мощные лазеры могут выжечь дотла вредные материалы вроде артериальных бляшек, раковых клеток или тромбов в крови. Лазеры буквально испарят это все.

Две самые большие проблемы, которые беспокоят ученых, — это как повысить эффективность этих миниатюрных инструментов и сделать их безопасными. Например, создать небольшой лазер, который будет достаточно мощным для испарения клеток, достаточно сложная задача, но сделать его безопасным для окружающей среды — еще сложнее. В то время как многие научные группы разработали нанороботов достаточно мелких, чтобы они могли попасть в кровеносную систему, это только первые шаги к созданию реально применяемых нанороботов.

Нанороботы: сегодня и завтра

Команды по всему миру работают над созданием первого практичного медицинского наноробота. Роботы от миллиметра в диаметре до относительно громоздких, в два сантиметра длиной, уже существуют, хотя и не испытываются на людях. Возможно, мы всего в нескольких годах от выхода нанороботов на медицинский рынок. Сегодняшние микророботы остаются прототипами, которым не хватает способностей выполнять медицинские задачи.

В будущем нанороботы могут совершить революцию в медицине. Врачи смогут лечить все, от сердечно-сосудистых заболеваний до рака, при помощи крошечных роботов, по размерам сопоставимых с бактериями, намного меньших, чем нынешние нанороботы. Некоторые считают, что полуавтономные нанороботы уже вот-вот будут доступны — доктора смогут имплантировать роботов, способных патрулировать человеческое тело и реагировать на любые проблемы. В отличие от экстренного лечения, эти роботы будут оставаться в теле пациента навсегда.

Другое потенциальное применение нанороботов в будущем — укрепление нашего тела, повышение иммунитета, увеличение силы или даже улучшение интеллекта. Сможем ли мы в один прекрасный день обнаружить тысячи микроскопических роботов, плывущих по нашим венам и вносящим коррекции и изменения в наши разрушенные тела? С нанотехнологиями, похоже, все будет возможно.