Принцип функционирования нервной системы человека. Принципы, лежащие в основе координационной деятельности цнс

Нервная система (Н.с.) - это совокупность структур в организме животных и человека, объединяющая деятельность всех органов и систем и обеспечивающая функционирование организма как единого целого в его постоянном взаимодействии с внешней средой. Н.с. воспринимает внешние и внутренние раздражения, анализирует эту информацию, отбирает и перерабатывает её и в соответствии с этим регулирует и координирует функции организма.

Рис. 1.

Нервная система образована главным образом нервной тканью, основной элемент которой - нервная с отростками, обладающая высокой возбудимостью и способностью к быстрому проведению возбуждения.

Структурная и функциональная единица нервной системы - нейрон, состоящий из тела нервной клетки и отростков - Аксон а и Дендритов. Кроме нервных клеток, в структуру Н. с. входят глиальные клетки. Нейроны являются в известной мере самостоятельными единицами - их протоплазма не переходит из одного нейрона в другой (см. Нейронная теория). Взаимодействие между нейронами осуществляется благодаря контактам между ними (см. Синапсы; рис. 2):

Рис. 2. Схема строения синаптических соединений : А - двигательный нейрон спинного мозга; Б - синаптические окончания отростка нейрона на поверхности двигательного нейрона в увеличенном масштабе; В - ультраструктура отдельного синапса, демонстрирующая синаптические пузырьки и митохондрии.

В области контакта между окончанием одного нейрона и поверхностью другого в большинстве случаев сохраняется особое пространство - синаптическая щель. Основные функции нейронов: восприятие раздражений, их переработка, передача этой информации и формирование ответной реакции. В зависимости от типа и хода нервных отростков (волокон), а также их функций нейроны подразделяют на: а) рецепторные (афферентные), волокна которых проводят нервные импульсы от рецепторов в центральной нервной системе (ЦНС); тела их находятся в спинальных ганглиях или ганглиях черепномозговых нервов; б) двигательные (эфферентные), связывающие ЦНС с эффекторами; тела и дендриты их находятся в ЦНС, а аксоны выходят за её пределы (за исключением эфферентных нейронов вегетативной Н. с., тела которых расположены в периферических ганглиях); в) вставочные (ассоциативные) нейроны, служащие связующими звеньями между афферентными и эфферентными нейронами; тела и отростки их расположены в ЦНС.

Деятельность нервной системы основывается на двух процессах: возбуждении (См. Возбуждение) и торможении (См. Торможение).

Возбуждение может быть распространяющимся (см. Импульс нервный) или местным - нераспространяющимся, стационарным (последнее открыто русским физиологом Николаем Евгеньевичем Введенским в 1901 году). Торможение - процесс, тесно связанный с возбуждением и внешне выражающийся в снижении возбудимости клеток. Одна из характерных черт тормозного процесса - отсутствие способности к активному распространению по нервным структурам (явление торможения в нервных центрах впервые было установлено естествоиспытателем-материалистом Иваном Михайловичем Сеченовым в 1863 году).

Клеточные механизмы возбуждения и торможения подробно изучены. Тело и отростки нервной клетки покрыты мембраной, постоянно несущей на себе разность потенциалов (так называемый мембранный потенциал). Раздражение расположенных на периферии чувствительных окончаний афферентного нейрона преобразуется в изменение этой разности потенциалов (см. Биоэлектрические потенциалы). Возникающий вследствие этого нервный импульс распространяется по нервному волокну и достигает его пресинаптического окончания, где вызывает выделение в синаптическую щель высокоактивного химического вещества - Медиатора. Под влиянием последнего в постсинаптической мембране, чувствительной к действию медиатора, происходит молекулярная реорганизация поверхности. В результате постсинаптическая мембрана начинает пропускать ионы и деполяризуется, вследствие чего на ней возникает электрическая реакция в виде местного возбуждающего постсинаптического потенциала (ВПСП), вновь генерирующего распространяющийся импульс.

Нервные импульсы, возникающие при возбуждении особых тормозящих нейронов, вызывают гиперполяризацию постсинаптической мембраны и, соответственно, тормозящий постсинаптический потенциал (ТПСП). Помимо этого, установлен и другой вид торможения, формирующийся в пресинаптической структуре, - пресинаптическое торможение, обусловливающее длительное снижение эффективности синаптической передачи (см. Мембранная теория возбуждения).

В основе деятельности нервной системы лежит рефлекс, т. е. реакция организма на раздражения рецепторов, осуществляемая при посредстве Н. с. Термин «рефлекс» был впервые введён в зарождавшуюся физиологию французом Рене Декартом в 1649 году, хотя конкретных представлений о том, как осуществляется рефлекторная деятельность, в то время ещё не было. Такие сведения были получены лишь значительно позже, когда морфологи приступили к исследованию строения и функций нервных клеток (Р. Дютроше, 1824; немецкий зоолог и анатом Кристиан Готфрид Эренберг, 1836; чешский естествоиспытатель, Ян Эвангелиста Пуркине, 1837; итальянский гистолог Камилло Гольджи, 1873; испанский гистолог Сантьяго Рамон-и-Кахаль, 1909), а физиологами были изучены основные свойства нервной ткани (итальянский анатом и физиолог Луиджи Гальвани, 1791; К. Маттеуччи, 1847; немецкий физиолог Эмиль Генрих Дюбуа-Реймон, 1848 - 49; российский физиолог Николай Евгеньевич Введенский, 1901; физиолог Александр Филиппович Самойлов, 1924; Д. С. Воронцов, 1924; и другие).

В конце 19 и начале 20 веков были созданы карты расположения нервных центров и нервных путей в мозге, а также получены сведения об основных рефлекторных процессах и о локализации функций в мозге, с тех пор постоянно пополняемые и расширяемые (российский ученый Иван Михайлович Сеченов, 1863; физиолог Николай Александрович Миславский, 1885; невролог, психиатр и психолог Владимир Михайлович Бехтерев , 1903; физиолог Иван Петрович Павлов , 1903; английский физиолог Чарлз Скотт Шеррингтон, 1906; российский физиолог Алексей Алексеевич Ухтомский, 1911; грузинский физиолог Иван Соломонович Бериташвили, 1930; российский и армянский физиолог, один из создателей эволюционной физиологии Леон Абгарович Орбели, 1932; Дж. Фултон, 1932; английский физиолог Эдгар Дуглас Эдриан, 1932; российский физиолог Петр Кузьмич Анохин, 1935; физиолог Константин Михайлович Быков, 1941; Х. Мэгоун, 1946; и др.).

Все рефлекторные процессы связаны с распространением возбуждения по определённым нервным структурам - рефлекторным дугам (См. Рефлекторная дуга). Основные элементы рефлекторной дуги: рецепторы, центростремительный (афферентный) нервный путь, внутрицентральные структуры различной сложности, центробежный (эфферентный) нервный путь и исполнительный орган (эффектор). Различные группы рецепторов возбуждаются раздражителями разной модальности (т. е. качественной специфичности) и воспринимают раздражения, исходящие как из внешней среды (экстерорецепторы - органы зрения, слуха, обоняния и др.), так и из внутренней среды организма (интерорецепторы, возбуждающиеся при механических, химических, температурных и др. раздражениях внутренних органов, мышц и др.). Нервные сигналы, несущие в центральной нервной системе информацию от рецепторов по нервным волокнам, лишены модальности и обычно передаются в виде серии однородных импульсов. Информация о различных характеристиках раздражений кодируется изменениями частоты импульсов, а также приуроченностью нервной импульсации к определённым волокнам (так называемое пространственно-временное кодирование).

Совокупность рецепторов данной области тела животного или человека, раздражение которых вызывает определённый тип рефлекторной реакции, называется рецептивным полем рефлекса. Такие поля могут накладываться друг на друга. Совокупность нервных образований, сосредоточенных в ЦНС и ответственных за осуществление данного рефлекторного акта, обозначают термином Нервный центр. На отдельном нейроне в нервной системе может сходиться огромное число окончаний волокон, несущих импульсы от др. нервных клеток. В каждый данный момент в результате сложной синаптической переработки этого потока импульсов обеспечивается дальнейшее проведение лишь одного, определённого сигнала - принцип конвергенции, лежащий в основе деятельности всех уровней Н. с. («принцип конечного общего пути» Шеррингтона, получивший развитие в трудах Ухтомского и др.).

Пространственно-временная суммация синаптических процессов служит основой для различных форм избирательного функционального объединения нервных клеток, лежащего в основе анализа поступающей в нервную систему информации и выработки затем команд для выполнения различных ответных реакций организма. Такие команды, как и афферентные сигналы, передаются от одной клетки к другой и от ЦНС к исполнительным органам в виде последовательностей нервных импульсов, возникающих в клетке в том случае, когда суммирующиеся возбуждающие и тормозящие синаптические процессы достигают определённого (критического для данной клетки) уровня - порога возбуждения.

Несмотря на наследственно закрепленный характер связей в основных рефлекторных дугах, характер рефлекторной реакции может в значительной степени изменяться в зависимости от состояния центральных образований, через которые они осуществляются. Так, резкое повышение или понижение возбудимости центральных структур рефлекторной дуги может не только количественно изменить реакцию, но и привести к определённым качественным изменениям в характере рефлекса. Примером такого изменения может служить явление доминанты.

Важное значение для нормального протекания рефлекторной деятельности имеет механизм так называемой обратной афферентации - информации о результате выполнения данной рефлекторной реакции, поступающей по афферентным путям от исполнительных органов. На основании этих сведений в случае, если результат неудовлетворителен, в сформировавшейся функциональной системе могут происходить перестройки деятельности отдельных элементов до тех пор, пока результат не станет соответствовать уровню, необходимому для организма (П. К. Анохин, 1935).

Всю совокупность рефлекторных реакций организма делят на две основные группы: Безусловные рефлексы - врождённые, осуществляемые по наследственно закрепленным нервным путям, и Условные рефлексы , приобретённые в течение индивидуальной жизни организма путём образования в ЦНС временных связей. Способность образования таких связей присуща лишь высшему для данного вида животных отделу нервной системы (для млекопитающих и человека - это кора головного мозга). Образование условнорефлекторных связей позволяет организму наиболее совершенно и тонко приспосабливаться к постоянно изменяющимся условиям существования. Условные рефлексы были открыты и изучены И. П. Павловым в конце 19 - начале 20 веков. Исследование условнорефлекторной деятельности животных и человека привело его к созданию учения о высшей нервной деятельности (См. Высшая нервная деятельность) (ВНД) и анализаторах. Каждый анализатор состоит из воспринимающей части - рецептора, проводящих путей и анализирующих структур ЦНС, обязательно включающих её высший отдел. Кора головного мозга у высших животных - совокупность корковых концов анализаторов; она осуществляет высшие формы анализаторной и интегративной деятельности, обеспечивая совершеннейшие и тончайшие формы взаимодействия организма с внешней средой.

Нервная система обладает способностью не только немедленно перерабатывать поступающую в неё информацию при помощи механизма взаимодействующих синаптических процессов, но и хранить следы прошлой активности (механизмы памяти (См. Память)). Клеточные механизмы сохранения в высших отделах нервной ситсемы длительных следов нервных процессов, лежащие в основе памяти, интенсивно изучаются.

Наряду с перечисленными выше функциями нервная система осуществляет также регулирующие влияния на обменные процессы в тканях - адаптационно-трофическую функцию (И. П. Павлов, Л. А. Орбели, А. В. Тонких и др.). При перерезке или повреждении нервных волокон свойства иннервируемых ими клеток изменяются (это касается как физико-химических свойств поверхностной мембраны, так и биохимических процессов в протоплазме), что, в свою очередь, сопровождается глубокими нарушениями в состоянии органов и тканей (например, трофическими язвами). Если иннервация восстанавливается (в связи с регенерацией нервных волокон), то указанные нарушения могут исчезнуть.

Изучением строения, функций и развития нервной системы у человека занимается Неврология. - предмет невропатологии (См. Невропатология) и нейрохирургии. (П. Г. Костюк)

Подробнее о нервной системе читайте в литературе:

  • Орбели Л. А., Лекции по физиологии нервной системы, 3 изд., М. - Л., 1938;
  • его же, Избр. труды, т. 1 - 5, М. - Л., 1961 - 68;
  • Ухтомский А. А., Собр. соч., т. 1 - 6, Л., 1945 - 62;
  • Павлов И. П., Полн. собр. соч., 2 изд., т. 2,Москва , 1951;
  • Сеченов И. М., Избр. произв., т. 1, [М.], 1952;
  • Коштоянц Х. С., Основы сравни тельной физиологии, т. 2, М., 1957;
  • Бериташвили И. С., Общая физиология мышечной и нервной системы, 3 изд., т. 1, М., 1959;
  • Сепп Е. К., История развития нервной системы позвоночных, 2 изд., М., 1959;
  • Экклс Дж., Физиология нервных клеток, пер. с англ., М., 1959;
  • Беклемишев В. Н., Основы сравнительной анатомии беспозвоночных, 3 изд., т. 2, М., 1964;
  • Катц Б., Нерв, мышца и синапс, пер. с англ., М., 1968;
  • Окс С., Основы нейрофизиологии, пер. с англ., М., 1969;
  • Шеррингтон Ч., Интегративная деятельность нервной системы, пер. с англ., Л., 1969: Костюк П. Г., Физиология центральной нервной системы, К., 1971;
  • Ariens Kappers С. U., Huber G. С., Crosby E. С., The comparative anatomy of the nervous system of vertebrates, including man, v. 1 - 2, N. Y., 1936;
  • Bullock T. Н., Horridge G. A., Structure and function in the nervous systems of invertebrates, v. 1 - 2, S. F. - L., 1965.

Найти ещё что-нибудь интересное:

3-1. Какой принцип лежит в основе деятельности нервной системы? Нарисуйте схему его реализации.

3-2. Перечислите защитные рефлексы, которые возникают при раздражении слизистой оболочки глаз, полости носа, рта, глотки и пищевода.

3-3. Проведите по всем классификационным признакам рвотный рефлекс.

3-4. Почему время рефлекса зависит от числа вставочных нейронов?

3-5. Можно ли зарегистрировать потенциал действия нерва А, если раздражать нерв В в тех условиях опыта, которые показаны на схеме (в точке 1)? А если нанести раздражение на нерв А в точке 2?

3-6. Произойдет ли возбуждение нейрона, если к нему по нескольким аксонам одновременно подавать подпороговые стимулы? Почему?

3-7. Какова должна быть частота раздражающих стимулов, чтобы подпороговыми раздражениями вызвать возбуждение нейрона? Дайте ответ в общем виде.

3-8. На нейрон А по двум подходящим к нему аксонам подаются раздражения с частотой 50 г. С какой частотой нейрон А может посылать импульсы по всему аксону?


3-9. Что произойдет с мотонейроном спинного мозга при возбуждении клетки Реншоу?

3-10. Проверьте, верно ли составлена таблица:

3-11. Допустим, что возбуждения изображенного ниже центра достаточно, чтобы на каждый нейрон выделилось два кванта медиатора. Как изменится возбуждение центра и функция регулируемых им аппаратов, если вместо одного аксона одновременно раздражать аксоны А и Б? Как называется это явление?

3-12. Для возбуждения нейронов данного центра достаточно два кванта медиатора. Перечислите, какие нейроны нервного центра возбудятся, если раздражение нанести на аксоны А и В, В и С, А,В и С? Как называется это явление?

3-13. Каковы основные преимущества нервной регуляции функций по сравнению с гуморальной?

3-14. Длительным раздражением соматического нерва мышца доведена до утомления. Что произойдет с мышцей, если теперь подключить раздражение симпатического нерва, идущего к этой мышц? Как называется этот феномен?

3-15. На рисунке приведены кимограммы коленного рефлекса кошки. Раздражение каких структур среднего мозга вызывает, изображенные на кимограммах 1 и 2 изменения рефлексов?


3-16. Раздражение какой структуры среднего мозга вызывает реакцию, изображенную на приведенной электроэнцефало-грамме? Как называется эта реакция?

Альфа-ритм Бета-ритм


3-17. На каком уровне необходимо произвести перерезку ствола мозга, чтобы получить изменения тонуса мышц, изображенные на рисунке? Как называется это явление?

3-18. Как изменится тонус передних и задних конечностей у бульбарного животного при запрокидывании его головы назад?

3-19. Как изменится тонус мышц передних и задних конечностей бульбарного животного при наклоне его головы вперед?

3-20. Отметьте на ЭЭГ альфа, бета, тета и дельта -волны и дайте их частотную и амплитудную характеристику.

3-21. При измерении возбудимости сомы, дендритов и аксонного холмика нейрона получены следующие цифры: реобаза разных отделов клетки оказалась равной 100 мв, 30 мв., 10 мв. Скажите, каким отделам клетки соответствует каждый из параметров?

3-22. Мышца весом 150 г. за 5 минут потребила 20 мл. кислорода. Сколько, примерно, кислорода в минуту потребляют в этих условиях 150 г. нервной ткани?

3-23. Что происходит в нервном центре, если импульсы поступают к его нейронам с частотой, при которой ацетилхолин не успевает полностью разрушаться холинестеразой и накапливается на постсинаптической мембране в большом количестве?

3-24. Почему при введении стрихнина у лягушки наблюдаются судороги в ответ на любое, даже самое легкое раздражение?

3-25. Как изменится сокращение нервно-мышечного препарата, если в перфузируемую жидкость добавить холинэстеразу или аминоксидазу?

3-26. У собаки два месяца тому назад удален мозжечок. Какие симптомы нарушения двигательной функции Вы можете обнаружить у этого животного?

3-27. Что происходит с альфа ритмом на ЭЭГ у человека при действии на глаза светового раздражения и почему?

3-28. Какие из представленных кривых соответствуют потенциалу действия (ПД), возбуждающему постсинаптическому потенциалу (ВПСП) и тормозному постсинаптическому потенциалу (ТПСП)?


3-29. У больного полный разрыв спинного мозга между грудным и поясничным отделом. Будут ли у него наблюдаться расстройства акта дефекации и мочеиспускания, и если да, то в чем они проявятся в разные сроки после травмы?

3-30. У человека после огнестрельного ранения в область ягодицы на голени развилась незаживающая язва. Чем можно объяснить ее появление?

3-31. У животного разрушена ретикулярная формация ствола мозга. Может ли в этих условиях проявиться феномен Сеченовского торможения?

3-32. При раздражении коры мозга собака совершает движения передними лапами. Какая область мозга, по Вашему мнению, подвергается раздражению?

3-33. Животному введена большая доза аминазина, который блокирует восходящую активирующую систему ретикулярной формации мозгового ствола. Как при этом меняется поведение животного и почему?

3-34. Известно, что во время наркотического сна при операции наркотизатор постоянно следит за реакцией зрачков больного на свет. Для какой цели он это делает и с чем может быть связано отсутствие этой реакции?

3-35. Больной левша, страдает моторной афазией. Какая область коры больших полушарий у него поражена?

3-36. Больной правша, не помнит названий предметов, но дает правильное описание их назначения. Какая область головного мозга у этого человека поражена?

3-37. Мышечное волокно, как правило, имеет одну концевую пластинку, и каждый потенциал концевой пластинки превышает пороговый уровень. На центральных же нейронах находятся сотни и тысячи синапсов и ВПСП отдельных синапсов не достигают уровня порога. В чем физиологический смысл этих различий?

3-38. Два студента решили доказать в эксперименте, что тонус скелетных мышц поддерживается рефлекторно. Двух спинальных лягушек подвесили на крючке. Нижние лапки у них были слегка поджаты, что свидетельствует о наличии тонуса. Затем первый студент перерезал передние корешки спинного мозга, а второй - задние. У обеих лягушек лапки повисли, как плети. Какой из студентов поставил опыт правильно?

3-39. Почему при охлаждении мозга можно продлить продолжительность периода клинической смерти?

3-40. Почему при утомлении человека у него сначала нарушается точность движений, а потом уже сила сокращений?

3-41. Когда коленный рефлекс у пациента выражен слабо, для его усиления иногда предлагают больному сцепить руки перед грудью и тянуть их в разные стороны. Почему это приводит к усилению рефлекса?

3-42. При раздражении одного аксона возбуждаются 3 нейрона. При раздражении другого - 6. При совместном раздражении возбуждается 15 нейронов. На скольких нейронах конвергируют эти аксоны?

3-43. Обучаясь письму, ребенок «помогает» себе головой и языком. Каков механизм этого явления?

3-44. У лягушки был вызван сгибательный рефлекс. При этом возбуждаются центры сгибателей и реципрокно тормозятся центры разгибателей. Во время опыта регистрируют постсинаптические потенциалы мотонейронов. Какой из ответов (ВПСП сгибателя или ТСП разгибателя) регистрируется позже?

3-45. При пресинаптическом торможении возникает деполяризация мембраны, а при постсинаптическом - гиперполяризация. Почему же эти противоположные реакции дают один и тот же тормозный эффект?

3-46. При вставании человека на него начинает действовать сила тяжести. Почему при этом ноги не подгибаются?

3-47. Сохраняются ли у животного какие-либо рефлексы, кроме спинномозговых, после перерезки спинного мозга под продолговатым? Дыхание поддерживается искусственно.

3-48. Каким образом нисходящие влияния из ЦНС могут изменять двигательную активность, не воздействуя на мотонейроны спинного мозга?

3-49. У животного произведены последовательно две полные перерезки спинного мозга под продолговатым - на уровне С-2 и С-4 сегментов. Как изменится величина АД после первой и второй перерезок?

3-50. У двух больных произошло кровоизлияние в мозг - одного из них в кору головного мозга. у другого - в продолговатый мозг. У какого больного прогноз более неблагоприятный?

3-51. Что произойдет с кошкой, находящейся в состоянии децеребрационной ригидности после перерезки ствола мозга ниже красного ядра, если перерезать у нее теперь и задние корешки спинного мозга?

3-52. От конькобежца при беге на повороте дорожки стадиона требуется особо четкая работа ног. Имеет ли в этой ситуации значение, в каком положении находится голова спортсмена?

3-53. Укачивание (морская болезнь) возникает при раздражении вестибулярного аппарата, который влияет на перераспределение мышечного тонуса. Чем же объясняется появление симптомов тошноты и головокружения при морской болезни?

3-54. В эксперименте на собаке область вентромедиального ядра гипоталамуса нагрели до 50оС, затем животное содержали в обычных условиях. Как изменился внешний вид собаки через некоторое время?

3-55. При выключении коры больших полушарий человек теряет сознание. Возможен ли такой эффект при абсолютно неповрежденной коре и нормальном ее кровоснабжении?

3-56. У больного обнаружены нарушения деятельности ЖКТ. Врач в поликлинике направил его для лечения не терапевтическую, а в неврологическую клинику. Чем могло быть продиктовано такое решение?

3-57. Одним из основных критериев смерти мозга является отсутствие в нем электрической активности. Можно ли по аналогии говорить о смерти скелетной мышцы, если в покое с нее не удается зарегистрировать электромиограмму?

(Задачи №№ 3-58 – 3- 75 из Сборника задач под ред. Г.И. Косицкого [ 1])

3-58. Может ли безусловный рефлекс осуществ­ляться при участии лишь одного отдела центральной нервной системы? Осуществляется ли спинальный рефлекс в целом орга­низме при участии только одного («своего») сегмента спин­ного мозга? Отличаются ли, и, если да, то чем, рефлексы спинального животного от спинальных рефлексов, осуществляемых при участии выше расположенных отделов центральной нерв­ной системы

3-59. На каком уровне, I или II, надо провести раз­рез мозга и как надо поставить опыт Сечено ва, чтобы дока­зать наличие внутрицентраль-ного торможения?

Схема головного мозга лягушки

3-60. Укажите на рисунке структуры, вос­принимающие изменения состояния скелетных мышц и назо­вите их афферентную и эфферентную иннервацию. Что называют гамма–эфферентными волокнами и ка­кую роль они играют в проприорецепции? Используя схему, охарактери-зуйте физиологическую роль мышечного веретена

3-61.Какие виды торможения могут осуществлять­ся в структурах, изображенных на рисунках 1 и 2?

Схемы различных форм торможения в цент­ральной нервной системе

3-62. Назовите структуры, обозначен-ные на схеме цифрами 1, 2, 3. Какой процесс возни­кает в концевых разветвле­ниях аксона 1, если к нему придет импульс по пути 1? Какой процесс воз­никнет под действием им­пульсов от нейрона 2 в нервных окончаниях 1?

Расположение тормозящих синапсов на пресинаптических раз­ветвлениях аксона

3-63. Где можно зарегистрировать изображенную на рисунке электрическую активность и как ее называют? При каком нервном процессе регистрируется электри­ческая активность типа 1 и при каком - типа 2 Биоэлектрические отражения функционального состояния синапсов.

3-64. Как называется состояние, в котором находится кошка, изображенная на рисунке 2? По какой линии I, II, III или IV необходимо сделать разрез, чтобы у кошки возникло состояние, подобное изобра­женному на рисунке? Какие ядра и какого отдела ЦНС отделяются от ниже­расположенных при этом разрезе? 1. Схема перерезок мозга на раз­личных уровнях. 2. Кошка после перерезок ствола мозга.

3-65. Какая структурная особенность вегетатив­ной нервной системы изображена на схеме? Какие особен­ности иннервации органов связаны с такой структурой синаптических связей в ганглии?

3-66. Рассмотрев представленные схемы рефлектор­ных дуг, определите:

1) Можно ли зарегистрировать потенциал действия на 2–м чувствительном корешке при раздражении 1–го в опыте А?

2) Можно ли зарегистрировать потенциал действия на двигательном корешке 2 при раздражении двигательного ко­решка 1 в опыте Б?

3) О каком физиологическом явлении свидетельствуют факты, полученные в этих опытах?

3-67. В каком случае будет суммация, в ка­ком - окклюзия? Какой тип суммации в ЦНС изобра­жен на схеме?

3-68. Схема какого отдела вегетативной нервной системы изображена на рисунке? Какие органы и системы организма, инвертируются этим отделом вегетативной нервной системы?

3-69. Схема какого отдела вегетативной нервной системы изображена на рисунке? Назовите сегменты спинного мозга, в которых распо­ложены его центры. Иннервация каких органов и систем организма, осуществляются этим отделом?

3-70. Объясните, почему отсутствует первичный от­вет на второй «стимул (при сильном сближении времени нанесе­ния первого (обусловливающего) и второго (тестирующего) стимула Первичные от­веты, возникающие в спе­цифических проекцион­ных зонах коры при двух последовательных раз­дражениях чувствитель­ных нервных стволов. Виден «феномен подав­ления» второго первич­ного ответа. Буквами а, б, в, г, д и др. обозначен порядок опыта. Цифры обозначают время в мсек, между раздраже­ниями

3-71. Почему реакция коры больших полушарий у животных при афферентном раздражении и при раздраже­нии ретикулярной формации имеет одинаковые проявления на ЭЭГ? Как эта реакция называется?

Изменения электроэнцефалограммы при афферентном раздраже­нии (А)

и при раздражении ретикулярной формации (Б ).

3-72. Рассмотрите оба рисунка и объясните, почему при раздражении неспецифических ядер таламуса в раз­личных участках коры больших полушарий регистрируются изменения ЭЭГ? Как называют такую реакцию коры боль­ших полушарий? На рисунке А схематично представлена электрическая реакция различных зон коры головного мозга на раздражение ритмическим током неспецифических ядер таламуса у кошки. На рисунке Б - запись изменений ЭЭГ в зонах 1, 2, 3. Внизу - отметка раздражения.

3-73. Какая реакция на звук метронома регист­рируется в ЭЭГ у кошки, находящейся спокойном состоя­нии? Чем отличается ЭЭГ на рисунке А от ЭЭГ рисунка Б? Какова причина таких изменений ЭЭГ при реакции кошки на появление мыши?

Электроэнцефалографические реакции кошки на звук метронома при различных мотивационных состояниях (А и Б).

3-74. При раздражении каких структур мозга можно получить оборонительную реакцию? При раздраже­нии каких структур мозга можно получить у животных реак­цию самостимуляции?

Поведенческие реакции крыс при раздражении гипоталами-ческих структур

3-75. Схема какого рефлекса изображена на рисунке? Дайте пояснения. Как изменится тонус мышц, если произойдет повреждение заднего корешка спинного мозга?

(Задачи №№ 3-76 – 3-82 из CD-приложения у Учебнику по физиологии под ред. К.В. Судакова [ 3])

3-76. Одинаковыми по силе раздражителями у экспериментального животного вызваны два двигательных соматических рефлекса. Афферентная и эфферентная части рефлекторной дуги у первого рефлекса значительно длиннее, чем в рефлекторной дуге второго рефлекса. Тем не менее, время рефлекторной реакции меньше в первом случае. Как можно объяснить большую скорость реакции при наличии более протяженных афферентных и эфферентных путей. К какому типу относятся нервные волокна, обеспечивающие проведение возбуждения по афферентной и эфферентной части дуги соматического рефлекса?

3-77. Введение экспериментальному животному препарата приводит к прекращению соматических рефлексов. Какие участки рефлекторной дуги нужно подвергнуть электрическому раздражению, чтобы выявить, блокирует ли данный препарат проведение возбуждения в синапсах ЦНС, нервно-мышечном синапсе или нарушает сократительную активность самой скелетной мышцы.

3-78. Попеременное раздражение двух возбуждающих нервных волокон, конвергирующих к одному нейрону, не вызывает его возбуждения. При раздражении только одного из волокон с удвоенной частотой происходит возбуждение нейрона. Может ли возникнуть возбуждение нейрона при одновременном раздражении конвергирующих к нему волокон?

3-79. К одному нейрону конвергируют нервные волокна А, В и С. Приход возбуждения по волокну А вызывает деполяризацию мембраны нейрона и возникновение потенциала действия (ПД). При одновременном приходе возбуждения по волокнам А и В ПД не возникает и наблюдается гиперполяризация мембраны нейрона. При одновременном приходе возбуждения по волокнам А и С также не возникает ПД, но гиперполяризация мембраны нейрона не происходит. Какие из волокон являются возбуждающими, и какие – тормозными? Какие медиаторы являются тормозными в ЦНС? В каком случае торможение наиболее вероятно происходит по постсинаптическому механизму, в каком случае – по пресинаптическому?

3-80. У человека, пострадавшего в автомобильной аварии, произошел разрыв спинного мозга, в результате чего оказались парализованными нижние конечности? На каком уровне произошел разрыв спинного мозга?

3-81. Регуляция физиологических функций обеспечивается нервными центрами – совокупностями структур ЦНС, которые могут быть расположены на разных уровнях головного мозга, и вносить свой вклад в обеспечение процессов жизнедеятельности. С этой точки зрения, какое поражение, при прочих равных условиях более неблагоприятно для выживания больного - кровоизлияние в продолговатый мозг или полушария большого мозга?

3-82. Фармакологический препарат снижает повышенную возбудимость коры полушарий большого мозга. В экспериментах на животных показано, что препарат не оказывает непосредственного влияния на нейроны коры. На какие структуры головного мозга может влиять указный препарат, чтобы вызвать снижение повышенной возбудимости коры большого мозга?

  • 1. Принцип доминанты был сформулирован А. А. Ухтомским как основной принцип работы нервных центров. Согласно этому принципу для деятельности нервной системы характерно наличие в ЦНС доминирующих (господствующих) в данный период времени очагов возбуждения, в нервных центрах, которые и определяют направленность и характер функций организма в этот период. Доминантный очаг возбуждения характеризуется следующими свойствами:
    • * повышенной возбудимостью;
    • * стойкостью возбуждения (инертностью), т. к. трудно подавить другим возбуждением;
    • * способностью к суммации субдоминантных возбуждений;
    • * способностью тормозить субдоминантные очаги возбуждения в функционально различных нервных центрах.
  • 2. Принцип пространственного облегчения. Он проявляется в том, что суммарный ответ организма при одновременном действии двух относительно слабых раздражителей будет больше суммы ответов, полученных при их раздельном действии. Причина облегчения связана с тем, что аксон афферентного нейрона в ЦНС синаптирует с группой нервных клеток, в которой выделяют центральную (пороговую) зону и периферическую (подпороговую) "кайму". Нейроны, находящиеся в центральной зоне, получают от каждого афферентного нейрона достаточное количество синаптических окончаний (например, по 2) (рис. 13), чтобы сформировать потенциал действия. Нейрон подпороговой зоны получает от тех же нейронов меньшее число окончаний (по 1), поэтому их афферентные импульсы будут недостаточны, чтобы вызвать в нейронах "каймы" генерацию потенциалов действия, а возникает лишь подпороговое возбуждение. Вследствие этого, при раздельном раздражении афферентных нейронов 1 и 2 возникают рефлекторные реакции, суммарная выраженность которых определяется только нейронами центральной зоны (3). Но при одновременном раздражении афферентных нейронов потенциалы действия генерируются и нейронами подпороговой зоны. Поэтому выраженность такого суммарного рефлекторного ответа будет больше. Это явление получило название центрального облегчения. Оно чаще наблюдается при действии на организм слабых раздражителей.
  • 3. Принцип окклюзии. Этот принцип противоположен пространственному облегчению и он заключается в том, что два афферентных входа совместно возбуждают меньшую группу мотонейронов по сравнению с эффектами при раздельной их активации, причина окклюзии состоит в том, что афферентные входы в силу -.конвергенции отчасти адресуются к одним и тем же мотонейронам, которые затормаживаются при активации обоих входов одновременно (рис. 13). Явление окклюзии проявляется в случаях применения сильных афферентных раздражений.
  • 4. Принцип обратной связи. Процессы саморегуляции в организме аналогичны с техническим, предполагающим автоматическую регуляцию процесса с использованием обратной связи. Наличие обратной связи позволяет соотнести выраженность изменений параметров системы с ее работой в целом. Связь выхода системы с ее входом с положительным коэффициентом усиления называется положительной обратной связью, а с отрицательным коэффициентом - отрицательной--обратной связью. В биологических системах положительная обратная связь реализуется в основном в патологических ситуациях. Отрицательная обратная связь улучшает устойчивость системы, т. е. ее способность возвращаться к первоначальному состоянию после прекращения влияния возмущающих факторов.

Обратные связи можно подразделять по различным признакам. Например, по скорости действия - быстрая (нервная) и медленная (гуморальная) и т. д.

Можно привести множество примеров проявления эффектов обратной связи. Например, в нервной системе так осуществляется регулирование активности мотонейронов. Суть процесса заключается в том, что импульсы возбуждения, распространяющиеся по аксонам мотонейронов, достигают не только мышц, но и специализированных промежуточных нейронов (клеток Реншоу), возбуждение которых тормозит активность мотонейронов. Данный эффект известен как процесс возвратного торможения.

В качестве примера с положительной обратной связью можно привести процесс возникновения потенциала действия. Так при формировании восходящей части ПД деполяризация мембраны увеличивает ее натриевую проницаемость, которая в свою очередь, увеличивает деполяризацию мембраны.

Велико значение механизмов обратной связи в поддержании гомеостаза. Так, например, поддержание константного уровня осуществляется за счет изменения импульсной активности барорецепторов сосудистых рефлексогенных зон, которые изменяют тонус вазомоторных симпатических нервов и таким образом нормализуют кровяное давление.

  • 5. Принцип реципрокности (сочетанности, сопряженности, взаимоисключения). Он отражает характер отношений между центрами ответственными за осуществление противоположных функций (вдоха и выдоха, сгибание и разгибание конечности и т.д.). Например, активация проприорецепторов мышцы-сгибателя одновременно возбуждает мотонейроны мышцы-сгибателя и тормозит через вставочные тормозные нейроны мотонейроны мышцы-разгибателя (рис. 18). Реципрокное торможение играет важную роль в автоматической координации двигательных актов,
  • 6. Принцип общего конечного пути. Эффекторные нейроны ЦНС (прежде всего мотонейроны спинного мозга), являясь конечными в цепочке состоящей из афферентных, промежуточных и эффекторных нейронов, могут вовлекаться в осуществление различных реакций организма возбуждениями, приходящими к ним от большого числа афферентных и промежуточных нейронов, для которых они являются конечным путем (путем от ЦНС к эффектору). Например, на мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна аффрентных нейронов, нейронов пирамидного тракта и экстрапирамидной системы (ядер мозжечка, ретикулярной формации и многих других структур). Поэтому эти мотонейроны, обеспечивающие рефлекторную деятельность конечности, рассматриваются как конечный путь для общей реализации на конечность многих нервных влияний.

Для осуществления сложных реакций необходима интеграция работы отдельных нервных центров. Большинство рефлексов являются сложными, последовательно и одновременно совершающимися реакциями. Рефлексы при нормальном состоянии организма строго упорядочены, так как имеются общие механизмы их координации. Возбуждения, возникающие в ЦНС, иррадиируют по ее центрам.

Координация обеспечивается избирательным возбуждением одних центров и торможением других. Координация - это объединение рефлекторной деятельности ЦНС в единое целое, что обеспечивает реализацию всех функций организма. Выделяют следующие основные принципы координации:

1. Принцип иррадиации возбуждений. Нейроны разных центров связаны между собой вставочными нейронами, поэтому импульсы, поступающие при сильном и длительном раздражении рецепторов, могут вызвать возбуждение не только нейронов центра данного рефлекса, но и других нейронов. Например, если раздражать у спинальнои лягушки одну из задних лапок, слабо сдавливая ее пинцетом, то она сокращается (оборонительный рефлекс), если раздражение усилить, то происходит сокращение обеих задних лапок и даже передних. Иррадиация возбуждения обеспечивает при сильных и биологически значимых раздражениях включение в ответную реакцию большего количества мотонейронов.



2. Принцип общего конечного пути. Импульсы, приходящие в ЦНС по разным афферентным волокнам, могут сходиться (конвергировать) к одним и тем же вставочным, или эфферентным, нейронам. Шеррингтон назвал это явление «принципом общего конечного пути». Один и тот же мотонейрон может возбуждаться импульсами, приходящими от различных рецепторов (зрительных, слуховых, тактильных), т.е. участвовать во многих рефлекторных реакциях (включаться в различные рефлекторные дуги).

Так, например, мотонейроны, иннервирующие дыхательную мускулатуру, помимо обеспечения вдоха участвуют в таких рефлекторных реакциях, как чихание, кашель и др. На мотонейронах, как правило, конвергируют импульсы от коры больших полушарий и от многих подкорковых центров (через вставочные нейроны или за счет прямых нервных связей).

На мотонейронах передних рогов спинного мозга, иннервирующих мускулатуру конечности, оканчиваются волокна пирамидного тракта, экстрапирамидных путей, от мозжечка, ретикулярной формации и других структур. Мотонейрон, обеспечивающий различные рефлекторные реакции, рассматривается как их общий конечный путь. В какой конкретный рефлекторный акт будут вовлечены мотонейроны, зависит от характера раздражений и от функционального состояния организма.

3. Принцип доминанты. Был открыт А.А.Ухтомским, который обнаружил, что раздражение афферентного нерва (или коркового центра), обычно ведущего к сокращению мышц конечностей при переполнении у животного кишечника, вызывает акт дефекации. В данной ситуации рефлекторное возбуждение центра дефекации" подавляет, тормозит двигательные центры, а центр дефекации начинает реагировать на посторонние для него сигналы.

А.А.Ухтомский считал, что в каждый данный момент жизни возникает определяющий (доминантный) очаг возбуждения, подчиняющий себе деятельность всей нервной системы и определяющий характер приспособительной реакции. К доминантному очагу конвергируют возбуждения из различных областей ЦНС, а способность других центров реагировать на сигналы, приходящие к ним, затормаживается. Благодаря этому создаются условия для формирования определенной реакции организма на раздражитель, имеющий наибольшее биологическое значение, т.е. удовлетворяющий жизненно важную потребность.

В естественных условиях существования доминирующее возбуждение может охватывать целые системы рефлексов, в результате возникает пищевая, оборонительная, половая и другие формы деятельности. Доминантный центр возбуждения обладает рядом свойств:

1) для его нейронов характерна высокая возбудимость, что способствует конвергенции к ним возбуждений из других центров;

2) его нейроны способны суммировать приходящие возбуждения;

3) возбуждение характеризуется стойкостью и инертностью, т.е. способностью сохраняться даже тогда, когда стимул, вызвавший образование доминанты, прекратил действие.

Несмотря на относительную стойкость и инертность возбуждения в доминантном очаге, деятельность ЦНС в нормальных условиях существования весьма динамична и изменчива. ЦНС обладает способностью к перестройке доминантных отношений в соответствии с изменяющимися потребностями организма. Учение о доминанте нашло широкое применение в психологии, педагогике, физиологии умственного и физического труда, спорте.

4. Принцип обратной связи. Процессы, происходящие в ЦНС, невозможно координировать, если отсутствует обратная связь, т.е. данные о результатах управления функциями. Обратная связь позволяет соотнести выраженность изменений параметров системы с ее работой. Связь выхода системы с ее входом с положительным коэффициентом усиления называется положительной обратной связью, а с отрицательным коэффициентом - отрицательной обратной связью. Положительная обратная связь в основном характерна для патологических ситуаций.

Отрицательная обратная связь обеспечивает устойчивость системы (ее способность возвращаться к исходному состоянию после прекращения влияния возмущающих факторов). Различают быстрые (нервные) и медленные (гуморальные) обратные связи. Механизмы обратной связи обеспечивают поддержание всех констант гомеостаза. Например, сохранение нормального уровня кровяного давления осуществляется за счет изменения импульсной активности баро-рецепторов сосудистых рефлексогенных зон, которые изменяют тонус вагуса и вазомоторных симпатических нервов.

5. Принцип реципрокности. Он отражает характер отношений между центрами, ответственными за осуществление противоположных функций (вдоха и выдоха, сгибание и разгибание конечностей), и заключается в том, что нейроны одного центра, возбуждаясь, тормозят нейроны другого и наоборот.

6. Принцип субординации (соподчинения). Основная тенденция в эволюции нервной системы проявляется в сосредоточении функций регуляции и координации в высших отделах ЦНС - це-фализация функций нервной системы. В ЦНС имеются иерархические взаимоотношения - высшим центром регуляции является кора больших полушарий, базальные ганглии, средний, продолговатый и спинной мозг подчиняются ее командам.

7. Принцип компенсации функций. ЦНС обладает огромной компенсаторной способностью, т.е. может восстанавливать некоторые функции даже после разрушения значительной части нейронов, образующих нервный центр (см. пластичность нервных центров). При повреждении отдельных центров их функции могут перейти к другим структурам мозга, что осуществляется при обязательном участии коры больших полушарий. У животных, которым после восстановления утраченных функций удаляли кору, вновь происходила их утрата.

При локальной недостаточности тормозных механизмов или при чрезмерном усилении процессов возбуждения в том или ином нервном центре определенная совокупность нейронов начинает автономно генерировать патологически усиленное возбуждение - формируется генератор патологически усиленного возбуждения.

При высокой мощности генератора возникает целая система функционирующих в едином режиме неирональных образований, что отражает качественно новый этап в развитии заболевания; жесткие связи между отдельными составными элементами такой патологической системы лежат в основе ее устойчивости к различным лечебным воздействиям. Изучение природы этих связей позволило Г.Н.Крыжановскому обнаружить новую форму внутрицентральных отношений и интегративной деятельности ЦНС - принцип детерминанты.

Его суть состоит в том, что структура ЦНС, формирующая функциональную посылку, подчиняет себе те отделы ЦНС, к которым она адресована и образует вместе с ними патологическую систему, определяя характер ее деятельности. Для такой системы характерно отсутствие постоянства и неадекватности функциональных посылок, т.е. такая система является биологически отрицательной. Если в силу тех или иных причин патологическая система исчезает, то образование ЦНС, игравшее главную роль, теряет свое детерминантное значение.

Нейрофизиология движений

Взаимоотношение отдельных нервных клеток и их совокупность образуют сложнейшие ансамбли процессов, которые необходимы для полноценной жизнедеятельности человека, для формирования человека как социума, определяет его как высокоорганизованное существо, что ставит человека на более высокий уровень развития по отношению к другим животным. Благодаря высокоспецефичным взаимоотношениям нервных клеток человек может продуцировать сложные действия и усовершенствовать их. Рассмотрим ниже процессы необходимые для осуществления произвольных движений.

Сам акт движения начинает формироваться в двигательной области коры плаща. Выделяют первичную и вторичную моторную кору. В первичной моторной коре (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется точная топографическая проекция мышц тела. В верхних участках прецентральной извилины сфокусированы проекции нижних конечностей и туловища, в нижних участках – верхних конечностей головы, шеи и лица занимающие большую часть извилины («двигательный человечек»Пенфильда). Эта зона характеризуется повышенной возбудимостью. Вторичная моторная зона представлена латеральной поверхностью полушария (поле 6), она отвечает за планирование и координацию произвольных движений. Она получает основную часть эфферентных импульсов от базальных ядер и мозжечка, а так же участвует в перекодировании информации о сложных движениях. Раздражение коры поля 6 вызывает более сложные координированные движения (поворот головы, глаз и туловищав противоположную сторону, содружественные сокращения мышц сгибателей-разгибателей на противоположной стороне). В премоторной зоне с координироанны двигательные центры отвечающие за социальные функции человека: цент письменной речи в заднем отделе средней лобной извилины, центр моторной речи Брока (поле 44) в заднем отделе нижней лобной извилины, обеспечивающий речевой праксис, а также музыкальный моторный центр (поле 45), определяющий тональность речи и способность петь.

В моторной коре лучше, чем в других зонах коры, выражен слой крупных пирамидных клеток Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к коре. Такие рядом расположенные нейронные комплексы, выполняющие сходные функции, получили название функциональных двигательных колонок. Пирамидные нейроны двигательной колонки могут тормозить или возбуждать мотонейроны стволовых или спинальных центров, например, иннервирующих одну мышцу. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, как правило, расположены в нескольких колонках.

Пирамидные пути состоят из 1миллиона волокон кортикоспинального пути, начинающихся от коры верхней и средней трети прецентральной извилины, и 20 миллионов волокон кортикобульбарного пути, начинающегося от коры нижней трети прецентральной извилины(проекция лица и головы). Волокна пирамидного пути оканчиваются на альфа мотонейронах двигательных ядер 3-7 и 9-12 черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах(кортикоспинальный путь). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы (профессиональные навыки)формирование которых начинается в базальных ганглиях и мозжечке и заканчивается в вторичной моторной зоне. Большинство волокон двигательного пути перекрещены, но малая их часть идет на ту же сторону, что способствует компенсации при одностороннем поражении.

К корковым экстрапирамидным путям относятся кортикорубральный и кортикоретикулярные пути, начинающиеся приблизительно от тех зон в которых начинаются пирамидные пути. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга от которых далее начинается руброспинальный путь. Волокна кортикоретикулярного пути оканчиваются на медиальных ядрах ретикулярной формации моста (начало медиального ретикулярного пути), и на нейронах гиганских клеток ретикулярного пути продолговатого мозга, от которых начинается латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, обеспечивающие точные движения. Эти экстрапирамидные пути являются составными элементами экстрапирамидной системы, к которой также относится мозжечок, базальные ядра, моторные центры ствола мозга; она осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо и тд.

Оценивая в общем роль различных структур головного мозга в регуляции сложных целенаправленных движений, можно отметить, что побуждение к движению создаются в лимбической системе, замысел движения - в ассоциативной зоне больших полушарий, программы движения-в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.