Срок правления николая 2. Николай II Александрович. Памятники Императору Николаю II

С одной переменной: что такое равносильные неравенства; какие преобразования неравенств являются равносильными, а какие - нет. Эти вопросы мы обсуждали в курсе алгебры, начиная с 8-го класса, да и в настоящем учебнике о них уже шла речь, например, при решении показательных и логарифмических неравенств. Мы снова возвращаемся к этим вопросам потому, что завершая изучение школьного курса алгебры, целесообразно как бы заново переосмыслить общие идеи и методы.

1. Равносильность неравенств

Напомним, что решением неравенства а(х) > п(х) называют всякое значение переменной х, которое обращает заданное неравенство с переменной в верное числовое неравенство. Иногда используют термин частное решение. Множество всех частных решений неравенства называют общим решением, но чаще употребляют термин решение. Таким образом, термин решение используют в трех смыслах: и как общее решение, и как частное решение, и как процесс, но обычно по смыслу бывает ясно, о чем идет речь.

Определение 1. Два неравенства с одной переменной f(x)>g(x)и p(х)> h(x) называют равносильными, если их решения (т.е. множества частных решений) совпадают.

Вы, конечно, понимаете, что использование в определении знака > непринципиально. Можно и в этом определении, и во всех утверждениях, имеющихся в данном параграфе, использовать любой другой знак неравенства, как строгого, так и нестрогого.

Определение 2. Если решение неравенства

содержится в решении неравенства

то неравенство (2) называют следствием неравенства (1)

Например, неравенство х 2 >9 является следствием неравенства 2х>6. В самом деле, преобразовав первое неравенство к виду х 2 -9 >0и далее к виду (х-3)(х+3) >0 и применив метод интервалов (рис. 245), получаем, что решением неравенства служит объединение двух открытых лучей: Решение второго неравенства 2х>6 имеет вид х>3, т.е. представляет собой открытый луч Решение второго неравенства является частью решения первого неравенства, а потому первое неравенство - следствие второго.
Любопытно, что ситуация изменится радикальным образом, если в обоих неравенствах изменить знак неравенства. Неравенство 2х < 6 будет следствием неравенства x 2 < 9. В самом деле, решением первого неравенства служит открытый луч . Преобразовав второе неравенство к виду х r - 9 <0 и далее к виду (х-3)(х+3) <06 применив метод интервалов (см. рис. 245), получаем, что решением неравенства служит интервал (-3, 3). Решение второго неравенства является частью решения первого неравенства, а потому первое неравенство - следствие второго.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Предложения 2х+7>10-х, х 2 +7х<2, (х+2)(2х-3)> 0 называют неравенствами с одной переменной.

В общем виде это понятие определяют так:

Определение .Пусть f(х) и q(х) - два выражения с переменной х и областью определения X. Тогда неравенство вида f(х) < q(х) или f(х) > q(х) называется неравенством с одной переменной. Мно­жество Х называется областью его определения.

Значение переменной х из множества X, при котором неравенство обращается в истинное числовое неравенство, называется его решением.Решить неравенство - это значит найти множество его решений.

Так, решением неравенства 2х +7>10-х , х Î R является число х=5, так как 2×5+7>10-5- истинное числовое неравенство. А множест­во его решений - это промежуток (1, ¥), который находят, выполняя преобразование неравенства: 2х+7>10-х Þ 3х> Þ х>1.

В основе решения неравенств с одной переменной лежит понятие равносильности.

Определение. Два неравенства называются равносильными, если их множества решений равны.

Например , неравенства 2х+7>10 и 2х>3 равносильны, так как их множества решений равны и представляют собой промежуток

Теоремы о равносильности неравенств и следствия из них аналогичны соответствующим теоремам о равносильности уравнений. При их доказательстве используется свойства истинных числовых неравенств.

Теорема 3 . Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве. Тогда неравенст­ва f(х) > q(х) и f(х)+ h(х) > q(х)+ h(х) равносильны на множестве X.

Из этой теоремы вытекают следствия, которые часто используются при решении неравенств:

1) Если к обеим частям неравенства f(х) > q(х) прибавить одно и то же число d, то получим неравенство f(х)+ d > q(х)+ d, равносильное исходному.

2) Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части неравенства в другую, поменяв знак слагаемого на противоположный, то получим неравенство, равносильное данному.

Теорема 4. Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве, и для всех х из множества Х выражение h(х) принимает положительные значения. Тогда неравенства f(х)× h(х) > q(х)× h(х) равносильны на множестве X.

Из этой теоремы вытекает следствие: если обе части неравенства f(х) > q(х)умножить на одно и то же положительное число d, то по­лучим неравенство f(х)× d > q(х)× d , равносильное данному.

Теорема 5 . Пусть неравенство f(х) > q(х) задано на множестве Х и h(х) - выражение, определенное на том же множестве, и для всех х их множества Х выражение h(х) принимает отрицательные значения. Тогда неравенства f(х) > q(х) b f(х)× h(х) < q(х)× h(х) равносильны на множестве X.


Из этой теоремы вытекает следствие: если обе части неравенства f(х) > q(х) умножить на одно и то же отрицательное число d и знак неравенства поменять на противоположный, то получим неравенство f(х)× d < q(х) × d, равносильное данному.

Решим неравенство 5х - 5 < 2х - 16,х Î R ,и обоснуем все преоб­разования, которые мы будем выполнять в процессе решения.

Романишина Дина Соломоновна, учитель математики гимназии №2 г. Хабаровска

1. Уравнения с одной переменной.

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

При решении уравнений используются следующие свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

Если а¹0, то уравнение имеет единственное решение

.

Если а=0, b=0, то уравнению удовлетворяет любое значение х.

Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.

Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

16х-15х=88-40-12

Пример 2. Решить уравнения:

х3-2х2-98х+18=0;

Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2=

. .

Разложить на множители левую часть уравнения:

х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

Ответ: -3; - 4.

Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

Напомним определение модуля числа:

Например: ½3½=3, ½0½=0, ½- 4½= 4.

В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

Таким образом,

Аналогично

а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х=

, это число принадлежит множеству х£-1.

b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

с) Рассмотрим случай х>1.

х+1+х-1=3, 2х=3, х=

. Это число принадлежит множеству х>1.

Ответ: х1=-1,5; х2=1,5.

Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

–2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Ответ: [-2; 0]

Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение

.

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

если а¹±1, то

.

2. Системы уравнений с двумя переменными.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему - значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

При решении линейных систем используют метод подстановки и метод сложения.

Пример 1. Решить систему уравнений:

Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение

во второе уравнение системы, получим ,

Ответ: (2; 3).

Пример 2. Решить систему уравнений:

Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

Ответ: (2; 1).

Пример 3. Решить систему уравнений:

Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

Ответ: (х; 5-2х), х–любое.

Пример 4. Решить систему уравнений:

Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

Ответ: система не имеет решений.

Пример 5. Решить систему:

Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем

. При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то .

Ответ: при a=-2система не имеет решения,

при а¹-2 система имеет решение

.

Пример 6. Решить систему уравнений:

Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

2х-2у-2z=-12

3х-3у-3z=-18

наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим - 4z=-12, z=3. Итак получаем систему уравнений:

х+у+z=6

z=3, которая равносильна данной.

Система такого вида называется треугольной.

Ответ: (1; 2; 3).

3. Решение задач с помощью уравнений и систем уравнений.

Покажем на примерах, как можно решать задачи с помощью уравнений и систем уравнений.

Пример 1. Сплав олова и меди массой 32 кг содержит 55% олова. Сколько чистого олова надо добавить в сплав, чтобы в новом сплаве щсодержалось 60% олова?

Решение. Пусть масса олова, добавленная к исходному сплаву, составляет х кг. Тогда сплав массой (32+х)кг будет содержать 60% олова и 40% меди. Исходный сплав содержал 55% олова и 45% меди, т.е. меди в нем было 32·0,45 кг. Так как масса меди в исходном и новом сплавах одна и та же, то получим уравнение 0,45·32=0,4(32+х).

Решив его, находим х=4, т.е. в сплав надо добавить 4 кг олова.

Пример 2. Задумано двузначное число, у которого цифра десятков на 2 меньше цифры единиц. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 6. Какое число задумано?

Решение. Пусть цифра единиц есть х, тогда цифра десятков равна х-2 (х>2), задуманное число имеет вид 10(х-2)+х=11х-20. Сумма цифр числа х-2+х=2х-2. Следовательно, разделив 11х-20 на 2х-2, получим в частном 4 и в остатке 6. Составляем уравнение: 11х-20=4(2х-2)+6, т.к. делимое равно делителю, умноженному на частное, плюс остаток. Решив это уравнение, получим х=6. Итак, было задумано число 46.