Уравнение с 1 корнем. Как решать уравнения с корнем. Соблюдение вашей конфиденциальности на уровне компании

Каждое новое действие в математике мгновенно порождает обратное ему. Когда-то давно древние греки обнаружили, что квадратный кусок земли длиной и шириной в 2 метра будет иметь площадь 2*2 = 4 квадратных метра (в дальнейшем будет обозначаться m^2) . А теперь наоборот, если бы грек знал, что его участок земли квадратный и имеет площадь 4 m^2, как бы он узнал, какая длина и ширина его участка? Была введена операция, являющейся обратной к операции возведения в квадрат и стала называться извлечением квадратного корня. Люди стали понимать, что 2 в квадрате (2^2) равно 4. И наоборот, квадратный корень из 4 (далее будет обозначаться √(4)) будет равен двойке. Модели усложнялись, записи, описывающие процессы с корнями, также усложнялись. Многократно возникал вопрос, как решить уравнение с корнем.

Пусть некоторая величина x при умножении самой на себя один раз даёт 9. Это можно записать как x*x=9. Или же через степень: x^2=9. Чтобы найти х, следует извлечь корень из 9, что уже в какой-то степени является уравнением с радикалом: x=√(9) . Корень можно извлекать устно или использовать для этого калькулятор. Далее следует рассмотреть обратную задачу. Некая величина, при извлечении из неё квадратного корня, даёт значение 7. Если записать это в виде иррационального уравнения, получится: √(x) = 7. Для решения такой задачи необходимо обе части выражения возвести в квадрат. Учитывая, что √(x) *√(x) =x, получается x = 49. Корень сразу готов в чистом виде. Далее следует разобрать более сложные примеры уравнения с корнями.

Пусть от некой величины отняли 5, затем выражение возвели в степень 1/2. В итоге было получено число 3. Теперь данное условие необходимо записать как уравнение: √(x-5) =3. Далее следует умножить каждую часть уравнения саму на себя: x-5 = 3. После возведения во вторую степень, выражение было избавлено от радикалов. Теперь стоит решить простейшее линейное уравнение, перенеся пятёрку в правую часть и поменяв её знак. x = 5+3. x = 8. К сожалению, не все жизненные процессы можно описать такими простыми уравнениями. Очень часто можно встретить выражения с несколькими радикалами, иногда степень корня может быть выше второй. Для таких тождеств не существует единого алгоритма решений. К каждому уравнению стоит искать особый подход. Приводится пример, в котором уравнение с корнем имеет третью степень.

Корень кубический будет обозначаться 3√. Найти объём контейнера, имеющего форму куба со стороной 5 метров. Пусть объём равен x m^3. Тогда кубический корень из объёма будет равен стороне куба и равняться пяти метрам. Получено уравнение: 3√(x) =5. Для его решения необходимо возвести обе части в третью степень, x = 125. Ответ: 125 кубометров. Дальше пример уравнения с суммой корней. √(x) +√(x-1) =5. Сначала необходимо возвести обе части в квадрат. Для этого стоит вспомнить формулу сокращенного умножения для квадрата суммы: (a+b) ^2=a^2+2*ab+b^2. Применив к уравнению, получается: x + 2*√(x) *√(x-1) +x-1 = 25. Далее корни оставляются в левой части, а всё остальное переносится в правую: 2*√(x) *√(x-1) = 26 - 2x. Удобно поделить обе части выражения на 2: √((x) (x-1)) = 13 - x. Получено более простое иррациональное уравнение.

Далее снова следует возвести обе части в квадрат: x*(x-1) = 169 - 26x + x^2. Надо раскрыть скобки и привести подобные слагаемые: x^2 - x = 169 - 26x + x^2. Вторая степень пропадает, отсюда 25x = 169. x = 169/25 = 6,6. Выполнив проверку, подставив полученный корень в изначальное уравнение: √(6,6) +√(6,6-1) = 2,6 + √(5,6) = 2,6 + 2,4 = 5, можно получить удовлетворительный ответ. Также очень важно понимать, что выражение с корнем чётной степени не может быть отрицательным. Действительно, умножая любое число само на себя чётное число раз, невозможно получить значение меньше нуля. Поэтому такие уравнения, как √(x^2+7x-11) = -3 можно смело не решать, а писать что уравнение корней не имеет. Как упоминалось выше, решение уравнений с радикалами может иметь самые разнообразные формы.

Простой пример уравнения, где необходимо проводить замену переменных. √(y) - 5*4√(y) +6 = 0, где 4√(y) - корень четвёртой степени из y. Предлагаемая замена выглядит следующим образом: x = 4√(y) . Проведя таковую, получится: x^2 - 5x + 6 = 0. Получено приведённое квадратное уравнение. Его дискриминант: 25 - 4*6 = 25 - 24 = 1. Первый корень x1 будет равен (5 + √1) /2 = 6/2 = 3. Второй корень x2 = (5 - √1) /2 = 4/2 = 2. Также можно найти корни, воспользовавшись следствием из теоремы Виета. Корни найдены, следует провести обратную замену. 4√(y) = 3, отсюда y1 = 1,6. Также 4√(y) = 2, извлекая корень 4 степени получается что y2 = 1,9. Значения вычислены на калькуляторе. Но их можно и не делать, оставив ответ в виде радикалов.

Конспект урока

«Методы решения иррациональных уравнений»

11 класс физико-математического профиля.

Зеленодольского муниципального района РТ»

Валиева С.З.

Тема урока: Методы решения иррациональных уравнений

Цель урока: 1.Изучить различные способы решения иррациональных уравнений.


  1. Развивать умение обобщать, правильно отбирать способы решения иррациональных уравнений.

  2. Развивать самостоятельность, воспитывать грамотность речи

Тип урока: семинар.
План урока:


  1. Организационный момент

  2. Изучение нового материала

  3. Закрепление

  4. Домашнее задание

  5. Итог урока

Ход урока
I . Организационный момент: сообщение темы урока, цели урока.

На предыдущем уроке мы рассмотрели решение иррациональных уравнений, содержащих квадратные корни, возведением их в квадрат. При этом мы получаем уравнение-следствие, что приводит иногда к появлению посторонних корней. И тогда обязательной частью решения уравнения является проверка корней. Также рассмотрели решение уравнений, используя определение квадратного корня. В этом случае проверку можно не делать. Однако при решении уравнений не всегда следует сразу приступать к «слепому» применению алгоритмов решения уравнения. В заданиях Единого государственного экзамена имеется довольно много уравнений, при решении которых необходимо выбрать такой способ решения, который позволяет решить уравнения проще, быстрее. Поэтому необходимо знать и другие методы решения иррациональных уравнений, с которыми мы сегодня и познакомимся. Предварительно класс был разделен на 8 творческих групп, и им было дано на конкретных примерах раскрыть суть того или иного метода. Слово даем им.


II. Изучение нового материала.

Из каждой группы 1 ученик объясняет ребятам способ решения иррациональных уравнений. Весь класс слушают и конспектируют их рассказ.

1 способ. Введение новой переменной.

Решить уравнение: (2х + 3) 2 - 3

4х 2 + 12х + 9 - 3

4х 2 - 8х - 51 - 3

, t ≥0

х 2 – 2х – 6 = t 2 ;

4t 2 – 3t – 27 = 0

х 2 – 2х – 15 =0

х 2 – 2х – 6 =9;

Ответ: -3; 5.

2 способ. Исследование ОДЗ.

Решить уравнение

ОДЗ:


х = 2. Проверкой убеждаемся, что х = 2 является корнем уравнения.

3 способ. Умножение обеих частей уравнения на сопряженный множитель.

+
(умножим обе части на -
)

х + 3 – х – 8 = 5(-)


2=4, отсюда х=1. Проверкой убеждаемся, что х = 1 является корнем данного уравнения.


4 способ. Сведение уравнения к системе с помощью введения переменной.

Решить уравнение

Пусть = u,
=v.

Получим систему:

Решим методом подстановки. Получим u = 2, v = 2. Значит,

получим х = 1.

Ответ: х = 1.

5 способ. Выделение полного квадрата.

Решить уравнение

Раскроем модули. Т.к. -1≤сos0,5x≤1, то -4≤сos0,5x-3≤-2, значит, . Аналогично,

Тогда получим уравнение

x = 4πn, nZ.

Ответ: 4πn, nZ.

6 способ. Метод оценки

Решить уравнение

ОДЗ: х 3 - 2х 2 - 4х + 8 ≥ 0, по определению правая часть -х 3 + 2х 2 + 4х - 8 ≥ 0

получим
т.е. х 3 - 2х 2 - 4х + 8 = 0. Решив уравнение разложением на множители, получим х = 2, х = -2

7 способ: Использование свойств монотонности функций.

Решить уравнение . Функции строго возрастают. Сумма возрастающих функций есть возрастающая и данное уравнение имеет не более одного корня. Подбором находим х = 1.

8 способ. Использование векторов.

Решить уравнение . ОДЗ: -1≤х≤3.

Пусть вектор
. Скалярное произведение векторов - есть левая часть. Найдем произведение их длин . Это есть правая часть. Получили
, т.е. векторы а и в – коллинеарны. Отсюда
. Возведем обе части в квадрат. Решив уравнение, получим х = 1 и х =
.


  1. Закрепление. (каждому ученику раздаются листы с заданиями)
Фронтальная устная работа

Найти идею решения уравнений (1-10)

1.
(ОДЗ - )

2.
х = 2

3. х 2 – 3х +
(замена)

4. (выделение полного квадрата)

5.
(Сведение уравнения к системе с помощью введения переменной.)

6.
(умножением на сопряженное выражение)

7.
т.к.
. То данное уравнение не имеет корней.

8. Т.к. каждое слагаемое неотрицательно, приравниваем их к нулю и решаем систему.

9. 3

10. Найдите корень уравнения (или произведение корней, если их несколько) уравнения.

Письменная самостоятельная работа с последующей проверкой

решить уравнения под номерами 11,13,17,19


Решить уравнения:

12. (х + 6) 2 -

14.


  • Метод оценки

  • Использование свойств монотонности функций.

  • Использование векторов.

    1. Какие из этих методов используются при решении уравнений других типов?

    2. Какой из этих методов вам понравился больше всего и почему?

    1. Домашнее задание: Решить оставшиеся уравнения.
    Список литературы:

    1. Алгебра и начала математического анализа: учеб. для 11 кл. общеобразоват. учреждений / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин. М: Прсвещение, 2009

    1. Дидактические материалы по алгебре и началам анализа для 11 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.

    2. Мордкович А. Г. Алгебра и начала анализа. 10 – 11 кл.: Задачник для общеобразоват. учреждений. – М.: Мнемозина, 2000.

    3. Ершова А. П., Голобородько В. В. Самостоятельные и контрольные работы по алгебре и началам анализа для 10 – 11 классов. – М.: Илекса, 2004

    4. КИМы ЕГЭ 2002 – 2010 г. г
    6. Алгебраический тренажер. А.Г.Мерзляк, В.Б.Полонский, М.С. Якир. Пособие для школьников и абитуриентов. Москва.: «Илекса» 2001г.
    7. Уравнения и неравенства. Нестандартные методы решения. Учебно – методическое пособие. 10 – 11 классы. С.Н.Олейник, М.К. Потапов, П.И.Пасиченко. Москва. «Дрофа». 2001г.

    Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

    Сбор и использование персональной информации

    Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

    От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

    Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

    Какую персональную информацию мы собираем:

    • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

    Как мы используем вашу персональную информацию:

    • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
    • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
    • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
    • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

    Раскрытие информации третьим лицам

    Мы не раскрываем полученную от Вас информацию третьим лицам.

    Исключения:

    • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
    • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

    Защита персональной информации

    Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

    Соблюдение вашей конфиденциальности на уровне компании

    Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

    Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто в уравнениях встречается знак корня и многие ошибочно считают, что такие уравнения сложные в решении. Для таких уравнений в математике существует специальный термин, которым и именуют уравнения с корнем - иррациональные уравнения.

    Главным отличием в решении уравнений с корнем от других уравнений, например, квадратных, логарифмических, линейных, является то, что они не имеют стандартного алгоритма решения. Поэтому чтобы решить иррациональное уравнение необходимо проанализировать исходные данные и выбрать более подходящий вариант решения.

    В большинстве случаев для решения данного рода уравнений используют метод возведения обеих частей уравнения в одну и ту же степень

    Допустим, дано следующее уравнение:

    \[\sqrt{(5x-16)}=x-2\]

    Возводим обе части уравнения в квадрат:

    \[\sqrt{(5х-16))}^2 =(x-2)^2\], откуда последовательно получаем:

    Получив квадратное уравнение, находим его корни:

    Ответ: \

    Если выполнить подстановку данных значений в уравнение, то получим верное равенство, что говорит о правильности полученных данных.

    Где можно решить уравнение с корнями онлайн решателем?

    Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

    После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

    Yandex.RTB R-A-339285-1

    Понятие уравнения

    Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

    Определение 1

    Уравнением называется равенство с неизвестным числом, которое нужно найти.

    Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

    Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6: x = 3 .

    После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · (x − 1) = 19 , x + 6 · (x + 6 · (x − 8)) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · (8 + 1) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · (x + 17) .

    Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

    В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

    Определение 2

    Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

    То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

    В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

    Определение 3

    Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

    К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + (y − 6) 2 + (z + 0 , 6) 2 = 26 .

    Корень уравнения

    Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

    Пример 1

    Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

    Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

    Определение 4

    Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

    Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

    Пример 2

    Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

    Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

    Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

    Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

    Пример 3

    Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · (x − 1) · (x − 2) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

    Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня - 2 , 1 и 5 , то пишем - 2 , 1 , 5 или { - 2 , 1 , 5 } .

    Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

    Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

    Определение 5

    Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

    Поясним определение на примерах.

    Пример 4

    Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

    Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3 , 4) .

    На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter