Атомное ядро состоит из протонов. Энергия связи и масса ядра. Строение атомного ядра

Делимо ли атомное ядро? И если да, то из каких частиц оно состоит? На этот вопрос пытались ответить многие физики.

В 1909 г. британский физик Эрнест Резерфорд вместе с немецким физиком Гансом Гейгером и физиком из Новой Зеландии Эрнстом Марсденом провёл свой известный эксперимент по рассеянию α-частиц, результатом которого стал вывод о том, что атом вовсе не неделимая частица. Он состоит из положительно заряженного ядра и вращающихся вокруг него электронов. Причём, несмотря на то, что размер ядра примерно в 10 000 раз меньше размера самого атома, в нём сосредоточено 99,9% массы атома.

Но что из себя представляет ядро атома? Какие частицы входят в его состав? Это сейчас мы знаем, что ядро любого элемента состоит из протонов и нейтронов , общее название которых нуклоны . А в начале ХХ века после появления планетарной, или ядерной, модели атома, это было загадкой для многих учёных. Выдвигались разные гипотезы и предлагались разные модели. Но правильный ответ на этот вопрос снова дал Резерфорд.

Открытие протона

Опыт Резерфорда

Ядро атома водорода – это атом водорода, из которого удалили его единственный электрон.

К 1913 г. были вычислены масса и заряд ядра атома водорода. Кроме того, стало известно, что масса атома любого химического элемента всегда делится без остатка на массу атома водорода. Этот факт навёл Резерфорда на мысль, что в любое ядро входят ядра атомов водорода. И ему удалось доказать это экспериментально в 1919 г.

В своём опыте Резерфорд поместил источник α-частиц в камеру, в которой был создан вакуум. Толщина фольги, закрывавшей окно камеры, была такой, что α-частицы не могли выходить наружу. За окном камеры располагался экран, на который нанесли покрытие из сернистого цинка.

Когда камеру начинали заполнять азотом, на экране фиксировались световые вспышки. Это означало, что под воздействием α-частиц из азота выбивались какие-то новые частицы, без труда проникавшие через фольгу, непроходимую для α-частиц. Оказалось, что неизвестные частицы имеют положительный заряд, равный по величине заряду электрона, а их масса равна массе ядра атома водорода. Эти частицы Резерфорд назвал протонами .

Но вскоре стало понятно, что ядра атомов состоят не только из протонов. Ведь если бы это было так, то масса атома равнялась бы сумме масс протонов в ядре, а отношение заряда ядра к массе было бы величиной постоянной. На самом деле, это справедливо только для простейшего атома водорода. В атомах других элементов всё по-другому. К примеру, в ядре атома бериллия сума масс протонов равна 4 единицам, а масса самого ядра равна 9 единицам. Значит, в этом ядре существуют и другие частицы, обладающие массой в 5 единиц, но не имеющие заряда.

Открытие нейтрона

В 1930 г. немецкий физик Вальтер Боте Боте и Ханс Беккер во время эксперимента обнаружили, что излучение, возникающее при бомбардировке атомов бериллия α-частицами, имеет огромную проникающую способность. Спустя 2 года английский физик Джеймс Чедвик, ученик Резерфорда, выяснил, что даже свинцовая пластинка толщиной 20 см, помещённая на пути этого неизвестного излучения, не ослабляет и не усиливает его. Оказалось, что и электромагнитное поле не оказывает на излучаемые частицы никакого воздействия. Это означало, что они не имеют заряда. Так была открыта ещё одна частица, входящая в состав ядра. Её назвали нейтроном . Масса нейтрона оказалась равной массе протона.

Протонно-нейтронная теория ядра

После экспериментального открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг, независимо друг от друга предложили протонно-нейтронную теорию ядра, которая дала научное обоснование состава ядра. Согласно этой теории ядро любого химического элемента состоит из протонов и нейтронов. Их общее название - нуклоны.

Общее число нуклонов в ядре обозначают буквой A . Если число протонов в ядре обозначить буквой Z , а число нейтронов буквой N , то получим выражение:

A = Z + N

Это уравнение называется уравнением Иваненко-Гейзенберга .

Так как заряд ядра атома равен количеству протонов в нём, то Z называют также зарядовым числом . Зарядовое число, или атомный номер, совпадает с его порядковым номером в периодической системе элементов Менделеева.

В природе существуют элементы, химические свойства которых абсолютно одинаковы, а массовые числа разные. Такие элементы называются изотопами . У изотопов одинаковое количество протонов и разное количество нейтронов.

К примеру, у водорода три изотопа. Все они имеют порядковый номер, равный 1, а число нейтронов в ядре у них разное. Так, у самого простого изотопа водорода, протия, массовое число 1, в ядре 1 протон и ни одного нейтрона. Это простейший химический элемент.

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α -частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10 -1 3 -10 - 12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода , выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче-ного к представлению о протоне . Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p ) — стабильная элементарная частица, ядро ато-ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e = 1,6 · 10 -1 9 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона m р = 1,6726231 · 10 -27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон .

Нейтрон (от лат. neuter — ни тот, ви другой, символ n ) — это эле-ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона m n = 1,6749286 · 10 -27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря-ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α -частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало пре-граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок). Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ -кванты. Большая проникающая способность новых частиц, названных ней-тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α -частиц в ядра бериллия происходит следующая реакция:

Здесь — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли-зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра . Согласно этой моде-ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева .

Заряд ядра Q определяется числом протонов Z , входящих в состав ядра, и кратен абсолютной величине заряда электрона e :

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером .

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер-жащихся в нем. Число нейтронов в ядре обозначается буквой N . Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов .

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото-нов (Z ) и различное число нейтронов (N ).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле-мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N . Общее обозначение нуклидов имеет вид ……. где X — символ химического эле-мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про-изошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемен-та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н протий , 2 Н дейтерий , 3 Н тритий столь сильно отличаются по массе, что и их физические и хими-ческие свойства различны. Дейтерий стабилен (т.е. не радиоактивен) и входит в качестве неболь-шой примеси (1: 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода . Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС. Тритий β -радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив-ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп составляет всего 1/140 часть от более распространенного .

Ядро – центральная часть атома. В ядре сосредоточены положительный электрический заряд и основная часть массы атома.
По сравнению с размерами атома, который определяется радиусом электронных орбит, размеры ядра Чрезвычайный малые 10 -15 -10 -14 м, то есть примерно в 10 миллионов раз меньше размера самого атома.
Ядра всех атомов состоят из протонов и нейтронов, близких по массе и другими свойствами частиц, из которых лишь протоны несут электрический заряд. Полное число протонов называется атомным номером Z атома и совпадает с числом электронов в нейтральном атоме. Протоны и нейтроны, их еще называют нуклонами, удерживаются вместе очень большими силами. По своей природе эти силы не могут быть ни электрическими, ни гравитационными, а по величине они на много порядков превышают силы, которые связывают электроны с ядром. Это взаимодействие получило название сильного взаимодействия.
Ядро простейшего атома – атома водорода – один протоном.
Масса ядра несколько меньше суммарную массу протонов и нейтронов, его составляющих, что обусловлено притяжением между нуклонами. Притяжения уменьшает общую энергию ядра, которая связана с массой формуле Эйнштейна. Уменьшение массы ядра по сравнению с массой его составляющих называется дефектом массы.
Количество протонов в составе ядра определяет химический элемент. При постоянном числе протонов ядро определенного химического элемента может иметь разное количество нейтронов. Ядра с разным количеством нейтронов, но одинаковым количеством протонов называются изотопами химического элемента. Например, ядро водорода имеет три изотопа: без всякого нейтрона – Однако, с одним нейтроном – дейтерий и с двумя нейтронами – тритий. Для большинства элементов периодической таблицы число нейтронов несколько превышает число протонов.
Среди изотопов различают стабильные и нестабильные. Нестабильные изотопы превращаются в ядра других элементов в результате одного из типов радиоактивного распада. Некоторые тяжелые химические элементы не имеют стабильных изотопов.
Один элемент можно преобразовать в другой с помощью ядерной реакции. Ядерные реакции, отличные от реакций радиоактивного распада, происходящих при столкновении очень быстрых ядер. Энергии столкновения должно хватить на преодоление кулоновского барьера, то есть сил кулоновского отталкивания между положительно заряженными ядрами. Исключение составляют реакции, в которых одним из реагентов является незаряженным частица – нейтрон.
Ядро характеризуется зарядовой числом Z, числом нейтронов N, и их суммой массовым числом A. Протоны и нейтроны, входящие в состав ядра, относятся к фермионов, то есть имеют полуцелым спином. Спин ядра является суммой спинов нуклонов, однако эта сумма не является алгебраической, учитывая особые правила сложения спинов и орбитальных моментов в квантовой механике. Соответственно, ядра имеют магнитные моменты, связанные со спином ядерным гиромагнитное отношение, в котором магнетон Бора заменяется на ядерный магнетон.
Ядра большинства химических элементов, встречающихся в природе возникли в результате ядерных реакций в звездах. При большом взрыва возникли протоны и электроны. Остальные элементы являются продуктами нуклеосинтеза, который проходил внутри в звездах. Образованные химические элементы выбрасываются звездами в межзвездное пространство при возникновении новых и сверхновых. Со временем выплюнуть звездами вещество вновь собирается вместе, образуя новые звезды и планеты.
Понятие о ядре атома ввел в 1911 году Эрнест Резерфорд, проведя эксперименты по рассеянию альфа-частиц на металлической фольги и предложив планетарную модель атома.
Ядра атомов и их преобразования изучает ядерная физика.

Вопросы «Из чего состоит материя?», «Какова природа материи?» всегда занимали человечество. Еще с древнейших времен философы и ученые искали ответы на эти вопросы, создавая как реалистичные, так и совершенно удивительные и фантастические теории и гипотезы. Однако буквально столетие назад человечество подошло к разгадке этой тайны максимально близко, открыв атомарную структуру материи. Но каков состав ядра атома? Из чего все состоит?

От теории к реальности

К началу двадцатого века атомарная структура перестала быть только гипотезой, а стала абсолютным фактом. Оказалось, что состав ядра атома - понятие очень сложное. В его состав входят Но возник вопрос: состав атома и включают в себя разное количество этих зарядов или нет?

Планетарная модель

Изначально представляли, что атом построен очень похоже на нашу Солнечную систему. Однако довольно быстро оказалось, что подобное представление не совсем верно. Проблематика чисто механического переноса астрономического масштаба картины в область, которая занимает миллионные доли миллиметра, повлекла за собой существенное и резкое изменение свойств и качеств явлений. Главное различие заключалось в гораздо более жестких законах и правилах, по которым построен атом.

Недостатки планетарной модели

Во-первых, так как атомы одного рода и элемента по параметрам и свойствам должны быть совершенно одинаковы, то и орбиты у электронов этих атомов тоже должны быть одинаковы. Однако законы движения астрономических тел не смогли дать ответы на эти вопросы. Второе противоречие заключается в том, что движение электрона по орбите, если применить к нему хорошо изученные физические законы, должно обязательно сопровождаться перманентным выделением энергии. В результате этот процесс привел бы к истощению электрона, который в конечном итоге затухнул бы и даже упал на ядро.

Волновая структура материи

В 1924 году молодой аристократ Луи де Бройль выдвинул мысль, которая перевернула представления научного сообщества о таких вопросах как состав атомных ядер. Идея заключалась в том, что электрон - это не просто движущийся шарик, который вращается вокруг ядра. Это размытая субстанция, которая движется по законам, напоминающим распространение волн в пространстве. Довольно быстро это представление распространили и на движение любого тела в целом, пояснив, что мы замечаем только одну сторону этого самого движения, а вот вторая фактически не проявляется. Мы можем видеть распространение волн и не заметить движение частицы, либо же наоборот. На самом же деле обе эти стороны движения всегда существуют, и вращение электрона по орбите - это не только перемещение самого заряда, но также и распространение волн. Такой подход кардинально отличается от принятой ранее планетарной модели.

Элементарная основа

Ядро атома - это центр. Вокруг него и вращаются электроны. Свойствами именно ядра обусловлено все остальное. Говорить о таком понятии как состав ядра атома необходимо с самого важного момента - с заряда. В составе атома наблюдается определенное которые несут отрицательный заряд. Само же ядро обладает положительным зарядом. Из этого можно сделать определенные выводы:

  1. Ядро - это заряженная положительно частица.
  2. Вокруг ядра находится пульсирующая атмосфера, создаваемая зарядами.
  3. Именно ядро и его характеристики определяют количество электронов в атоме.

Свойства ядра

Медь, стекло, железо, дерево обладают одинаковыми электронами. Атом может потерять пару электронов или даже все. Если ядро остается заряжено положительно, то оно способно притянуть нужное количество отрицательно заряженных частиц из других тел, что позволит ему сохраниться. Если атом теряет некоторое количество электронов, то положительный заряд у ядра будет больше, чем остаток отрицательных зарядов. В этом случае и весь атом приобретет избыточный заряд, и его можно будет назвать положительным ионом. В некоторых случаях атом может привлечь большее количество электронов, и тогда он станет отрицательно заряженным. Следовательно, его можно будет назвать отрицательным ионом.

Сколько весит атом?

Масса атома в основном определяется ядром. Электроны, которые входят в состав атома и атомного ядра, весят мене одной тысячной от общей массы. Так как массу считают мерой запаса энергии, которым обладает вещество, то этот факт считается неимоверно важным при изучении такого вопроса, как состав ядра атома.

Радиоактивность

Наиболее сложные вопросы появились после открытия Радиоактивные элементы излучают альфа-, бета- и гамма-волны. Но такое излучение должно иметь источник. Резерфорд в 1902 году показал, что таким источником является сам атом, а точнее сказать, ядро. С другой стороны, радиоактивность - это не только испускание лучей, а и перевод одного элемента в другой, с совершенно новыми химическими и физическими свойствами. То есть радиоактивность - это изменение ядра.

Что мы знаем о ядерной структуре?

Почти сто лет назад физик Проут выдвинул мысль о том, что элементы в периодической системе не являются бессвязными формами, а представляют собой комбинации Поэтому можно было ожидать, что и заряды, и массы ядер будут выражаться через целые и кратные заряды самого водорода. Однако это не совсем так. Изучая свойства атомных ядер при помощи электромагнитных полей, физик Астон установил, что элементы, атомные веса у которых не являлись целыми и кратными, на самом деле - комбинация разных атомов, а не одно вещество. Во всех случаях, когда атомный вес не целое число, мы наблюдаем смесь разных изотопов. Что это такое? Если говорить про состав ядра атома, изотопы - атомы с одинаковыми зарядами, но с разными массами.

Эйнштейн и ядро атома

Теория относительности говорит, что масса - это не мера, по которой определяют количество материи, а мера энергии, которой обладает материя. Соответственно, материю можно измерить не массой, а зарядом, который составляет эту материю, и энергией заряда. Когда одинаковый заряд приближается к другому такому же, энергия будет увеличиваться, в обратном случае - уменьшаться. Это, несомненно, не означает изменение материи. Соответственно, с этой позиции ядро атома - это не источник энергии, а скорее, остаток после ее выделения. Значит, существует некое противоречие.

Нейтроны

Супруги Кюри при бомбардировке альфа-частицами бериллия открыли некие непонятные лучи, которые, сталкиваясь с ядром атома, отталкивают его с огромной силой. Однако они способны проходить сквозь большую толщину вещества. Это противоречие разрешилось тем, что данная частица оказалась с нейтральным электрическим зарядом. Соответственно, ее и назвали нейтроном. Благодаря дальнейшим исследованиям оказалось, что почти такая же, как и у протона. В общем-то говоря, нейтрон и протон невероятно похожи. С учетом этого открытия определенно можно было установить, что в состав ядра атома входят и протоны, и нейтроны, причем в одинаковых количествах. Все постепенно становилось на места. Число протонов - атомный номер. Атомный вес - это сумма масс нейтронов и протонов. Изотопом можно же назвать элемент, в котором количество нейтронов и протонов будет не равным друг другу. Как уже говорилось выше, в таком случае, хотя элемент остается фактическим тем же самым, его свойства могут существенно измениться.

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид - токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний - альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе - токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.
Активность - количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности - Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения - количественная мера воздействия излучения на объект.
В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Для оценки изменения дозы излучения во времени используют показатель «мощность дозы». Мощность дозы - это отношение дозы ко времени. Например, мощность дозы внешнего облучения от естественных источников радиации составляет на территории России 4-20 мкР/ч.

Основной норматив для человека - основной дозовый предел (1 мЗв/год) - вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Строение атомного ядра.

Атом - это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10 -13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов - ядерных протонов (Z - число протонов) и ядерных нейтронов (N - число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.


Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N .

Протон - элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон - другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10 -13 см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов - «радионуклиды».

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида А Х).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96 Sr, 96 Y, 96 Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234 U, 235 U, 236 U, 238 U.

Изотопы - нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36 S, 37 Cl, 38 Ar, 39 K, 40 Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде Z Х М, где X - символ химического элемента; М - массовое число, равное сумме числа протонов и нейтронов в ядре; Z - атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3 Н, 14 С, 137 Сs, 90 Sr и т. д.

Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 - 15 Р 32 , такое же массовое число имеет и один из изотопов серы - 16 S 32 .

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).