Градусная мера угла. Радианная мера угла. Перевод градусов в радианы и обратно. Нормальное ли число Пи

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Перевод поста Giorgia Fortuna "2 Pi or Not 2 Pi? ".
Выражаю огромную благодарность Кириллу Гузенко за помощь в переводе.
Три месяца назад мир (или по крайней мере мир гиков) праздновал день Пи (03.14.15...). Сегодня (6/28 - 28 июня 2015 г.) другой математический день - день 2π, или день Тау (2π = 6.28319...).

Некоторые говорят, что день тау действительно является днём для празднования, и что τ (= 2π), а не π, должен быть самой важной константой. Все началось в 2001 году со вступительного слова знаменитого эссе Боба Пале , математика из университета Юты:

“Я знаю, что некоторые сочтут это богохульством, но я считаю, что π - это ошибка”.

Это вызвало в некоторых кругах празднование дня тау - или, как многие говорят, единственного дня, в который можно съесть два пи(рога) (2pies≈2π - игра слов в англ. языке).

Однако правда ли то, что τ - константа получше? В современном мире это довольно просто проверить, а Wolfram Language делает эту задачу ещё проще (действительно, недавний пост в блоге Майкла Тротта , вдохновлённый постом Стивена Вольфрама о праздновании векового дня числа пи , весьма активно задействовал Wolfram Language). Я начала с рассмотрения 320000 препринтов на arXiv.org чтобы посмотреть, сколько в действительности формул содержат 2π по сравнению с теми, что содержат просто π или π с другими сомножителями.

Вот облако из некоторых формул, построенное с помощью функции , содержащих 2π:



Я обнаружила, что лишь 18% рассматриваемых формул содержат 2π, из чего следует, что перейти на использование τ - не лучший выбор.

Но почему тогда сторонники использования τ считают, что мы должны перейти к использованию этого нового символа? Одна из причин заключается в том, что использование τ должно сделать тригонометрию проще для изучения и понимания. В конце концов, в тригонометрии мы используем не углы, а радианы, а в окружности содержится 2π радиан. Это означает, что четверти круга соответствует 1/2π радиан, или π/2, а не четверть чего-то! От этой несправедливости можно избавиться введением символа τ , и тогда каждой части окружности будет соответствовать такая же часть от τ . Например, четверти окружности соответствовал бы угол τ /4.

Лично у меня использование числа π не вызывает каких-то сильных негативных чувств, и честно говоря, я не думаю, что использование τ позволило бы студентам быстрее изучать тригонометрию. Давайте вспомним о двух самых важных тригонометрических функциях - синусе и косинусе. Пожалуй, самые важные в изучении тригонометрии формулы - sin= cos(2π) = 1, и sin() = cos(π) = –1. Я не только всегда предпочитала использовать косинус потому, что его значения легче запомнить (нет никаких дробных значений в π и 2π), но я и также всегда помнила, что синус и косинус отличаются тем, что одна функция принимает ненулевые значения в точках, кратных π, а другая принимает ненулевые значения в дробных частях π. Если использовать τ , то мы потеряем эту симметрию, и у нас будут уравнения sin = cos(τ ) = 1 и sin = cos = –1.

Учитывая вышесказанное, получается, что использование τ или π есть вопрос личного предпочтения. Это справедливое заключение, однако нам нужен более строгий подход для определения того, какая из констант более полезна.

Даже тот подход, которым я руководствовалась вначале, может привести к неправильным выводам. В Тау манифесте Майкл Хартл приводит некоторые примеры тех мест, где часто можно встретить 2π:

И в самом деле, все эти формулы выглядели бы проще, если бы мы использовали τ . Однако это всего лишь шесть формул из того огромного количества, которые ученые регулярно используют, и как я упоминала ранее, не так уж много математических выражений содержат 2π. Тем не менее, вполне возможно, что формулы, не содержащие 2π, будут более простыми, если будут записаны через τ . Например, выражение 4π² запишется просто как τ ².

Поэтому я вернулась к научным статьям, чтобы выяснить, сделает ли использование τ вместо 2π (и τ /2 вместо π) формулы более простыми. Например, вот те, которые станут более простыми с использованием τ :

А вот некоторые из тех, которые не станут:

Позвольте объяснить, что я подразумеваю под более простой формой записи на примере: если я возьму часть, содержащую π в нижней левой формуле таблицы с формулами Тау манифеста (см. выше):

Я могу заменить π на τ /2 с помощью функции ReplaceAll и получить:

Посмотрев на эти два выражения, можно увидеть, что второе проще. И дело здесь не в интуиции - во втором просто меньше символов. Для большей ясности можно рассмотреть соответствующие им древовидные графы посредством функции TreeForm :

Для получения численного представления их различия мы можем использовать количества ветвей дерева, которые соответствуют числу символов в исходных формулах:

Чтобы определить, упрощается ли формула в результате использования τ , я вычислила сложность каждой формулы (которая определяется количеством ветвей дерева), содержащей π, для формул из статей, в зависимости от того, какая из констант используется - π или τ . Для большей точности я сначала удалила все выражения, которые были равны или эквивалентны π или 2π. Я чувствовала, что будет несправедливо их учитывать, потому что они часто встречаются сами по себе, вне формул. Затем я сравнила случаи, когда использование τ упрощало формулу с теми, когда усложняло, и лишь 43% формул стали проще с использованием τ , то есть в более чем половине случаев использование τ усложняет формулу. Иными словами, из этого сравнения следует, что мы должны продолжать использовать π. Тем не менее, это не конец истории.

Я заметила вот что: если выражение становится более или менее сложным, то это значит, что количество ветвей у него менее 40. В самом деле, если посмотреть на процент формул, которые становятся проще при использовании π или τ и имеют количество ветвей меньше определённого значения, то вы увидите следующую картину:

Ось х представляет верхнюю границу количества ветвей. Из этого следует, что почти для всех формул их сложность зависит от выбора символа только в случае, если число ветвей меньше 50.

Более важное наблюдение заключается в том, что по мере роста сложности формулы ситуация резко меняется. Даже если выбрать формулы со сложностью большей, чем 3, как рассмотренная ранее формула , то тогда лишь 48% формул станут проще с использованием π против 52% для τ . Приведенные ниже графики показывают, как процентные отношения формул, которые проще с использованием π или τ , изменяются в зависимости от сложности:

Как можно заметить, при числе ветвей более 48 графики начинают вести себя хаотично. Это следствие того, что лишь 0,4% формул выборки имеют сложность более 50. Мы ничего особо конкретного не можем сказать о них, и прошлый опыт говорит нам о том, что это нам очень-то и не нужно.

И из этого графика также следует то, что в повседневной жизни и для каких-то выражений, которые сложнее чего-то наподобие , в целях упрощения выражений нам однозначно следует использовать τ . Но есть еще один момент, которого я не коснулась. Что насчёт различных областей приложений?

Возможно, в физике формулы будут проще выглядеть с τ , а в других областях - нет. Изначально я включила в поиск статьи из различных областей; однако, я не проверяла принадлежность формул, содержащих π, тем или иным областям знаний, а также то, принадлежат ли формулы, которые становятся проще с использованием τ , какому-то ограниченному подмножеству областей. В самом деле, если рассмотреть лишь математические статьи, то результат окажется следующим:

Получается, что лишь 23% всех формул становятся проще с использованием τ , да и то лишь для довольно сложных выражений. Вот что-то наподобие этого:

Можно проще записать через τ , однако большинство подобных выражений встречается весьма редко. Получается, что либо учёные из различных областей должны использовать различные соглашения в зависимости от специфичных для своих областей формул, либо все должны перейти на использование τ , хотя на самом деле для некоторых областей это не имеет особого смысла. В конце концов, демократия предполагает удовлетворённость большинства, и невозможно угодить всем без исключения.

Тем не менее, вышеуказанная формула содержит ещё кое-что, на чём я бы хотела заострить внимание. Так она выглядит с τ :

Пускай выражение действительно проще записывается через τ , однако подобное улучшение столь незначительно, что становится пренебрежимо малым. Рассмотрим, например, эти два выражения вместе с количествами их ветвей:

И соответствующие им выражения в τ :

Первая формула проще в τ , но количество ветвей становится лишь на 1/13 меньше по сравнению с первоначальным количеством, в то время как второе выражение проще записывается в π, а после замены его сложность возрастает на 1/6. Другими словами, улучшение в первом случае составило 1/13, а во втором -1/6 (знак минус означает ухудшение). Среднее значение вектора составляет -0.044 - отрицательное число, что означает, что использование τ в этих двух выражениях делает общий вектор на 0,044 хуже.

Подобный векторный подход отличается от ранее использованного подхода, при котором не учитывался размер уравнения. В нём считается количество улучшений, а не количество упрощенных выражений, и это переворачивает с ног на голову предыдущие выводы. Я получила эти векторы для формул, в которых сложность ограничена снизу - всё так же, как и в предыдущем примере. Получается, что общее улучшение при замене π на τ уменьшается с увеличением сложности:

А наименьшее ухудшение -0,04 достигается при сложности 5. Как можно заметить, общее улучшение всегда отрицательно; это означает, что пусть и большее количество формул имеют более короткую запись через τ (в зависимости от области), но в целом сумма всех «упрощений» формул перевешивается всеми «усложнениями».

В итоге всего этого исследования у меня сформировалась такая позиция: думаю, нам стоит быть довольными нашим старым другом π и не переходить на использование τ .

У меня есть два заключительных замечания. Первое заключается в том, что если бы мы жили в мире, где активнее используется τ , то вывод был бы полностью противоположным. Если бы наши выражения уже записывались бы через τ , и мы исследовали бы вопрос о переходе на использование π и вопросы упрощения, то наш график сумм векторов выглядел бы следующим образом:

Подобное различие объясняется тем, что векторы, которые используются для построения графиков, зависят от исходных сложностей, и потому меняются при изменении оных.

Из этого следует, что для большинства формул, которые имеют сложность больше двух и меньше 18, улучшение от замены τ на π будет отрицательным. К сожалению для сторонников τ , мы живем всё таки в мире π.

Второе замечание, на которое навёл меня Майкл Тротт, заключается в том, что 2/3 из формул, указанных в Тау манифесте (зеленая таблица в начале поста), содержат не просто 2π, а комплексное выражение 2πi. Это говорит о том, что, возможно, сама постановка вопроса, на который я пыталась ответить, является некорректной. Быть может, лучшей будет следующая формулировка: будет ли смысл ввести новый символ τ для комплексного числа 2πi ?

Это новое обозначение потребует также замены πi на τ/2, но это не повлияет на сложность πi . В общем, формулы, содержащие πi , либо уменьшат, либо сохранят свою сложность. Вот облако формул, которые станут проще:

Так они станут выглядеть после подстановки 2πi на τ :

Можно было бы возразить, что процент улучшения формул не будет достаточно высоким, и переход от 2πi к τ неоправданным. Однако факты говорят обратное: из всех формул, содержащих πi , 75% станут проще, а остальные 25% сохранят свой уровень сложности - то есть ни одна формула не станет сложнее. Это весомый аргумент, но я не в том положении, чтобы претворить эту идею; однако, полагаю, что равенство τ = 2πi перспективнее (и менее исторически сложно), чем τ = 2π.

Независимо от вашего мнения касательно τ , надеюсь, что вы прекрасно провели день Тау. Наслаждайтесь сегодняшним днём двух пи(рогов) - мнимых или каких бы то ни было.

Таблица значений тригонометрических функций составлена для углов в 0, 30, 45, 60, 90, 180, 270 и 360 градусов и соответствующих им значений углов врадианах . Из тригонометрических функций в таблице приведены синус, косинус, тангенс, котангенс, секанс и косеканс . Для удобства решения школьных примеров значения тригонометрических функций в таблице записаны в виде дроби с сохранением знаков извлечения корня квадратного из чисел, что очень часто помогает сокращать сложные математические выражения. Для тангенса и котангенса значения некоторых углов не могут быть определены. Для значений тангенса и котангенса таких углов в таблице значений тригонометрических функций стоит прочерк. Принято считать, что тангенс и котангенс таких углов равняется бесконечности. На отдельной странице находятся формулы приведения тригонометрических функций.

В таблице значений для тригонометрической функции синус приведены значения для следующих углов: sin 0, sin 30, sin 45, sin 60, sin 90, sin 180, sin 270, sin 360 в градусной мере, что соответствует sin 0 пи, sin пи/6, sin пи/4, sin пи/3, sin пи/2, sin пи, sin 3 пи/2, sin 2 пи в радианной мере углов. Школьная таблица синусов.

Для тригонометрической функции косинус в таблице приведены значения для следующих углов: cos 0, cos 30, cos 45, cos 60, cos 90, cos 180, cos 270, cos 360 в градусной мере, что соответствует cos 0 пи, cos пи на 6, cos пи на 4, cos пи на 3, cos пи на 2, cos пи, cos 3 пи на 2, cos 2 пи в радианной мере углов. Школьная таблица косинусов.

Тригонометрическая таблица для тригонометрической функции тангенс приводит значения для следующих углов: tg 0, tg 30, tg 45, tg 60, tg 180, tg 360 в градусной мере, что соответствует tg 0 пи, tg пи/6, tg пи/4, tg пи/3, tg пи, tg 2 пи в радианной мере углов. Следующие значения тригонометрических функций тангенса не определены tg 90, tg 270, tg пи/2, tg 3 пи/2 и считаются равными бесконечности.

Для тригонометрической функции котангенс в тригонометрической таблице даны значения следующих углов: ctg 30, ctg 45, ctg 60, ctg 90, ctg 270 в градусной мере, что соответствует ctg пи/6, ctg пи/4, ctg пи/3, tg пи/2, tg 3 пи/2 в радианной мере углов. Следующие значения тригонометрических функций котангенса не определены ctg 0, ctg 180, ctg 360, ctg 0 пи, ctg пи, ctg 2 пи и считаются равными бесконечности.

Значения тригонометрических функций секанс и косеканс приведены для таких же углов в градусах и радианах, что и синус, косинус, тангенс, котангенс.

В таблице значений тригонометрических функций нестандартных углов приводятся значения синуса, косинуса, тангенса и котангенса для углов в градусах 15, 18, 22,5, 36, 54, 67,5 72 градусов и в радианах пи/12, пи/10, пи/8, пи/5, 3пи/8, 2пи/5 радиан. Значения тригонометрических функций выражены через дроби и корни квадратные для упрощения сокращения дробей в школьных примерах.

Еще три монстра тригонометрии. Первый — это тангенс 1,5 полутора градусов или пи деленное на 120. Второй — косинус пи деленное на 240, пи/240. Самый длинный — косинус пи деленное на 17, пи/17.

Тригонометрический круг значений функций синус и косинус наглядно представляет знаки синуса и косинуса в зависимости от величины угла. Специально для блондинок значения косинуса подчеркнуты зелененькой черточкой,чтоб меньше путаться. Так же очень наглядно представлен перевод градусов в радианы, когда радианы выражены через пи.

Эта тригонометрическая таблица представляет значения синуса, косинуса, тангенса и котангенса для углов от 0 нуля до 90 девяносто градусов с интервалом через один градус. Для первых сорока пяти градусов названия тригонометрических функций необходимо смотреть в верхней части таблицы. В первом столбце указаны градусы, значения синусов, косинусов, тангенсов и котангенсов записаны в следующих четырех столбцах.

Для углов от сорока пяти градусов до девяноста градусов названия тригонометрических функций записаны в нижней части таблицы. В последнем столбце указаны градусы, значения косинусов, синусов, котангенсов и тангенсов записаны в предыдущих четырех столбцах. Следует быть внимательными, поскольку в нижней части тригонометрической таблицы названия тригонометрических функций отличаются от названий в верхней части таблицы. Синусы и косинусы меняются местами, точно так же, как тангенс и котангенс. Это связано с симметричностью значений тригонометрических функций.

Знаки тригонометрических функций представлены на рисунке выше. Синус имеет положительные значения от 0 до 180 градусов или от 0 до пи. Отрицательные значения синус имеет от 180 до 360 градусов или от пи до 2 пи. Значения косинуса положительны от 0 до 90 и от 270 до 360 градусов или от 0 до 1/2 пи и от 3/2 до 2 пи. Тангенс и котангенс имеют положительные значения от 0 до 90 градусов и от 180 до 270 градусов, что соответствует значениям от 0 до 1/2 пи и от пи до 3/2 пи. Отрицательные значения тангенс и котангенс имеют от 90 до 180 градусов и от 270 до 360 градусов или от 1/2 пи до пи и от 3/2 пи до 2 пи. При определении знаков тригонометрических функций для углов больше 360 градусов или 2 пи следует использовать свойства периодичности этих функций.

Тригонометрические функции синус, тангенс и котангенс являются нечетными функциями. Значения этих функций для отрицательных углов будут отрицательными. Косинус является четной тригонометрической функцией — значение косинуса для отрицательного угла будет положительным. При умножении и делении тригонометрических функций необходимо соблюдать правила знаков.

Корень 2/2 это сколько пи? — Это по-разному бывает (смотрите картинку). Нужно знать, какая именно тригонометрическая функция равна корню из двух, деленному на два.

Если вам понравилась публикация и вы хотите знать больше, мне в работе над другими материалами.

cos pi делённый на 2

Главная > Справочник > Математические формулы.

Математические формулы.

Перевод радиан в градусы.
A d = A r * 180 / пи

Перевод градусов в радианы.
A r = A d * пи / 180
Где A d - угол в градусах, A r - угол в радианах.

Длина окружности.
L = 2 * пи * R

Длина дуги окружности.
L = A * R

Площадь треугольника.

p=(a+b+c)/2 - полупериметр.

Площадь круга.
S = пи * R 2

Площадь сектора.
S = L d * R/2 = (A * R 2)/2

Площадь поверхности шара.
S = 4 * пи * R 2


S = 2 * пи * R * H



Где S - площадь боковой поверхности цилиндра, R - радиус основания цилиндра, H - высота цилиндра.


S = пи * R * L


S = пи * R * L + пи * R 2

Объем шара.
V = 4 / 3 * пи * R 3

Объем цилиндра.
V = пи * R 2 * H

Объем конуса.

Размещено: 15.01.13
Обновлено: 15.11.14
Просмотров всего: 10754
сегодня: 1

Главная > Справочник > Математические формулы.

Егор

Доброй вечер! Вы задали очень интересный вопрос, надеюсь, мы сможем Вам помочь.

Как решать С1. Урок 2. ЕГЭ по математике 2014

Нам с вами нужно решить такую задачку: найти cos pi делённый на 2.
Чаще всего для решения таких задач нужно определить показатели косинуса либо же синуса. Для углов от 0 до 360 градусов практически любое значение cos или sin можно с лёгкостью найти в соответствующих табличках, которые существуют и распространены, как например такие:

Но у нас с Вами не синус (sin), а косинус. Давайте сначала разберёмся, что такое косинус. Cos (косинус) — это одна из тригонометрических функцией. Для того, чтоб высчитать косинус острого прямоугольного треугольника Вам нужно будет знать отношение катета прилежащего угла к гипотенузе. Косинус pi делённый на 2 можно легко высчитать по тригонометрической формуле, которая относится к стандартным формулам тригонометрии. Но а если мы с Вами говорим о значении косинуса pi делённый на 2, то для этого мы воспользуемся таблицей, о которой уже вспоминали и не раз:

Удачи Вам в дальнейших решениях подобных заданий!
Ответ:

Главная > Справочник > Математические формулы.

Математические формулы.

Перевод радиан в градусы.
A d = A r * 180 / пи

Перевод градусов в радианы.
A r = A d * пи / 180
Где A d - угол в градусах, A r - угол в радианах.

Длина окружности.
L = 2 * пи * R
Где L - длина окружности, R - радиус окружности.

Длина дуги окружности.
L = A * R
Где L - длина дуги окружности, R - радиус окружности, A - центральный угол, выраженный в радианах
Для окружности A = 2*пи (360 градусов), получим L = 2*пи*R.

Площадь треугольника.
S = (p * (p-a) * (p-b) * (p-c)) 1/2
Где S - площадь треугольника, a, b, c - длины сторон,
p=(a+b+c)/2 - полупериметр.

Площадь круга.
S = пи * R 2
Где S - площадь круга, R - радиус круга.

Площадь сектора.
S = L d * R/2 = (A * R 2)/2
Где S - площадь сектора, R - радиус круга, L d - длина дуги.

Площадь поверхности шара.
S = 4 * пи * R 2
Где S - площадь поверхности шара, R - радиус шара.

Площадь боковой поверхности цилиндра.
S = 2 * пи * R * H
Где S - площадь боковой поверхности цилиндра, R - радиус основания цилиндра, H - высота цилиндра.

Площадь полной поверхности цилиндра.
S = 2 * пи * R * H + 2 * пи * R 2
Где S - площадь боковой поверхности цилиндра, R - радиус основания цилиндра, H - высота цилиндра.

Площадь боковой поверхности конуса.
S = пи * R * L
Где S - площадь боковой поверхности конуса, R - радиус основания конуса, L - длина образующей конуса.

Площадь полной поверхности конуса.
S = пи * R * L + пи * R 2
Где S - площадь полной поверхности конуса, R - радиус основания конуса, L - длина образующей конуса.

Объем шара.
V = 4 / 3 * пи * R 3
Где V - объем шара, R - радиус шара.

Объем цилиндра.
V = пи * R 2 * H
Где V - объем цилиндра, R - радиус основания цилиндра, H - высота цилиндра.

Объем конуса.
V = пи * R * L = пи * R * H/cos (A/2) = пи * R * R/sin (A/2)
Где V - объем конуса, R - радиус основания конуса, L - длина образующей конуса, A - угол при вершине конуса.

Размещено: 15.01.13
Обновлено: 15.11.14
Просмотров всего: 10742
сегодня: 1

Главная > Справочник > Математические формулы.

Егор
Закрепить провод на клеммах батарейки Крона можно трубочкой, отрезанной от колпачка медицинской иголки.

Сегодня день рождения числа Пи, который, по инициативе американских математиков, отмечается 14 марта в 1 час и 59 минут пополудни. Связано это с более точным значением числа Пи: все мы привыкли считать эту константу как 3,14, но число можно продолжить так: 3, 14159... Переводя это в календарную дату, получаем 03.14, 1:59.

Фото: АиФ/ Надежда Уварова

Профессор кафедры математического и функционального анализа Южно-Уральского государственного университета Владимир Заляпин говорит, что «днём числа Пи» всё же следует считать 22 июля, потому что в европейском формате дат этот день записывается как 22/7, а значение этой дроби приблизительно равно значению Пи.

«История числа, дающего отношение длины окружности к диаметру окружности, уходит в далёкую древность, — рассказывает Заляпин. — Уже шумеры и вавилоняне знали, что это это отношение не зависит от диаметра окружности и является постоянным. Одно из первых упоминаний о числе Пи можно встретить в текстах египетского писца Ахмеса (около 1650 года до н. э.). Древние греки, много позаимствовавшие у египтян, внесли свой вклад в развитие этой загадочной величины. По легенде, Архимед был настолько увлечён расчётами, что не заметил, как римские солдаты взяли его родной город Сиракузы. Когда римский солдат подошёл к нему, Архимед закричал по-гречески: «Не трогай моих кругов!». В ответ солдат заколол его мечом.

Платон получил довольно точное значение числа Пи для своего времени — 3,146. Лудольф ванн Цейлен провёл большую часть своей жизни над расчётами первых 36 цифр после запятой числа Пи, и они были выгравированы на его надгробной плите после смерти».

Иррациональное и ненормальное

По словам профессора, во все времена погоня за вычислением новых десятичных знаков обуславливалась желанием получить точное значение этого числа. Предполагалось, что число Пи рациональное и, следовательно, может быть выражено простой дробью. А это в корне неверно!

Число Пи популярно ещё и потому, что оно — мистическое. С древних времён существовала религия почитателей константы. Помимо традиционного значения Пи — математической константы (3,1415...), выражающей отношение длины окружности к её диаметру, есть масса других значений цифры. Любопытны такие факты. В процессе измерений размеров Великой пирамиды в Гизе оказалось, что она имеет такое же соотношение высоты к периметру своего основания, как радиус окружности к её длине, то есть ½ Пи.

Если рассчитать длину экватора Земли с использованием числа Пи с точностью до девятого знака, ошибка в расчётах составит всего около 6 мм. Тридцати девяти знаков после запятой в числе Пи достаточно для вычисления длины окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью не большей, чем радиус атома водорода!

Изучением Пи занимается в том числе и математический анализ. Фото: АиФ/ Надежда Уварова

Хаос в цифрах

По словам профессора математики, в 1767 году Ламберт установил иррациональность числа Пи, то есть невозможность представить его отношением двух целых. Это означает, что последовательность десятичных знаков числа Пи — это хаос, овеществлённый в цифрах. Иными словами, в «хвосте» десятичных знаков содержится любое число, любая последовательность чисел, любые тексты, которые были, есть и будут, да только извлечь эту информацию не представляется возможным!

«Точное значение числа Пи узнать невозможно, — продолжает Владимир Ильич. — Но попытки эти не оставляются. В 1991 году Чудновские добились новых 2260000000 десятичных знаков константы, а в 1994 году — 4044000000. После этого количество верных знаков числа Пи нарастало лавинообразно».

Мировой рекорд по запоминанию числа Пи у китайца Лю Чао , который сумел запомнить 67890 знаков после запятой без ошибки и воспроизвести их в течение 24 часов и 4 минут.

О «золотом сечении»

Кстати, связь между «пи» и другой удивительной величиной — золотым сечением — на самом деле так и не доказана. Люди давно заметили, что «золотая» пропорция — она же число Фи — и число Пи, делённое на два, различаются между собой меньше, чем на 3% (1,61803398... и 1,57079632...). Однако для математики эти три процента — разница слишком существенная, чтобы считать эти значения тождественными. Точно так же можно сказать, что число Пи и число Фи являются родственниками ещё одной известной постоянной — числа Эйлера, так как корень из него близок к половине числа Пи. Одна вторая Пи — 1, 5708, Фи — 1,6180, корень из Е — 1, 6487.

Это — лишь часть значения Пи. Фото: Скриншот

День рождения Пи

В Южно-Уральском государственном университете день рождения константы отмечают все преподаватели и студенты-математики. Так было всегда — нельзя сказать, что интерес появился лишь в последние годы. Число 3,14 приветствуют даже специальным праздничным концертом!