Матрица строка решение. Решение матричных уравнений. Операции сложения и вычитания матриц

Ответ на этот вопрос компания «Тойота», мировой лидер не только в автомобилестроении, но и в создании эффективных бизнес-систем, нашла для себя в инструменте Хосин Канри еще в 1950-1960-х годах. Это словосочетание можно перевести с японского языка как компас, а в более широком смысле — управление политикой. Практически все крупные мировые компании уже давно переняли этот инструмент и успешно его используют, в том числе в компании «Альстом». В качестве примера можно привести ОАО «РЖД», которое еще в прошлом году применило методику Хосин Канри на Октябрьской железной дороге.

Хосин Канри — это структурированный, регулярно повторяющийся процесс, результатом которого является документ, называемый Х-матрица, формулирующий основные направления развития компании. Развертывание стратегии происходит через встроенные друг в друга планы мероприятий (PDCA).

Схематически процесс Хосин Канри применительно для отдельного завода ТМХ может быть представлен на рис. 1.

Х-матрица каждого уровня состоит из четырех основных блоков: глобальные цели, стратегия, тактики и количественные цели. При этом стратегии и глобальные цели нижестоящих уровней неразрывно связаны с тактиками и количественными целями вышестоящих уровней.

Поэтому изменение, произведенное на одном из уровней, быстро транслируется и вызывает перемены на всех остальных. Принцип заполнения Х-матрицы схематически представлен на рис. 3 .

Внедрение Х-матриц на заводах холдинга

В настоящее время в холдинге происходит формирование технической стратегии развития предприятий. В эту работу также вовлечено и высшее руководство «Альстом Транспорт». Для всех заводов актуальными являются следующие стратегии: осуществление прорыва в области качества выпускаемой продукции, развитие персонала, внедрение проектного менеджмента и управление затратами, завершение реструктуризации предприятий.

Для обеспечения эффективного внедрения стратегии развития холдинга на предприятиях в феврале — апреле 2014 года группой по производственной системе были проведены двухдневные семинары по практическому обучению руководства заводов методологии работы с Х-матрицами. К сегодняшнему моменту обучен высший менеджмент семи предприятий: БМЗ, НЭВЗ, ТВЗ, КЗ, ЦСМ, ДМЗ, МВМ.

В рамках подготовки к семинару с каждым генеральным директором прорабатывалась Х-матрица уровня завода (уровень L1), которая основывалась в свою очередь на входящих данных из матрицы уровня холдинга. Обозначенные выше стратегии были дополнены тактическими инициативами завода. Так, для ЗАО «УК «БМЗ» были определены 19 тактик уровня завода, среди которых создание двух эталонных линий сборки основных продуктов, создание новой платформы (ТЭМ23), совершенствование системы производственного планирования, пересмотр системы мотивации персонала. Сам проект трансформации завода, реализация которого была начата ранее, получил громкий лозунг «БМЗ — первый в любом составе!».

В ходе семинара были построены Х-матрицы основных дирекций предприятия: дирекции по производству, технические дирекции и дирекции по материально-техническому обеспечению и логистике (уровень L2). Затем руководители представили стратегии развития их подразделений начальникам отделов (цехов), которые в свою очередь составили Х-матрицы уровня L3 с тактическими задачами отделов. Далее начальники отделов (цехов) «каскадировали» задачи начальникам бюро, которые составили очень конкретные планы мероприятий для достижения общей стратегии дирекции. Если в Х-матрицах дирекций и отделов горизонт планирования равен одному году, то в случае плана мероприятий для руководителей бюро — три месяца. Завершающим этапом семинара стало формирование стендов с индикаторами для управления деятельностью подразделения на каждом уровне.

Таким образом, была выстроена система управления трансформацией завода, включающая взаимосвязанные планы тактических и операционных задач, а также индикаторов, позволяющих оценить как процессы, так и степень реализации задач.

В настоящий момент заводы дорабатывают Х-матрицы, добиваясь полной взаимосвязанности между матрицами разных уровней. Особое внимание уделено работе с индикаторами процессов, большинство из которых можно найти в будущей единой панели индикаторов завода.

Связь Х-матриц и панели индикаторов

Для принятия обоснованных решений руководителям различных уровней необходимо полагаться на достоверную и своевременную бизнес-информацию. Панели индикаторов хранят данные о результативности и эффективности протекающих в организации бизнес-процессов. Эти данные используются для мониторинга, анализа, управления.

В 2013 году на НЭВЗ была проведена работа по внедрению ключевых показателей эффективности, и в качестве пилотного участка был выбран цех, где происходит сборка электропоездов ЭП20 «Олимп». Опыт оказался успешным, и руководство завода получило перекрестную систему КПЭ, благодаря которой можно быстро и эффективно проанализировать данные.

С начала 2014 года в холдинге ведется активная работа по формированию стандартной панели индикаторов для заводов, которая включит в себя все наиболее важные КПЭ предприятия и будет ежемесячно обновляться. Планируется официально включить в бизнес-план 2015 года помимо показателей результативности еще и показатели эффективности деятельности заводов.

Среди наиболее важных КПЭ , которые будут включены в панель, можно выделить следующие: эффективность производственных рабочих, отношение РСС и вспомогательных рабочих к основным рабочим, оборачиваемость сырья и материалов, оборачиваемость незавершенного производства, выработка нормо-часов в год с 1 м2 производственных площадей .

В 2014 году работа по построению Х-матриц была проведена под руководством группы по производственной системе, в следующем году такая работа должна стать обычной задачей по планированию деятельности предприятия на год.

Следующие шаги по развертыванию стратегии на заводах

Большинство российских предприятий, и заводы Трансмашхолдинга не исключение, имеют очень сложную иерархическую структуру с множеством уровней. Это значит, что каскадирование задач — долгий процесс, при котором важно обеспечить полную открытость и прозрачность направлений развития компании. Поэтому ключевым этапом в развертывании стратегии становится информирование всех сотрудников о предстоящих переменах. Информированность, понимание и вовлеченность — вот цепочка действий коллектива каждого предприятия. И здесь немаловажно участие корпоративных газет, которые должны регулярно транслировать ключевые решения руководства, работы по Х-матрицам, рассказывать о преобразованиях, происходящих на заводах.

Для успешной реализации стратегии нужна полная поддержка всех уровней, поэтому сейчас заводы работают над поиском запоминающегося названия проекта и его лозунга. Через заводские газеты, в ходе коллективных собраний, а главное — от непосредственных руководителей работники заводов должны не только узнать о планах предприятия, но и понять свою роль в этом процессе.

Александр Альбертович Василенко, генеральный директор ЗАО «УК «БМЗ»:

Для достижения указанных целей руководством предприятия определены тактические задачи, которые необходимо решить в 2014 году. Далее директора по направлениям на основании матрицы стратегии развития завода разработали матрицы по каждой службе и так до уровня отделов. Это позволило довести глобальные цели и тактические задачи ТМХ, определенные руководством, до конкретных исполнителей. Таким образом, все сотрудники стали понимать свою личную роль и вклад в стратегическое развитие предприятия. В настоящее время перед руководителями завода всех уровней стоит задача по ежемесячному анализу исполнения тактических задач и планов мероприятий для оперативного реагирования на возможные отклонения. Такой подход позволил систематизировать деятельность различных подразделений в рамках целей завода, установил целевые состояния процессов.

Дмитрий ДЬЯКОВ, заместитель начальника отдела производства ЗАО «УК «БМЗ»:

Можно предположить, что несколько веков назад Суворов уже занимался выстраиванием производственной системы… в армии. Ведь ему приписывают слова «Каждый солдат должен понимать свой маневр». Это как раз и есть принцип каскадирования. Когда командующий ставит цели, каждый солдат должен не только знать, но и понимать свой маневр. Применительно к нашему производству: оператор не просто пришел и сделал деталь, но и знает, почему сегодня такой уровень заказов, почему требуется оптимизация площадей, рационализация техпроцессов, внедрение системы 5С на рабочих местах и т. д. Это один из методов производственной системы, который позволяет создать команду, способную улавливать и видеть изменения обстановки, уметь их анализировать, вырабатывать на эти изменения комплекс действий и претворять их в жизнь.

Марк-Антуан Жювин, финансовый контролер Трансмашхолдинга, уже имевший опыт работы с данным инструментом, отмечает:

Использование в ТМХ Х-матриц именно сегодня отвечает на вызовы современной экономической среды, которая отличается высокой изменчивостью и непредсказуемостью. Вследствие этого нужно действовать коллективно, не нарушая равновесия всей системы.

Назначение сервиса . Матричный калькулятор предназначен для решения систем линейных уравнений матричным способом (см. пример решения подобных задач).

Инструкция . Для онлайн решения необходимо выбрать вид уравнения и задать размерность соответствующих матриц.

Вид уравнения : A·X = B X·A = B A·X·B = C
Размерность матрицы А
Размерность матрицы B 1 2 3 4 5 6 7 8 9 10 x 1 2 3 4 5 6 7 8 9 10

Размерность матрицы C 1 2 3 4 5 6 7 8 9 10 x 1 2 3 4 5 6 7 8 9 10

где А, В, С - задаваемые матрицы, Х - искомая матрица. Матричные уравнения вида (1), (2) и (3) решаются через обратную матрицу A -1 . Если задано выражение A·X - B = C , то необходимо, сначала сложить матрицы C + B , и находить решение для выражения A·X = D , где D = C + B (). Если задано выражение A*X = B 2 , то предварительно матрицу B надо возвести в квадрат . Рекомендуется также ознакомиться с основными действиями над матрицами .

Пример №1 . Задание . Найти решение матричного уравнения
Решение . Обозначим:
Тогда матричное уравнение запишется в виде: A·X·B = C.
Определитель матрицы А равен detA=-1
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1:Умножаем обе части этого равенства слева на A -1 и справа на B -1: A -1 ·A·X·B·B -1 = A -1 ·C·B -1 . Так как A·A -1 = B·B -1 = E и E·X = X·E = X, то X = A -1 ·C·B -1

Обратная матрица A -1:
Найдем обратную матрицу B -1 .
Транспонированная матрица B T:
Обратная матрица B -1:
Матрицу X ищем по формуле: X = A -1 ·C·B -1

Ответ:

Пример №2 . Задание. Решить матричное уравнение
Решение . Обозначим:
Тогда матричное уравнение запишется в виде: A·X = B.
Определитель матрицы А равен detA=0
Так как A вырожденная матрица (определитель равен 0), следовательно уравнение решения не имеет.

Пример №3 . Задание. Найти решение матричного уравнения
Решение . Обозначим:
Тогда матричное уравнение запишется в виде: X·A = B.
Определитель матрицы А равен detA=-60
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим справа обе части уравнения на A -1: X·A·A -1 = B·A -1 , откуда находим, что X = B·A -1
Найдем обратную матрицу A -1 .
Транспонированная матрица A T:
Обратная матрица A -1:
Матрицу X ищем по формуле: X = B·A -1


Ответ: >

Занятие № 1. Матрицы. Операции над матрицами.

1. Что называется матрицей.

2. Какие две матрицы называются равными.

3. Какая матрица называется квадратной, диагональной, единичной.

4. Как выполнить операции сложения матриц и умножение матрицы на число.

5. Для каких матриц вводится операция умножения и правило ее выполнения.

6. Какие преобразования над матрицами являются элементарными.

7. Какую матрицу называют канонической.

Типовые примеры Действия над матрицами

Задача № 1. Даны матрицы

Найти матрицу D=
(1)

Решение. По определению произведения матрица на число получаем:

D=

Задача № 2 . Найти произведение АВ двух квадратных матриц:

Решение. Обе матрицы являются квадратными матрицами 2-го порядка. Такие матрицы можно умножить, используя формулу

Формула (2) имеет следующий смысл: чтобы получить элемент матрицы С = АВ, стоящий на пересечении строки истолбца нужно взять сумму произведений элементов-ой строки матрицы А на соответствующие элементы-го столбца матрицы В.

В соответствии с формулой (2) найдем:

Следовательно, произведение С = АВ будет иметь вид:

Задача № 3. Найти произведение АВ и ВА матриц:

Решение. Согласно формуле (2),элементы матриц АВ и ВА будут иметь вид:

Вывод: Сравнивая матрицы АВ и ВА и пользуясь определением равенства матриц, делаем вывод, что АВВА, т. е. умножение матриц не подчиняется переместительному закону.

Задача № 4 (устно). Даны матрицы
Существуют ли произведения (в скобках даны правильные ответы): АВ (да), ВА (нет), АС (да), СА (нет), АВС (нет), АСВ (да), СВА (нет).

Задача № 5. Найти произведение АВ и ВА двух матриц вида:

Решение. Приведенные матрицы вида
следовательно, существуют произведения АВ и ВА данных матриц, которые будут иметь вид:

Задача № 6 . Найти произведение АВ матриц:

Ответ:

Задачи для самостоятельного решения:

    Даны матрицы

Найти матрицу D=2А-4В+3С.

2. Найти произведения АВ и ВА квадратных матриц:

    Найти произведение матриц:

    Найти произведение матриц:



7. Найти произведение матриц:

8.Найти матрицу: В=6А 2 +8А, если
.

9. Дана матрица
.Найти все матрицы В, перестановочные с матрицей А.

10. Доказать, что если А - диагональная матрица и все элементы ее главной диагонали различны между собой, то любая матрица, перестановочная с А, тоже диагональная.

Занятие 2. Определители квадратных матриц и их вычисление. Обратная матрица.

Для усвоения практического материала нужно ответить на следующие теоретические вопросы:

    Что называется определителем n-го порядка? Правила вычисления приn=1,2,3.

    Свойства определителей.

    Какая матрица называется невырожденной?

    Какая матрица называется единичной?

    Какая матрица называется обратной по отношению к данной?

    Что является необходимым и достаточным условием для существования обратной матрицы?

    Сформулировать правило нахождения обратной матрицы.

    Ранг матрицы. Правила нахождения.

Типовые примеры Вычисление определителей

Задача № 1. Вычислить определитель
:

а) по правилу треугольника;

б) с помощью разложения по первой строке;

в) преобразованием, используя свойства определителей.

в)

Задача № 2 . Найти минор и алгебраическое дополнение элементаa 23 определителя
и вычислить его разложением по элементам строки или столбца.

Решение.

М 23
; А 23

Задача № 3. Вычислить определитель с помощью разложения по 2 строке:

Ответ:

Задача № 4. Решить уравнение

Задача № 5. Вычислить определитель 4-го порядка разложением по элементам строки или столбца:

Решение матриц – понятие обобщающее операции над матрицами. Под математической матрицей понимается таблица элементов. О подобной таблице, в которой m строк и n столбцов, говорят что это матрица размером m на n.
Общий вид матрицы

Основные элементы матрицы:
Главная диагональ . Её составляют элементы а 11 ,а 22 …..а mn
Побочная диагональ. Её слагают элементы а 1n ,а 2n-1 …..а m1 .
Перед тем как перейти к решению матриц рассмотрим основные виды матриц:
Квадратная – в которой число строк равно числу столбцов (m=n)
Нулевая – все элементы этой матрицы равны 0.
Транспонированная матрица - матрица В, полученная из исходной матрицы A заменой строк на столбцы.
Единичная – все элементы главной диагонали равны 1, все остальные 0.
Обратная матрица - матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.
Матрица может быть симметричной относительно главной и побочной диагонали. То есть, если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 . то матрица симметрична относительно главной диагонали. Симметричными бывают только квадратные матрицы.
Теперь перейдем непосредственно к вопросу, как решать матрицы.

Сложение матриц.

Матрицы можно алгебраически складывать, если они обладают одинаковой размерностью. Чтобы сложить матрицу А с матрицей В, необходимо элемент первой строки первого столбца матрицы А сложить с первым элементом первой строки матрицы В, элемент второго столбца первой строки матрицы А сложить с элементом элемент второго столбца первой строки матрицы В и т.д.
Свойства сложения
А+В=В+А
(А+В)+С=А+(В+С)

Умножение матриц .

Матрицы можно перемножать, если они согласованы. Матрицы А и В считаются согласованными, если количество столбцов матрицы А равно количеству строк матрицы В.
Если А размерностью m на n, B размерностью n на к, то матрица С=А*В будет размерностью m на к и будет составлена из элементов

Где С 11 – сумма папарных произведений элементов строки матрицы А и столбца матрицы В, то есть элемента сумма произведения элемента первого столбца первой строки матрицы А с элементом первого столбца первой строки матрицы В, элемента второго столбца первой строки матрицы А с элементом первого столбца второй строки матрицы В и т.д.
При перемножении важен порядок перемножения. А*В не равно В*А.

Нахождение определителя.

Любая квадратная матрица может породить определитель или детерминант. Записывает det. Или | элементы матрицы |
Для матриц размерностью 2 на 2. Определить есть разница между произведением элементов главной и элементами побочной диагонали.

Для матриц размерностью 3 на 3 и более. Операция нахождения определителя сложнее.
Введем понятия:
Минор элемента – есть определитель матрицы, полученной из исходной матрицы, путем вычеркивания строки и столбца исходной матрицы, в которой этот элемент находился.
Алгебраическим дополнением элемента матрицы называется произведение минора этого элемента на -1 в степени суммы строки и столбца исходной матрицы, в которой этот элемент находился.
Определитель любой квадратной матрицы равен сумме произведения элементов любого ряда матрицы на соответствующие им алгебраические дополнения.

Обращение матрицы

Обращение матрицы - это процесс нахождения обратной матрицы, определение которой мы дали в начале. Обозначается обратная матрица также как исходная с припиской степени -1.
Находиться обратная матрица по формуле.
А -1 = A * T x (1/|A|)
Где A * T - Транспонированная матрица Алгебраических дополнений.

Примеры решения матриц мы сделали в виде видеоурока

:

Если хотите разобраться, смотрите обязательно.

Это основные операции по решению матриц. Если появится дополнительные вопросы о том, как решить матрицы , пишите смело в комментариях.

Если все же вы не смогли разобраться, попробуйте обратиться к специалисту.

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.