Расчеты с применением уравнения менделеева клапейрона. Постоянным остается температура

Каждый школьник, учащийся в десятом классе, на одном из уроков физики изучает закон Клапейрона-Менделеева, его формулу, формулировку, учится применению при решении задач. В технических университетах эта тема тоже входит в курс лекций и практических работ, причем в нескольких дисциплинах, а не только на физике. Закон Клапейрона-Менделеева активно используется в термодинамике при составлении уравнений состояния идеально газа.

Термодинамика, термодинамические состояния и процессы

Термодинамика представляет собой раздел физики, который посвящен изучению общих свойств тел и тепловых явлений в этих телах без учета их молекулярного строения. Давление, объем и температура являются основными величинами, учитывающимися при описании тепловых процессов в телах. Термодинамическим процессом называется изменение состояния системы, т. е. изменение ее основных величин (давление, объем, температура). В зависимости от того, происходят ли изменения основных величин, системы бывают равновесными и неравновесными. Процессы тепловые (термодинамические) можно так классифицировать. То есть если система переходит из одного равновесного состояния в другое, то такие процессы называются, соответственно, равновесными. Неравновесные процессы, в свою очередь, характеризуются переходами неравновесных состояний, то есть основные величины претерпевают изменения. Однако можно их (процессы) разделить на обратимые (возможен обратный переход через те же состояния) и необратимые. Все состояния системы можно описать определенными уравнениями. Для упрощения расчетов в термодинамике вводится такое понятие, как идеальный газ - некая абстракция, которая характеризуется отсутствием взаимодействия на расстоянии между молекулами, размерами которых можно пренебречь ввиду их малого размера. Основные газовые законы и уравнение Менделеева-Клапейрона тесно взаимосвязаны - все законы вытекают из уравнения. Они описывают изопроцессы в системах, то есть такие процессы, в результате которых один из основных параметров остается неизменным (изохорный процесс - не изменяется объем, изотермический - постоянна температура, изобарный - происходит изменение температуры и объема при постоянстве давления). Закон Клапейрона-Менделеева стоит разобрать подробнее.

Уравнение состояния идеального газа

Закон Клапейрона-Менделеева выражает зависимость между давлением, объемом, температурой, количеством вещества именно идеального газа. Можно так же выразить зависимость только между основными параметрами, то есть абсолютной температурой, молярным объемом и давлением. Суть не изменяется, так как молярный объем равен отношению объема к количеству вещества.

Закон Менделеева-Клапейрона: формула

Уравнение состояния идеального газа записывается в виде произведения давления на молярный объем, приравненного к произведению универсальной газовой постоянной и абсолютной температуры. Универсальная газовая постоянная - коэффициент пропорциональности, константа (неизменная величина), выражающая работу расширения моля в процессе увеличения значения температуры на 1 Кельвин в условиях изобарного процесса. Ее величина составляет (приблизительно) 8,314 Дж/(моль*К). Если выразить молярный объем, то получится уравнение вида: р*V=(m/М)*R*Т. Или можно привести к виду: р=nkT, где n - концентрация атомов, к - постоянная Больцмана (R/NА).

Решение задач

Закон Менделеева-Клапейрона, решение задач с его помощью значительно облегчают расчетную часть при проектировании оборудования. Закон при решении задач применяется в двух случаях: задано одно состояние газа и его масса и при неизвестности величины массы газа известен факт ее изменения. Необходимо учитывать, что в случае многокомпонентных систем (смеси газов) записывается уравнение состояния для каждого компонента, т. е. для каждого газа в отдельности. Для установления связи между давлением смеси и давлениями компонентов используется закон Дальтона. Также стоит помнить, что для каждого состояния газа описывается отдельным уравнением, далее решается уже полученная система уравнений. И, наконец, необходимо всегда помнить, что в случае уравнения состояния идеального газа температура является абсолютной величиной, ее значение обязательно берется в Кельвинах. Если в условиях задачи температура измеряется в градусах Цельсия или в каких-либо других, то необходимо произвести перевод в градусы Кельвина.

КЛАПЕЙРОНА УРАВНЕНИЕ

КЛАПЕЙРОНА УРАВНЕНИЕ

(Клапейрона - Менделеева уравнение), зависимость между параметрами идеального газа (давлением р, объёмом V и абс. темп-рой Т), определяющими его состояние: pV=BT, где коэфф. пропорциональности В зависит от массы газа М и его мол. массы. Установлен франц. учёным Б. П. Э. Клапейроном (В. Р. Е. Clapeyron) в 1834. В 1874 Д. И. Менделеев вывел ур-ние для одного моля идеального газа: pV=RT, где R - универсальная . Если мол. газа m, то

pV=(M/m)RT, или PV=NkT,

где N - число ч-ц газа. К. у. представляет собой идеального газа, к-рое объединяет Бойля - Мариотта закон, Гей-Люссака закон и Авогадро закон.

К. у.- наиболее простое ур-ние состояния, применимое с определ. степенью точности к реальным газам при низких давлениях и высоких темп-pax (напр., к атм. воздуху, продуктам сгорания в газовых двигателях), когда они близки по св-вам к идеальным газам.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

КЛАПЕЙРОНА УРАВНЕНИЕ

(Клапейрона - Менделеева уравнение) - зависимость между параметрами идеального газа (давлением p , объёмом V и абс. темп-рой Т), определяющими его состояние: pV=BT, где коэф. пропорциональности В зависит от массы газа М и его мол. массы. Установлен франц. учёным Б. П. Э. Клапейроном (В. Р. Е. Clapeyron) в 1834. В 1874 Д. И. Менделеев вывел ур-ние состояния для одного моля идеального газа; pV=RT, где R - универсальная газовая постоянная. Если мол. масса газа и, то

где N - число частиц газа. К. у. представляет собой уравнение состояния идеального газа, к-рое объединяет Бойля - Мариотта закон, Гей-Люссака закон и Аво-гадро закон.

К. у.- наиб. простое ур-ние состояния, применимое с определ. степенью точности к реальным газам при низких давлениях и высоких темп-рах.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "КЛАПЕЙРОНА УРАВНЕНИЕ" в других словарях:

    Современная энциклопедия

    Клапейрона уравнение - (Клапейрона Менделеева уравнение), зависимость между давлением p, абсолютной температурой T и объемом V идеального газа массы M: pV=BT, где B=M/m (m масса молекулы газа в атомных единицах массы). Установлена французским ученым Б.П.Э. Клапейроном… … Иллюстрированный энциклопедический словарь

    - (Клапейрона Менделеева уравнение) найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа (давлением p, его объемом V и абсолютной температурой T): pV=BT, где B=M/? (М масса газа, ?… … Большой Энциклопедический словарь

    - (Клапейрона Менделеева уравнение), найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа (давлением р, его объёмом V и абсолютной температурой Т): pV = ВТ, где коэффициент B… … Энциклопедический словарь

    Уравнение состояния Статья является частью серии «Термодинамика». Уравнение состояния идеального газа Уравнение Ван дер Ваальса Уравнение Дитеричи Разделы термодинамики Начала термодинамики Уравнен … Википедия

    Клапейрона Менделеева уравнение, найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной температурой Т. К. у.… … Большая советская энциклопедия - Фазовые переходы Статья является частью серии «Термодинамика». Понятие фазы Равновесие фаз Квантовый фазовый переход Разделы термодинамики Начала термодинамики Уравнение состояния … Википедия

    КЛАПЕЙРОНА МЕНДЕЛЕЕВА УРАВНЕНИЕ, уравнение состояния (см. УРАВНЕНИЕ СОСТОЯНИЯ) для идеального газа (см. ИДЕАЛЬНЫЙ ГАЗ), отнесенное к 1 молю (см. МОЛЬ) газа. В 1874 Д. И. Менделеев (см. МЕНДЕЛЕЕВ Дмитрий Иванович) на основе уравнения Клапейрона… … Энциклопедический словарь

Уравнение Менделеева-Клапейрона - уравнение состояния для идеального газа, отнесенное к 1 молю газа. В 1874 г. Д. И. Менделеев на основе уравнения Клапейрона объединив его с законом Авогадро, используя молярный объем V m и отнеся его к 1 молю, вывел уравнение состояния для 1 моля идеального газа:

pV = RT , где R - универсальная газовая постоянная,

R = 8,31 Дж/(моль. К)

Уравнение Клапейрона-Менделеева показывает, что для данной массы газа возможно одновременно изменение трех параметров, характеризующих состояние идеального газа. Для произвольной массы газа М, молярная масса которого m: pV = (М/m) . RT . или pV = N А kT ,

где N А - число Авогадро, k - постоянная Больцмана.

Вывод уравнения:


С помощью уравнения состояния идеального газа можно исследовать процессы, в которых масса газа и один из параметров - давление, объем или температура - остается постоянным, а изменяются только остальные два и получить теоретически газовые законы для этих условий изменения состояния газа.

Такие процессы называют изопроцессами. Законы, описывающие изопроцессы, были открыты задолго до теоретического вывода уравнения состояния идеального газа.


Изотермический процесс - процесс изменения состояния системы при постоянной температуре. Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется . Это закон Бойля - Мариотта.

Для того, чтобы температура газа оставалась в процессе неизменной, необходимо, чтобы газ мог обмениваться теплотой с внешней большой системой - термостатом. Роль термостата может играть внешняя среда (воздух атмосферы). Согласно закону Бойля-Мариотта, давление газа обратно пропорционально его объему: P 1 V 1 =P 2 V 2 =const. Графическая зависимость давления газа от объема изображается в виде кривой (гиперболы), которая носит название изотермы. Разным температурам соответствуют разные изотермы.


Изобарный процесс - процесс изменения состояния системы при постоянном давлении. Для газа данной массы отношение объема газа к его температуре остается постоянным, если давление газа не меняется . Это закон Гей-Люссака. Согласно закону Гей-Люссака, объем газа прямо пропорционален его температуре: V/T=const. Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изобарой. Разным давлениям соответствуют разные изобары. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.


Изохорный процесс - процесс изменения состояния системы при постоянном объеме. Для данной массы газа отношение давления газа к его температуре остается постоянным, если объем газа не меняется. Этот газовый закон Шарля. Согласно закону Шарля, давление газа прямо пропорционально его температуре: P/T=const. Графически эта зависимость в координатах P-Т изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изохорой. Разным объемам соответствуют разные изохоры. Закон Шарля не соблюдается в области низких температур, близких и температуре сжижения (конденсации) газов.


Законы Бойля - Мариотта, Гей-Люссака и Шарля являются частными случаями объединенного газового закона: Отношение произведения давления газа и объема к температуре для данной массы газа - величина постоянная: PV/T=const.

Итак, из закона pV = (М/m) . RT выводятся следующие законы:

T = const => PV = const - закон Бойля - Мариотта.

p = const => V/T = const - закон Гей - Люссака .

V= const => p/T = const - закон Шарля

Если идеальный газ является смесью нескольких газов, то согласно закону Дальтона, давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов. Парциальное давление - это такое давление, которое производил бы газ, если бы он один занимал весь объем, равный объему смеси.


Некоторых, возможно, интересует вопрос, каким образом удалось определить постоянную Авогадро N A = 6,02·10 23 ? Значение числа Авогадро было экспериментально установлено только в конце XIX – начале XX века. Опишем один из таких экспериментов.

В откачанный до глубокого вакуума сосуд объемом V = 30 мл поместили навеску элемента радия массой 0,5 г и выдержали там в течение одного года. Было известно, что за секунду 1 г радия испускает 3,7·10 10 альфа-частиц. Эти частицы представляют собой ядра гелия, которые тут же принимают электроны из стенок сосуда и превращаются в атомы гелия. За год давление в сосуде выросло до 7,95·10 -4 атм (при температуре 27 о С). Изменением массы радия за год можно пренебречь. Итак, чему равна N A ?

Сначала найдем, сколько альфа-частиц (то есть атомов гелия) образовалось за один год. Обозначим это число как N атомов:

N = 3,7·10 10 · 0,5 г · 60 сек · 60 мин · 24 час · 365 дней = 5,83·10 17 атомов.

Запишем уравнение Клапейрона-Менделеева PV = n RT и заметим, что число молей гелия n = N/N A . Отсюда:

N A = NRT = 5,83 . 10 17 . 0,0821 . 300 = 6,02 . 10 23

PV 7,95 . 10 -4 . 3 . 10 -2

В начале XX века этот способ определения постоянной Авогадро был самым точным. Но почему так долго (в течение года) длился эксперимент? Дело в том, что радий добывается очень трудно. При его малом количестве (0,5 г) радиоактивный распад этого элемента дает очень мало гелия. А чем меньше газа в замкнутом сосуде, тем меньшее он создаст давление и тем большей будет ошибка измерения. Понятно, что ощутимое количество гелия может образоваться из радия только за достаточно долгое время.

1. Идеальным газом называется газ, в котором отсутствуют силы межмолекулярного взаимодействия. С достаточной степенью точности газы можно считать идеальными в тех случаях, когда рассматриваются их состояния, далекие от областей фазовых превращений.
2. Для идеальных газов справедливы следующие законы:

а) Закон Бойля - Mаpuomma: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно:
pV = const

Графически этот закон в координатах РV изображается линией, называемой изотермой (рис.1).

б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:
V = V0(1 + at)

где V - объем газа при температуре t, °С; V0 - его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С-1). Следовательно,
V = V0(1 +(1/273)t)

Графически зависимость объема от температуры изображается прямой линией - изобарой (рис. 2). При очень низких температурах (близких к -273°С) закон Гей-Люссака не выполняется, поэтому сплошная линия на графике заменена пунктиром.

в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре:
p = p0(1+gt)

где р0 - давление газа при температуре t = 273,15 К.
Величина g называется температурным коэффициентом давления. Ее значение не зависит от природы газа; для всех газов = 1/273 °С-1. Таким образом,
p = p0(1 +(1/273)t)

Графическая зависимость давления от температуры изображается прямой линией - изохорой (Рис. 3).

г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул; или, что то же самое: при одинаковых давлениях и одинаковых температурах грамм-молекулы различных идеальных газов занимают одинаковые объемы.
Так, например, при нормальных условиях (t = 0°C и p = 1 атм = 760 мм рт. ст.) грамм-молекулы всех идеальных газов занимают объем Vm = 22,414 л.· Число молекул, находящихся в 1 см3 идеального газа при нормальных условиях, называется числом Лошмидта; оно равно 2,687*1019> 1/см3
3. Уравнение состояния идеального газа имеет вид:
pVm = RT

где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус:
R = 8.31*103 Дж/(кмоль*град)

Для произвольной массы M газа объем составит V = (M/m)*Vm и уравнение состояния имеет вид:
pV = (M/m) RT

Это уравнение называется уравнением Менделеева - Клапейрона.
4. Из уравнения Менделеева - Клапейрона следует, чти число n0 молекул, содержащихся в единице объема идеального газа, равно
n0 = NA/Vm = p*NA /(R*T) = p/(kT)

где k = R/NA = 1/38*1023 Дж/град - постоянная Больцмана, NA - число Авогадро.

Это уравнение справедливо для всех газов в любых количествах и для всех значений P, V и T, при которых газы можно считать идеальными

где R – универсальная газовая постоянная;

R=8,314 Дж / моль к =0,0821 л а.е.м./ моль к

Состав газовых смесей выражают при помощи объёмной доли – отношении объёма данного компонента к общему объёму смеси

где -объёмная доля компонента X, V(x) – объём компонента X; V – объём системы.

Объёмная доля – безразмерная величина, её выражают в долях от единицы или в процентах.

IV. Примеры решения задач.

Задача 1 . Какой объём занимают 0,2 моль любого газа при н.у.?

Решение: Количество вещества определяется по формуле:

Задача 2 . Какой объём при н.у. занимает 11г. углекислого газа?

Решение: Количество вещества определяется

Задача 3 . Рассчитайте относительную плотность хлороводорода по азоту, по водороду, по воздуху.

Решение: Относительная плотность определятся по формуле:

Задача 4 .Вычисление молекулярной массы газа по заданному объёму.

Масса 327 мл газа при 13 0 С и давлении 1,04*10 5 Па равна 828 г.

Вычислить молекулярную массу газа.

Решение: Вычислить молекулярную массу газа можно, используя уравнение Менделеева-Клапейрона:

Величина газовой постоянной определяется принятыми единицами измерения. Если давление измеряется в Па, а объём в м 3 , то .

Задача 5 . Вычисление абсолютной массы в молекуле вещества.

1. Определите массу молекулы газа, если масса 1 л газа при н.у. равна 1,785г.

Решение: Исходя из молекулярного объёма газа определяем массу моля газа

где m – масса газа;

M – молярная масса газа;

Vm – молярный объём, 22,4л/моль;

V – объём газа.

2. Число молекул в моле любого вещества равно постоянной Авогадро (). Следовательно, число молекулm равна:

Задача 6 . Сколько молекул содержится в 1 мл водорода при н.у.?

Решение: Согласно закону Авогадро 1 моль газа при н.у. занимает объём 22,4 л, 1 моль газа содержит (моль -1) молекул.

в22,4 л содержится 6,02*10 23 молекул

в 1 мл водорода содержится X молекул

Задача 7 . Вывод формул.

I. Органическое вещество содержит углерод (массовая доля 84,21%) и водород (15,79%). Плотность паров вещества по воздуху составляет 3,93.

Определить формулу вещества.

Решение: Представляем формулу вещества в виде CxHy.

1. Рассчитаем молярную массу углеводорода, используя плотность по воздуху.

2. Определяем количество вещества углерода и водорода

II. Определить формулу вещества. При содержании 145 г его, получено 330 г CO 2 и 135 г H 2 O. Относительная плотность пара этого вещества по водороду равна 29.

1. Определяем массу неизвестного вещества:

2. Определяем массу водорода:

2.2. Определяем массу углерода:

2.3. Определяем, есть ли третий элемент – кислород.

Т.о. m(O) = 40г

Чтобы выразить полученное уравнение целыми числами (т.к. это количество атомов в молекуле) разделим все его числа на меньшее из них

Тогда простейшая формула неизвестного вещества C 3 H 6 O.

2.5. → простейшая формула и есть искомое неизвестное вещество.

Ответ: C 3 H 5 O

Задача 8 : (Решить самостоятельно)

Соединение содержит 46,15% углерода, остальное азот. Плотность по воздуху равна 1,79.

Найти истинную формулу соединения.

Задача 9 : (решить самостоятельно)

Одинаковое ли число молекул

а) в 0,5 г азота и 0,5 г метана

б) в 0,5 л азота и 0,5 л метана

в) в смесях 1,1 г CO 2 и 2,4 г озона и 1,32 г CO 2 и 2,16 г озона

Задача 10 : Относительная плотность галогеноводорода по воздуху 2,8. Определить плотность этого газа по воздуху и назовите его.

Решение: согласно закону газового состояния , т.е. отношение молярной массы галогеноводорода (M (HX)) к молярной массе воздуха (M ВОЗД) равно 2,8 →

Тогда молярная масса галогена:

→ X – это Br, а газ – бромоводород.

Относительная плотность бромоводорода по водороду:

Ответ: 40,5, бромоводород.