Что такое гравитация для чайников: определение и теория простыми словами. Ньютона закон тяготения

Сэр Исаак Ньютон, получив по голове яблоком, вывел закон всемирного тяготения, который гласит:

Любые два тела притягиваются друг к другу с силой прямо пропорциональной произведению масс тела и обратно пропорциональной квадрату расстояния между ними:

F = (Gm 1 m 2)/R 2 , где

m1, m2 - массы тел
R - расстояние между центрами тел
G = 6,67·10 -11 Нм 2 /кг - константа

Определим ускорение свободного падения на поверхности Земли:

F g = m тела g = (Gm тела m Земли)/R 2

R (радиус Земли) = 6,38·10 6 м
m Земли = 5,97·10 24 кг

m тела g = (Gm тела m Земли)/R 2 или g = (Gm Земли)/R 2

Обратите внимание, что ускорение свободного падения не зависит от массы тела!

g = 6,67·10 -11 ·5,97·10 24 /(6,38·10 6) = 398,2/40,7 = 9,8 м/с 2

Мы говорили ранее, что силу тяжести (гравитационное притяжение) называют весом .

На поверхности Земли вес и масса тела имеют одинаковое значение. Но по мере удаления от Земли вес тела будет уменьшаться (т.к. будет увеличиваться расстояние между центром Земли и телом), а масса будет оставаться постоянной (поскольку масса - это выражение инерции тела). Масса измеряется в килограммах , вес - в ньютонах .

Благодаря силе гравитации, небесные тела вращаются друг относительно друга: Луна вокруг Земли; Земля вокруг Солнца; Солнце вокруг центра нашей Галактики и т.д. При этом тела удерживаются центробежной силой, которую обеспечивает сила гравитации.

Это же относится и к искусственным телам (спутникам), вращающимся вокруг Земли. Окружность по которой спутник вращается, называется орбитой вращения.

При этом на спутник действует центробежная сила:

F ц = (m спутника V 2)/R

Сила гравитации:

F g = (Gm спутника m Земли)/R 2

F ц = F g = (m спутника V 2)/R = (Gm спутника m Земли)/R 2

V2 = (Gm Земли)/R; V = √(Gm Земли)/R

По этой формуле можно вычислить скорость любого тела, вращающегося по орбите с радиусом R вокруг Земли.

Естественным спутником Земли является Луна. Определим ее линейную скорость на орбите:

Масса Земли = 5,97·10 24 кг

R - это расстояние между центром Земли и центром Луны. Чтобы определить это расстояние, нам надо сложить три величины: радиус Земли; радиус Луны; расстояние от Земли до Луны.

R луны = 1738 км = 1,74·10 6 м
R земли = 6371 км = 6,37·10 6 м
R зл = 384400 км = 384,4·10 6 м

Общее расстояние между центрами планет: R = 392,5·10 6 м

Линейная скорость Луны:

V = √(Gm Земли)/R = √6,67·10 -11 ·5,98·10 24 /392,5·10 6 = 1000 м/с = 3600 км/ч

Луна движется по круговой орбите вокруг Земли с линейной скоростью в 3600 км/ч !

Определим теперь период обращения Луны вокруг Земли. За период обращения Луна преодолевает расстояние, равное длине орбиты - 2πR . Орбитальная скорость Луны: V = 2πR/T ; с другой стороны: V = √(Gm Земли)/R :

2πR/T = √(Gm Земли)/R отсюда T = 2π√R 3 /Gm Земли

T = 6,28·√(60,7·10 24)/6,67·10 -11 ·5,98·10 24 = 3,9·10 5 с

Период обращения Луны вокруг Земли составляет 2 449 200 секунд, или 40 820 минут, или 680 часов, или 28,3 суток.

1. Вертикальное вращение

Ранее в цирках был очень популярным трюк в котором велосипедист (мотоциклист) делал полный оборот внутри окружности, расположенной вертикально.

Какой же минимальной скоростью должен обладать трюкач, чтобы в верхней точке не свалиться вниз?

Для прохождения верхней точки без падения тело должно обладать скоростью, создающей такую центробежную силу, которая бы компенсировала силу тяжести.

Центробежная сила: F ц = mV 2 /R

Сила тяжести: F g = mg

F ц = F g ; mV 2 /R = mg; V = √Rg

И опять обратите внимание, что в расчетах отсутствует масса тела! Следует учесть, что это скорость, которой должно обладать тело в верхней точке!

Допустим, что на арене цирка установлена окружность с радиусом 10 метров. Рассчитаем безопасную скорость для трюка:

V = √Rg = √10·9,8 = 10 м/с = 36 км/ч

В курсе физики 7 класса вы изучали явление всемирного тяготения. Оно заключается в том, что между всеми телами во Вселенной действуют силы притяжения.

К выводу о существовании сил всемирного тяготения (их называют также гравитационными) пришёл Ньютон в результате изучения движения Луны вокруг Земли и планет вокруг Солнца.

Заслуга Ньютона заключается не только в его гениальной догадке о взаимном притяжении тел, но и в том, что он сумел найти закон их взаимодействия, т. е. формулу для расчёта гравитационной силы между двумя телами.

Закон всемирного тяготения гласит:

  • два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними

где F - модуль вектора силы гравитационного притяжения между телами массами m 1 и m 2 , г - расстояние между телами (их центрами); G - коэффициент, который называется гравитационной постоянной .

Если m 1 = m 2 = 1 кг и г = 1 м, то, как видно из формулы, гравитационная постоянная G численно равна силе F. Другими словами, гравитационная постоянная численно равна силе F притяжения двух тел массой по 1 кг, находящихся на расстоянии 1 м друг от друга. Измерения показывают, что

G = 6,67 10 -11 Нм 2 /кг 2 .

Формула даёт точный результат при расчёте силы всемирного тяготения в трёх случаях: 1) если размеры тел пренебрежимо малы по сравнению с расстоянием между ними (рис. 32, а); 2) если оба тела однородны и имеют шарообразную форму (рис. 32, б); 3) если одно из взаимодействующих тел - шар, размеры и масса которого значительно больше, чем у второго тела (любой формы), находящегося на поверхности этого шара или вблизи неё (рис. 32, в).

Рис. 32. Условия, определяющие границы применимости закона всемирного тяготения

Третий из рассмотренных случаев является основанием для того, чтобы рассчитывать по приведённой формуле силу притяжения к Земле любого из находящихся на ней тел. При этом в качестве расстояния между телами следует брать радиус Земли, поскольку размеры всех тел, находящихся на ее поверхности или вблизи неё, пренебрежимо малы по сравнению с земным радиусом.

По третьему закону Ньютона яблоко, висящее на ветке или падающее с неё с ускорением свободного падения, притягивает к себе Землю с такой же по модулю силой, с какой его притягивает Земля. Но ускорение Земли, вызванное силой её притяжения к яблоку, близко к нулю, поскольку масса Земли несоизмеримо больше массы яблока.

Вопросы

  1. Что было названо всемирным тяготением?
  2. Как иначе называются силы всемирного тяготения?
  3. Кто и в каком веке открыл закон всемирного тяготения?
  4. Сформулируйте закон всемирного тяготения. Запишите формулу, выражающую этот закон.
  5. В каких случаях следует применять закон всемирного тяготения для расчёта гравитационных сил?
  6. Притягивается ли Земля к висящему на ветке яблоку?

Упражнение 15

  1. Приведите примеры проявления силы тяготения.
  2. Космическая станция летит от Земли к Луне. Как меняется при этом модуль вектора силы её притяжения к Земле; к Луне? С одинаковыми или различными по модулю силами притягивается станция к Земле и Луне, когда она находится посередине между ними? Если силы различны, то какая больше и во сколько раз? Все ответы обоснуйте. (Известно, что масса Земли примерно в 81 раз больше массы Луны.)
  3. Известно, что масса Солнца в 330 000 раз больше массы Земли. Верно ли, что Солнце притягивает Землю в 330 000 раз сильней, чем Земля притягивает Солнце? Ответ поясните.
  4. Мяч, подброшенный мальчиком, в течение некоторого времени двигался вверх. При этом его скорость всё время уменьшалась, пока не стала равной нулю. Затем мяч стал падать вниз с возрастающей скоростью. Объясните: а) действовала ли на мяч сила притяжения к Земле во время его движения вверх; вниз; б) что послужило причиной уменьшения скорости мяча при его движении вверх; увеличения его скорости при движении вниз; в) почему при движении мяча вверх его скорость уменьшалась, а при движении вниз - увеличивалась.
  5. Притягивается ли к Луне человек, стоящий на Земле? Если да, то к чему он притягивается сильнее - к Луне или к Земле? Притягивается ли Луна к этому человеку? Ответы обоснуйте.

Класси́ческая тео́рия тяготе́ния Ньютона (Зако́н всемирного тяготе́ния Ньютона) - закон, описывающий гравитационное взаимодействие в рамках классической механики . Этот закон был открыт Ньютоном около 1666 года. Он гласит, что сила F {\displaystyle F} гравитационного притяжения между двумя материальными точками массы m 1 {\displaystyle m_{1}} и m 2 {\displaystyle m_{2}} , разделёнными расстоянием R {\displaystyle R} , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними - то есть:

F = G ⋅ m 1 ⋅ m 2 R 2 {\displaystyle F=G\cdot {m_{1}\cdot m_{2} \over R^{2}}}

Здесь G {\displaystyle G} - гравитационная постоянная , равная 6,67408(31)·10 −11 м³/(кг·с²) :.

Энциклопедичный YouTube

    1 / 5

    ✪ Введение в закон всемирного тяготения Ньютона

    ✪ Закон Всемирного тяготения

    ✪ физика ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ 9 класс

    ✪ Про Исаака Ньютона (Краткая история)

    ✪ Урок 60. Закон всемирного тяготения. Гравитационная постоянная

    Субтитры

    Теперь немного узнаем о тяготении, или гравитации. Как вы знаете, тяготение, особенно в начальном или даже в довольно углубленном курсе физики - это такое понятие, которое можно вычислить и узнать основные параметры, которыми оно обусловлено, но на самом деле тяготение не вполне поддается пониманию. Пусть даже вы знакомы с общей теорией относительности - если вас спросят, что такое тяготение, вы можете ответить: это искривление пространства-времени и тому подобное. Однако все равно трудно получить интуитивное представление, по какой причине два объекта, только лишь потому, что у них есть так называемая масса, притягиваются друг к другу. По крайней мере, для меня это мистика. Отметив это, приступим к рассмотрению понятия о тяготении. Будем делать это, изучая закон всемирного тяготения Ньютона, справедливый для большинства ситуаций. Этот закон гласит: сила взаимного гравитационного притяжения F между двумя материальными точками, обладающими массами m₁ и m₂, равна произведению гравитационной постоянной G на массу первого объекта m₁ и второго объекта m₂, деленному на квадрат расстояния d между ними. Это довольно несложная формула. Попробуем преобразовать ее и посмотрим, нельзя ли получить какие-то хорошо знакомые нам результаты. Используем эту формулу для расчета ускорения свободного падения вблизи поверхности Земли. Давайте нарисуем сперва Землю. Просто чтобы понимать, о чем мы с вами говорим. Это наша Земля. Допустим, нам надо вычислить гравитационное ускорение, действующее на Сэла, то есть на меня. Вот он я. Попытаемся применить это уравнение для расчета величины ускорения моего падения к центру Земли, или к центру масс Земли. Величина, обозначенная заглавной буквой G - это универсальная гравитационная постоянная. Еще раз: G - это универсальная гравитационная постоянная. Хотя, насколько я знаю, хоть я и не эксперт в этом вопросе, мне кажется, ее значение может меняться, то есть это не настоящая постоянная, и я предполагаю, что при разных измерениях ее величина различается. Но для наших потребностей, а также в большинстве курсов физики, это постоянная, константа, равная 6,67 * 10^(−11) кубических метров, деленных на килограмм на секунду в квадрате. Да, ее размерность выглядит странно, но вам достаточно понять, что это - условные единицы, необходимые, чтобы в результате умножения на массы объектов и деления на квадрат расстояния получить размерность силы - ньютон, или килограмм на метр, деленный на секунду в квадрате. Так что об этих единицах измерения не стоит беспокоиться: просто знайте, что нам придется работать с метрами, секундами и килограммами. Подставим это число в формулу для силы: 6,67 * 10^(−11). Поскольку нам нужно знать ускорение, действующее на Сэла, то m₁ равна массе Сэла, то есть меня. Не хотелось бы разоблачать в этом сюжете, сколько я вешу, так что оставим эту массу переменной, обозначив ms. Вторая масса в уравнении - это масса Земли. Выпишем ее значение, заглянув в Википедию. Итак, масса Земли равна 5,97 * 10^24 килограммов. Да, Земля помассивнее Сэла. Кстати, вес и масса - разные понятия. Итак, сила F равна произведению гравитационной постоянной G на массу ms, затем на массу Земли, и все это делим на квадрат расстояния. Вы можете возразить: какое же расстояние между Землей и тем, что на ней стоит? Ведь если предметы соприкасаются, расстояние равно нулю. Здесь важно понять: расстояние между двумя объектами в данной формуле - это расстояние между их центрами масс. В большинстве случаев центр масс человека расположен примерно в трех футах над поверхностью Земли, если человек не слишком высокий. Как бы там ни было, мой центр масс может находиться на высоте три фута над землей. А где центр масс Земли? Очевидно, в центре Земли. А радиус Земли у нас равен чему? 6371 километр, или примерно 6 миллионов метров. Поскольку высота моего центра масс составляет около одной миллионной расстояния до центра масс Земли, то в данном случае ею можно пренебречь. Тогда расстояние будет равно 6 и так далее, как и все остальные величины, нужно записать его в стандартном виде - 6,371 * 10^6, поскольку 6000 км - это 6 миллионов метров, а миллион - это 10^6. Пишем, округляя все дроби до второго знака после запятой, расстояние равно 6,37 * 10^6 метров. В формуле стоит квадрат расстояния, поэтому возведем все в квадрат. Попробуем теперь упростить. Вначале перемножим величины в числителе и вынесем вперед переменную ms. Тогда сила F равна массе Сэла на всю верхнюю часть, вычислим ее отдельно. Итак, 6,67 умножить на 5,97 равно 39,82. 39,82. Это произведение значащих частей, которое теперь следует умножить на 10 в нужной степени. 10^(−11) и 10^24 имеют одинаковое основание, поэтому для их перемножения достаточно сложить показатели степени. Сложив 24 и −11, получим 13, в итоге имеем 10^13. Найдем знаменатель. Он равен 6,37 в квадрате, умноженное на 10^6 также в квадрате. Как вы помните, если число, записанное в виде степени, возводится в другую степень, то показатели степеней перемножаются, а значит, 10^6 в квадрате равно 10 в степени 6, умноженной на 2, или 10^12. Далее вычислим квадрат числа 6,37 с помощью калькулятора и получим… Возводим 6,37 в квадрат. И это 40,58. 40,58. Осталось разделить 39,82 на 40,58. Делим 39,82 на 40,58, что равняется 0,981. Потом делим 10^13 на 10^12, что равно 10^1, или просто 10. А 0,981, умноженное на 10, это 9,81. После упрощения и несложных расчетов получили, что сила тяготения вблизи поверхности Земли, действующая на Сэла, равна массе Сэла, умноженной на 9,81. Что нам это дает? Можно ли теперь вычислить гравитационное ускорение? Известно, что сила равна произведению массы на ускорение, поэтому и сила тяготения просто равна произведению массы Сэла на гравитационное ускорение, которое принято обозначать строчной буквой g. Итак, с одной стороны, сила притяжения равна числу 9,81, умноженному на массу Сэла. С другой, она же равна массе Сэла на гравитационное ускорение. Разделив обе части равенства на массу Сэла, получим, что коэффициент 9,81 и есть гравитационное ускорение. И если бы мы включили в расчеты полную запись единиц размерности, то, сократив килограммы, увидели бы, что гравитационное ускорение измеряется в метрах, деленных на секунду в квадрате, как и любое ускорение. Также можно заметить, что полученное значение очень близко к тому, которое мы использовали при решении задач о движении брошенного тела: 9,8 метров в секунду в квадрате. Это впечатляет. Решим еще одну короткую задачу на тяготение, потому что у нас осталось пара минут. Предположим, у нас есть другая планета под названием Земля Малышка. Пусть радиус Малышки rS вдвое меньше радиуса Земли rE, и ее масса mS также равна половине массы Земли mE. Чему будет равна сила тяжести, действующая здесь на какой-либо объект, и насколько она меньше силы земного тяготения? Хотя, давайте оставим задачу на следующий раз, потом ее решу. До встречи. Subtitles by the Amara.org community

Свойства ньютоновского тяготения

В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем . Это поле потенциально , и функция гравитационного потенциала для материальной точки с массой M {\displaystyle M} определяется формулой:

φ (r) = − G M r . {\displaystyle \varphi (r)=-G{\frac {M}{r}}.}

В общем случае, когда плотность вещества ρ {\displaystyle \rho } распределена произвольно, удовлетворяет уравнению Пуассона :

Δ φ = − 4 π G ρ (r) . {\displaystyle \Delta \varphi =-4\pi G\rho (r).}

Решение этого уравнения записывается в виде:

φ = − G ∫ ρ (r) d V r + C , {\displaystyle \varphi =-G\int {\frac {\rho (r)dV}{r}}+C,}

где r {\displaystyle r} - расстояние между элементом объёма d V {\displaystyle dV} и точкой, в которой определяется потенциал φ {\displaystyle \varphi } , C {\displaystyle C} - произвольная постоянная.

Сила притяжения, действующая в гравитационном поле на материальную точку с массой m {\displaystyle m} , связана с потенциалом формулой:

F (r) = − m ∇ φ (r) . {\displaystyle F(r)=-m\nabla \varphi (r).}

Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.

Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера . В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам . Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений .

Точность закона всемирного тяготения Ньютона

Экспериментальная оценка степени точности закона тяготения Ньютона является одним из подтверждений общей теории относительности . Опыты по измерению квадрупольного взаимодействия вращающегося тела и неподвижной антенны показали , что приращение δ {\displaystyle \delta } в выражении для зависимости ньютоновского потенциала r − (1 + δ) {\displaystyle r^{-(1+\delta)}} на расстояниях нескольких метров находится в пределах (2 , 1 ± 6 , 2) ∗ 10 − 3 {\displaystyle (2,1\pm 6,2)*10^{-3}} . Другие опыты также подтвердили отсутствие модификаций в законе всемирного тяготения .

Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9,53 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено .

Прецизионные лазерные дальнометрические наблюдения за орбитой Луны подтверждают закон всемирного тяготения на расстоянии от Земли до Луны с точностью 3 ⋅ 10 − 11 {\displaystyle 3\cdot 10^{-11}} .

Связь с геометрией евклидова пространства

Факт равенства с очень высокой точностью 10 − 9 {\displaystyle 10^{-9}} показателя степени расстояния в знаменателе выражения для силы тяготения числу 2 {\displaystyle 2} отражает евклидову природу трёхмерного физического пространства механики Ньютона. В трёхмерном евклидовом пространстве площадь поверхности сферы точно пропорциональна квадрату её радиуса

Исторический очерк

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур , Гассенди , Кеплер , Борелли , Декарт , Роберваль , Гюйгенс и другие . Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире . Были, впрочем, догадки с правильной зависимостью от расстояния; Ньютон в письме к Галлею упоминает как своих предшественников Буллиальда , Рена и Гука . Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

  • закон тяготения;
  • закон движения (второй закон Ньютона);
  • система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики . До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат оказалось необходимым значительно развить.

Отметим, что теория тяготения Ньютона уже не была, строго говоря, гелиоцентрической . Уже в задаче двух тел планета вращается не вокруг Солнца, а вокруг общего центра тяжести, так как не только Солнце притягивает планету, но и планета притягивает Солнце. Наконец, выяснилась необходимость учесть влияние планет друг на друга.

В течение XVIII века закон всемирного тяготения был предметом активной дискуссии (против него выступали сторонники школы Декарта) и тщательных проверок. К концу века стало общепризнано, что закон всемирного тяготения позволяет с огромной точностью объяснить и предсказать движения небесных тел. Генри Кавендиш в 1798 году осуществил прямую проверку справедливости закона тяготения в земных условиях, используя исключительно чувствительные крутильные весы . Важным этапом стало введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для этого потенциала; эта модель позволяла исследовать гравитационное поле при произвольном распределении вещества . После этого ньютоновский закон стал рассматриваться как фундаментальный закон природы.

В то же время ньютоновская теория содержала ряд трудностей. Главная из них - необъяснимое дальнодействие : сила притяжения передавалась непонятно как через совершенно пустое пространство, причём бесконечно быстро. По существу ньютоновская модель была чисто математической, без какого-либо физического содержания. Кроме того, если Вселенная, как тогда предполагали, евклидова и бесконечна, и при этом средняя плотность вещества в ней ненулевая, то возникает гравитационный парадокс . В конце XIX века обнаружилась ещё одна проблема: расхождение теоретического и наблюдаемого смещения перигелия Меркурия .

Дальнейшее развитие

Общая теория относительности

На протяжении более двухсот лет после Ньютона физики предлагали различные пути усовершенствования ньютоновской теории тяготения. Эти усилия увенчались успехом в 1915 году , с созданием общей теории относительности Эйнштейна , в которой все указанные трудности были преодолены. Теория Ньютона, в полном согласии с принципом соответствия , оказалась приближением более общей теории, применимым при выполнении двух условий:

В слабых стационарных гравитационных полях уравнения движения переходят в ньютоновы (гравитационный потенциал). Для доказательства покажем, что скалярный гравитационный потенциал в слабых стационарных гравитационных полях удовлетворяет уравнению Пуассона

Δ Φ = − 4 π G ρ {\displaystyle \Delta \Phi =-4\pi G\rho } .

Известно (Гравитационный потенциал), что в этом случае гравитационный потенциал имеет вид:

Φ = − 1 2 c 2 (g 44 + 1) {\displaystyle \Phi =-{\frac {1}{2}}c^{2}(g_{44}+1)} .

Найдем компоненту тензора энергии-импульса из уравнений гравитационного поля общей теории относительности:

R i k = − ϰ (T i k − 1 2 g i k T) {\displaystyle R_{ik}=-\varkappa (T_{ik}-{\frac {1}{2}}g_{ik}T)} ,

где R i k {\displaystyle R_{ik}} - тензор кривизны . Для мы можем ввести кинетический тензор энергии-импульса ρ u i u k {\displaystyle \rho u_{i}u_{k}} . Пренебрегая величинами порядка u / c {\displaystyle u/c} , можно положить все компоненты T i k {\displaystyle T_{ik}} , кроме T 44 {\displaystyle T_{44}} , равными нулю. Компонента T 44 {\displaystyle T_{44}} равна T 44 = ρ c 2 {\displaystyle T_{44}=\rho c^{2}} и, следовательно T = g i k T i k = g 44 T 44 = − ρ c 2 {\displaystyle T=g^{ik}T_{ik}=g^{44}T_{44}=-\rho c^{2}} . Таким образом, уравнения гравитационного поля принимают вид R 44 = − 1 2 ϰ ρ c 2 {\displaystyle R_{44}=-{\frac {1}{2}}\varkappa \rho c^{2}} . Вследствие формулы

R i k = ∂ Γ i α α ∂ x k − ∂ Γ i k α ∂ x α + Γ i α β Γ k β α − Γ i k α Γ α β β {\displaystyle R_{ik}={\frac {\partial \Gamma _{i\alpha }^{\alpha }}{\partial x^{k}}}-{\frac {\partial \Gamma _{ik}^{\alpha }}{\partial x^{\alpha }}}+\Gamma _{i\alpha }^{\beta }\Gamma _{k\beta }^{\alpha }-\Gamma _{ik}^{\alpha }\Gamma _{\alpha \beta }^{\beta }}

значение компоненты тензора кривизны R 44 {\displaystyle R_{44}} можно взять равным R 44 = − ∂ Γ 44 α ∂ x α {\displaystyle R_{44}=-{\frac {\partial \Gamma _{44}^{\alpha }}{\partial x^{\alpha }}}} и так как Γ 44 α ≈ − 1 2 ∂ g 44 ∂ x α {\displaystyle \Gamma _{44}^{\alpha }\approx -{\frac {1}{2}}{\frac {\partial g_{44}}{\partial x^{\alpha }}}} , R 44 = 1 2 ∑ α ∂ 2 g 44 ∂ x α 2 = 1 2 Δ g 44 = − Δ Φ c 2 {\displaystyle R_{44}={\frac {1}{2}}\sum _{\alpha }{\frac {\partial ^{2}g_{44}}{\partial x_{\alpha }^{2}}}={\frac {1}{2}}\Delta g_{44}=-{\frac {\Delta \Phi }{c^{2}}}} . Таким образом, приходим к уравнению Пуассона:

Δ Φ = 1 2 ϰ c 4 ρ {\displaystyle \Delta \Phi ={\frac {1}{2}}\varkappa c^{4}\rho } , где ϰ = − 8 π G c 4 {\displaystyle \varkappa =-{\frac {8\pi G}{c^{4}}}}

Квантовая гравитация

Однако и общая теория относительности не является окончательной теорией гравитации, так как неудовлетворительно описывает гравитационные процессы в квантовых масштабах (на расстояниях порядка планковского , около 1,6⋅10 −35 ). Построение непротиворечивой квантовой теории гравитации - одна из важнейших нерешённых задач современной физики.

С точки зрения квантовой гравитации, гравитационное взаимодействие осуществляется путём обмена виртуальными гравитонами между взаимодействующими телами. Согласно принципу неопределенности , энергия виртуального гравитона обратно пропорциональна времени его существования от момента излучения одним телом до момента поглощения другим телом. Время существования пропорционально расстоянию между телами. Таким образом, на малых расстояниях взаимодействующие тела могут обмениваться виртуальными гравитонами с короткими и длинными длинами волн, а на больших расстояниях только длинноволновыми гравитонами. Из этих соображений можно получить закон обратной пропорциональности ньютоновского потенциала от расстояния. Аналогия между законом Ньютона и законом Кулона объясняется тем, что масса гравитона, как и масса

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение - ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести . Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

Физическая величина - ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения , действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m 1 = m 2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными . Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н м 2 /кг 2 = м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 10 -11 Н м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 10 20 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса m и.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, - гравитационная масса m r .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

m и = m r . (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

XVI - XVII века многие по праву называют одним из самых славных периодов в Именно в это время были во многом заложены те основы, без которых дальнейшее развитие этой науки было бы попросту немыслимым. Коперник, Галилей, Кеплер проделали огромную работу, чтобы заявить о физике как о науке, которая может дать ответ практически на любой вопрос. Особняком в целой череде открытий стоит закон всемирного тяготения, окончательная формулировка которого принадлежит выдающемуся английскому ученому Исааку Ньютону.

Основное значение работ этого ученого заключалось не в открытии им силы всемирного тяготения - о наличии этой величины еще до Ньютона говорил и Галилей, и Кеплер, а в том, что он первым доказал, что и на Земле, и в космическом пространстве действуют одни и те же силы взаимодействия между телами.

Ньютон на практике подтвердил и теоретически обосновал тот факт, что абсолютно все тела во Вселенной, в том числе и те, которые располагаются на Земле, взаимодействуют друг с другом. Это взаимодействие получило название гравитационного, в то время как сам процесс всемирного тяготения - гравитации.
Данное взаимодействие возникает между телами потому, что существует особый, непохожий на другие, вид материи, который в науке получил название гравитационного поля. Это поле существует и действует вокруг абсолютно любого предмета, при этом никакой защиты от него не существует, так как он обладает ни на что не похожей способностью проникать в любые материалы.

Сила всемирного тяготения, определение и формулировку которой дал находится в прямой зависимости от произведения масс взаимодействующих тел, и в обратной зависимости от квадрата расстояния междуэтими объектами. Согласно мнению Ньютона, неопровержимо подтвержденного практическими изысканиями, сила всемирного тяготения находится по следующей формуле:

В ней особое значение принадлежит гравитационной постоянной G, которая приблизительно равна 6,67*10-11(Н*м2)/кг2.

Сила всемирного тяготения, с которой тела притягиваются к Земле, представляет собой частный случай закона Ньютона и называется силой тяжести. В данном случае гравитационной постоянной и массой самой Земли можно пренебречь, поэтому формула нахождения силы тяжести будет выглядеть так:

Здесь g - не что иное, как ускорение числовое значение которого примерно равно 9,8 м/с2.

Закон Ньютона объясняет не только процессы, происходящие непосредственно на Земле, он дает ответ на множество вопросов, связанных с устройством всей Солнечной системы. В частности, сила всемирного тяготения между оказывает решающее влияние на движение планет по своим орбитам. Теоретическое описание этого движения было дано еще Кеплером, однако обоснование его стало возможно только после того, как Ньютон сформулировал свой знаменитый закон.

Сам Ньютон связывал явления земной и внеземной гравитации на простом примере: при выстреле из летит не прямо, а по дугообразной траектории. При этом при увеличении заряда пороха и массы ядра последнее будет улетать все дальше и дальше. Наконец, если предположить, что возможно достать столько пороха и сконструировать такую пушку, чтобы ядро облетело вокруг Земного шара, то, проделав это движение, оно не остановится, а будет продолжать свое круговое (эллипсовидное) движение, превратившись в искусственный Как следствие, сила всемирного тяготения одинакова по своей природе и на Земле, и в космическом пространстве.