Дифференциальное исчисление функции. "Дифференциальное исчисление" в книгах. Типы дифференциальных уравнений

Материал из Юнциклопедии


Дифференциальное исчисление - это раздел анализа математического, связанный главным образом с понятиями производной и дифференциала функции. В дифференциальном исчислении изучаются правила вычисления производных (законы дифференцирования) и применения производных к исследованию свойств функций.

Центральные понятия дифференциального исчисления - производная и дифференциал - возникли при рассмотрении большого числа задач естествознания и математики, приводивших к вычислению пределов одного и того же типа. Важнейшие среди них - физическая задача определения скорости неравномерного движения и геометрическая задача построения касательной к кривой. Рассмотрим подробно каждую из них.

Будем вслед за итальянским ученым Г. Галилеем изучать закон свободного падения тел. Поднимем камешек и затем из состояния покоя отпустим его. Пусть t - время, отсчитываемое от начала падения, a s(t) - пройденное к моменту t расстояние. Галилей экспериментально нашел, что зависимость s(t) имеет следующий простой вид:

s(t) = (1/2)gt 2 ,

где t - время в секундах, а g - физическая постоянная, равная примерно 9,8 м/с 2 .

Движение свободно падающего тела явно неравномерное. Скорость v падения постепенно возрастает. Но как именно выглядит зависимость v(t)? Ясно, что, зная зависимость s(t), т. е. закон движения падающего тела, мы в принципе должны иметь возможность получить отсюда и выражение для скорости v(t) как функции времени.

Попробуем найти зависимость v от t. Будем рассуждать следующим образом: фиксируем момент t, в который мы хотим знать значение скорости v(t). Пусть h - небольшой промежуток времени, прошедший от момента t. За это время падающее тело пройдет путь, равный s(t + h) - s(t). Если промежуток времени h очень маленький, то скорость тела за время h не успевает заметно измениться, поэтому можно считать, что если h мало, то приближенно

s(t + h)-s(t) ≈ v(t) h, (1)

(s(t + h)-s(t))/h ≈ u(t) (2)

причем последнее приближенное равенство тем точнее, чем меньше h (чем ближе величина h к нулю). Значит, величину v(t) скорости в момент t можно рассматривать как предел, к которому стремится стоящее в левой части приближенного равенства (2) отношение, выражающее среднюю скорость на интервале времени от момента t до момента t + h, когда величина h стремится к нулю. Сказанное записывают в виде

v(t) = lim h→∞ (s(t + h) - s(t))/h. (2)

Проведем указанные в соотношении (3) вычисления, исходя из найденной Галилеем зависимости

s(t) = (1/2)gt 2 .

Сделаем сначала элементарные вычисления:

s(t + h) - s(t) = (1/2)g(t + h) 2 - (1/2)gt 2 = (1/2)g(t 2 + 2th + ht 2) - (1/2)gt 2 = gth + (1/2)gh 2 .;

а теперь, разделив на h, получаем

(s(t + h) - s(t))/h = gt + (1/2)gh.

Когда h стремится к нулю, второе слагаемое записанной справа суммы тоже стремится к нулю, а первое остается постоянным, точнее, не зависящим от величины h, поэтому в нашем случае

v(t) = lim h→∞ ((1/2)g(t + h) 2 - (1/2)gt 2)/h = gt,

и мы нашли закон

изменения скорости свободно падающего тела. Обратите внимание, формула (3) одновременно дает и определение, и правило вычисления значений v(t) мгновенной скорости изменения функции s(t).

Поскольку скорость v(t) сама есть функция времени, то можно было бы поставить вопрос о скорости ее изменения. В физике скорость изменения скорости называется ускорением. Таким образом, если v(t) - скорость как функЦия времени, то, рассуждая как и при выводе формулы (3), для мгновенного ускорения а (г) в момент времени t получаем выражение

a(t) = lim h→0 (v(t + h) - v(t))/4. (4)

Посмотрим, что дает эта формула для случая свободного падения, в котором, как мы вычислили, v(t) = gt:

v(t + h) - v(t) = g(t + h)-gt = gh,

(v(t + h) - v(t))/h = g,

и, поскольку g - постоянная, то из (4) получается, что a (f) = д, т. е. ускорение свободно падающего тела постоянно и величина д есть та самая физическая постоянная, которая выражает ускорение свободного падения у поверхности Земли.

Нетрудно заметить полное сходство выражений (3), (4) и понять, что мы нашли общее математическое выражение для мгновенной скорости изменения переменной величины. Конечно, результат вычислений по формулам (3), (4), как мы убедились, зависит от конкретного вида функций s(t) или v(t), но сами операции над этими функциями, которые предписываются правыми частями формул (3), (4), одни и те же.

Обобщая сделанные наблюдения, в математическом анализе уже для любой функции у=f(х) рассматривают важную величину:

f"(x) = lim h→0 (f(x + h)-f(x))/h, (5)

которую называют производной функции f.

Производная, таким образом, играет роль скорости изменения зависимой переменной у по отношению к изменению независимой переменной х; последняя теперь уже не обязана иметь физический смысл времени.

Значение производной f"(х) зависит от значения аргумента х, поэтому, как и в случае скорости, производная f"(x) некоторой функции f(х) сама является функцией переменной x.

Например, если f(x) = x 3 , то

(f(x + h) - f(x))/h = ((x + h) 3 - x 3)/h = 3x 2 + (3xh + h 2);

далее, при h, стремящемся к нулю, величина, стоящая в последних скобках, стремится к нулю, а вся правая часть при этом стремится к значению 3x 2 . Мы нашли таким образом, что если f(x) = x 3 , то f"(x) = 3x 2 .

В формуле (5) величину h разности (x + h) - х называют приращением аргумента функции и часто обозначают символом ∆x (читается: дельта икс), а разность f(x + h) - f(x) обозначают обычно через ∆f (или, более полно через ∆f(x, ∆x)) и называют приращением функции, соответствующим данному приращению аргумента. В этих обозначениях выражение (5) приобретает вид:

f"(x) = lim ∆x→0 (f(x, ∆x) - f (x))/∆x,

f"(x) = lim ∆x→0 ∆a/∆x.

Таким образом, значение f"(x) производной функции f(x) в точке x - это предел отношения приращения функции ∆f(x, ∆x), соответствующего смещению ∆x от точки x, к приращению ∆x аргумента x, когда ∆x стремится к нулю.

Операция нахождения производной функции называется дифференцированием. С физической точки зрения, как мы теперь понимаем, дифференцирование - это определение скорости изменения переменной величины.

В дифференциальном исчислении выводятся производные основных элементарных функций. Укажем, например, что производными функций x α , sin x, cos x являются соответственно функции αx α-1 , cos x и -sin x.

В дифференциальном исчислении выводятся также следующие общие правила дифференцирования:

(cf)" = cf" (вынесение постоянного множителя);

(f 1 ± f 2)" = f" 1 ± f" 2 (дифференцирование суммы и разности функций);

(f 1 f 2)" = f" 1 f 2 + f 1 f" 2 (дифференцирование произведения функций);

(f 1 /f 2)" = (f" 1 f 2 - f 1 f" 2)/f 2 2 (дифференцирование частного функций).

Наконец, справедливо также следующее важное правило дифференцирования сложной функции: если y = f(u), а u = φ(x), то производная функции f(φ(x)) равна f"(u) φ"(x), или (f(φ (x)))" =f"(φ(x)) φ"(x).

Общие законы дифференцирования существенно облегчают отыскание производных, а для любых комбинаций элементарных функций делают дифференцирование столь же доступной операцией, как и арифметические действия для человека, знающего таблицу умножения.

Например, если f(x) = a 0 + a 1 x + a 2 x 2 + ...+ a n x n - многочлен, то f"(x) = (a 0 x 0 + a 1 x 1 + a 2 x 2 + ... + a n x n = (a 2 x 0)" + (a 1 x 1)" + (a 2 x 2)" + ... + (a n x n) = a 0 (x 0)" + a 1 (x 1)" + a 2 (x 2)" + a n (x n)" = a 0 (0 x 0-1)" + a 1 (1 x 1-1)" + a 2 (2 x 2-1)" + a n (n x n-1)" = a 1 + 2a 2 x + ... + na n x n-1 .

Или если ψ(x) = sin x 2 , то, полагая f(u) = = sin u, u = φ(x) = x 2 , получаем, что φ(x) = f(φ(x)) и, значит, ψ"(x) = f"(u) φ"(x) = cos u 2x = 2x cos x 2 .

Мы уже отмечали, что к вычислению пределов вида (3), (4), (5), т. е., как теперь можно говорить, к вычислению производной, приводили многие задачи.

Рассмотрим теперь другой классический пример уже чисто геометрического вопроса, который решается в терминах производной,- построение касательной к кривой (см. Касательная).

Требуется построить прямую T(рис. 1), касательную в точке A к кривой - графику функции y = f(x).

Как и в случае определения мгновенной скорости, построение касательной будет сопровождаться уточнением самого понятия касательной.

Пусть (x 0 , y 0) - координаты точки A. Как известно, любая не вертикальная прямая, проходящая через точку А, задается уравнением y = y 0 + k (x - x 0), где k = (y - y 0)/(x - x 0)

так называемый угловой коэффициент прямой, характеризующий ее наклон к горизонтальной оси. В нашем случае y 0 = f(x 0), поэтому уравнение прямой, проходящей через точку A, имеет вид y = f(x 0) + k (x - x 0), и мы хотим выбрать значение коэффициента k так, чтобы прямая была как можно лучше «подогнана» к кривой y = f(x), т. е. лучше всего приближала нашу кривую в окрестности точки A. Значит, мы хотим выбрать k так, чтобы приближенное равенство f(x) ≈ f(x 0) + k (x - x 0), или, что то же самое, приближенное равенство

(f(x) - f(x 0))/(x - x 0) ≈ k,

было возможно более точным при значениях х, близких к x 0 .

Но это знакомая ситуация и, с точностью до переобозначений x - x 0 = h, x = x 0 + h, это знакомое нам отношение из формулы (5), следовательно,

k = lim x→x 0 (f(x) - f(x 0))/(x - x 0) = lim h→0 (f(x 0 + h) - f(x 0)/h (6)

Итак, найдено уравнение

y = f(x 0) + f"(x 0) (x - x 0) (7)

той прямой, которая наилучшим образом приближает кривую y =f(x) в окрестности точки (x 0 ,f(0)). Эту прямую естественно считать искомой касательной к данной кривой в рассматриваемой точке.

Например, если взять параболу y = x 2 , т. е. f(x) = x 2 , то касательная к ней в точке (1; 1) в силу (7) будет задаваться уравнением y = 1 + 2(x - 1), которое можно преобразовать к более компактному виду y = 2x - 1.

Выше мы дали физическую интерпретацию производной как мгновенной скорости, а теперь на основании уравнения касательной (7) можно дать геометрическую трактовку производной. А именно, значение f"(x 0) производной f"(x) функции f(x) в фиксированной точке х = х 0 есть угловой коэффициент касательной к графику функции y = f(x) в точке (x 0 ,f(x 0)).

Это, в частности, означает, что на участках изменения переменной x, на которых f"(x) > 0, функция f(x) возрастает; там, где f"(x) < 0, функция f(x) убывает, а в точках местных максимумов или минимумов функции ее производная должна обращаться в нуль, ибо касательная в этих точках горизонтальна. Ясно также, что если в некоторой точке x = a производная обратилась в нуль, то нельзя спешить с выводом, что это точка максимума или минимума (см. точку a 4), ибо знак производной может не измениться при переходе через эту точку, и функция будет продолжать возрастать или убывать. Но если производная меняет свой знак при переходе через эту точку (см. точки a 1 , a 2 , a 3), то ясно, что при x = a функция будет иметь или местный максимум, если идет смена знака с «+» на «-» (как в точках a 1 , a 3), или местный минимум, если знаки меняются с «-» на «+» (как в точке a 2).

Сделанные наблюдения о связи знака или нулей производной с характером монотонности (возрастанием, убыванием) функции или с ее экстремумами (максимумами, минимумами) имеют многочисленные применения.

Попробуем, например, проволокой данной длины огородить такой прямоугольный участок луга, чтобы получить возможно более просторный загон для скота, т.е. среди прямоугольников с заданным периметром 2p (т. е. среди изопериметрических прямоугольников) надо найти тот, который имеет наибольшую площадь.

Если x - длина одной из сторон прямоугольника, то при указанном условии длина другой стороны равна p - x, а площадь прямоугольника равна x (p - x). Надо найти максимальное значение функции f(x) = x(p - x) на отрезке 0 ≤ x ≤ p. Поскольку при x = 0 или x = p функция, очевидно, обращается в нуль (прямоугольник вырождается в отрезок), то максимум достигается при каком-то значении x, лежащем между 0 и p. Как найти это значение?

В соответствии со сделанным выше наблюдением максимум значений функции f(x) может быть лишь при том значении x 0 , при котором скорость изменения функции равна нулю, т. е. f"(x 0) = 0.

Найдем, используя уже проведенные ранее вычисления, производную нашей функции. Поскольку f(x) = px - x 2 , то f"(x) = p - 2x и f"(x) = p - 2x 0 = 0 при x 0 = (1/2) p. По самому смыслу задачи при найденном значении аргумента x функция должна иметь именно максимум. Это можно проверить и формально:

f"(x) > 0 при x < (1/2) p и f"(x) < 0 при x > (1/2) p.

Таким образом, мы нашли, что искомым прямоугольником с наибольшей площадью является квадрат, длина стороны которого равна (1/2) p.

Решение единым методом различных задач на отыскание максимальных и минимальных значений функций, или, как их принято называть в математике, задач на отыскание экстремумов, является одним из ранних и вместе с тем наиболее популярных и впечатляющих достижений математического анализа (см. Геометрические задачи на экстремум).

До сих пор, следуя И. Ньютону, в качестве главного понятия дифференциального исчисления мы выделяли производную. Г. В. Лейбниц, другой родоначальник математического анализа, в качестве исходного выбрал понятие дифференциала, которое, как мы увидим, логически равноценно понятию производной, но не совпадает с ним. Лейбниц нашел правила вычисления дифференциалов, равноценные правилам отыскания производных, и назвал развитое им исчисление дифференциальным. Это название и сохранилось. Рассмотренные выше примеры помогут нам достаточно быстро разобраться в следующих, на первый взгляд формальных, но очень важных определениях всего дифференциального исчисления.

Функция y = f(x) называется дифференцируемой при некотором значении х ее аргумента, если приращение ∆f = f(x + h) - f(x) этой функции, отвечающее приращению h = (x + h) - x = ∆x ее аргумента x, можно представить в виде

f(x + h) - f(x) = k(x) h + α h, (8)

где k(x) - коэффициент, зависящий только от x, а α - величина, стремящаяся к нулю при h, стремящемся к нулю.

Таким образом,

f(x + h) - f(x) ≈ k(x) h, (9)

т.е. с точностью до погрешности α h, малой в сравнении с величиной h приращения аргумента, приращение f(x + h) - f(x) дифференцируемой в точке x функции можно заменить величиной k(x) h, линейной относительно приращения h аргумента x.

Эта приближающая линейная по h функция k(x) h называется дифференциалом исходной функции f в точке x и обозначается символом df или, более полно, df(x).

В каждой точке х приближающая линейная функция k(x) h, вообще говоря, своя, что отмечено зависимостью коэффициента k(x) от x.

Поделив обе части равенства (8) на h и учитывая, что величина α стремится к нулю, когда h стремится к нулю, получаем соотношение:

lim h→0 (f(x + h) - f(x))/h, (10)

позволяющее вычислять дифференциальный коэффициент k(x) и показывающее, что он просто-напросто совпадает со значением производной f"(x) функции f(x) в точке x.

Таким образом, если функция дифференцируема в точке x, то в этой точке существует указанный в (10) предел, т.е. в ней существует производная f"(x) и k(x) = f"(x).

Обратно, если у функции f(x) в точке x есть определенная равенством (5) производная, то (f(x + h) - f(x))/h = f(x) + α,

где поправка а стремится к нулю, когда h стремится к нулю. Умножая это равенство на h, получаем

f(x + h) - f(x) - f"(x) = f"(x) h + α h, (11)

и значит, функция дифференцируема в точке x.

Итак, мы убедились, что функция имеет дифференциал df = k(x) h в том, и только в том, случае, когда она имеет производную f"(x), причем df=f"(x) h. Но дифференциал как линейная по h функция k(x) h вполне определяется коэффициентом k(x) = f"(x), поэтому отыскание дифференциала функции вполне равносильно отысканию ее производной. Вот почему обе эти операции часто называют одним термином - «дифференцирование», а исчисление называют дифференциальным.

Если вместо h писать ∆x, то вместо df= f"(x) h можно записать df=f"(x) ∆х. Если взять f(x) = x, то f"(x) = 1 и dx = 1 ∆x, поэтому вместо приращения ∆x независимой переменной часто пишут дифференциал dx. В этих обозначениях получается красивая запись df=f"(x) dx дифференциала функции, от которой Лейбниц и пришел к обозначению df/dx для производной f"(x), рассматривая последнюю как отношение дифференциалов функции и ее аргумента. Заметим, что обозначение f"(x) для производной было введено лишь в 1770 г. французским математиком Ж. Л. Лагранжем, а исходным было обозначение

df/dx или df(x)/dx

Г. Лейбница, которое во многих отношениях настолько удачно, что широко используется и по сей день.

Прежде чем показать, как дифференциал можно использовать в приближенных вычислениях, проследим его геометрическую и физическую интерпретацию.

Если в равенстве (8) вместо x написать x 0 , то можно считать, что на рис. 1 левой части равенства (8) отвечает отрезок BD (это приращение ∆f функции или приращение ординаты кривой y = f(x)), дифференциалу df=f"(x) ∆x отвечает отрезок CD (это приращение ординаты касательной, приближающей нашу кривую в окрестности точки A), а остатку α h соответствует отрезок BC, который тем меньше в сравнении с отрезком CD, чем меньше приращение ∆x аргумента. Именно это обстоятельство отражают соотношение (11) и приближенное равенство (9), означающее, что ∆f ≈ df.

На физическом языке, когда f"(x) интерпретируется как скорость в момент x, a f(x + h) - f(x) - как путь, пройденный за промежуток времени h, протекший от момента x, приближенное равенство f(x + h) - f(x) ≈ f"(x) h означает, что за малое время h скорость мало меняется, поэтому пройденный путь приближенно можно найти, как и в (1), по формуле f(x) h, выражающей равномерное прямолинейное движение с постоянной скоростью f"(x).

Равенство (11) и вытекающее из него путем переобозначений соотношение

f(x) ≈ f(x 0) + f(x 0) (x - x 0) (12)

позволяют приближенно находить значения функции f(x) в точках x, близких к некоторой точке x 0 , в которой уже известны значение f(0) самой функции и значение f"(x 0) ее производной.

Например, пусть f(x) = x α и x 0 = 1. Тогда f(1)= 1 α = 1, f"(x) = αx α-1 , f"(1) = α1 α-1 = α, поэтому, полагая x = 1 + ∆, из (12) находим следующую формулу (1 + ∆) α ≈ 1 + α ∆ для приближенных вычислений, справедливую для любых (не только целых) значений α, при условии малости величины ∆. По этой формуле

7 √1,07 = (1 + 0,07) 1/7 ≈ 1 + (1/7) 0,07 = 1,01;

√0,96 = (1 + (-0,04)) 1/2 ≈ 1 + (1/2) (-0,04) = 0,98;

(1,05) 7 = (1 + 0,05) 7 ≈ 1 + 7 0,05 = 1,35.

Важную формулу (12) можно уточнить, если привлечь производные более высоких порядков, которые мы сейчас определим.

Поскольку производная f"(x) функции f(x) сама оказывается функцией аргумента x, то можно поставить вопрос о нахождении производной функции f"(x), т.е. функции (f")"(x), которая обозначается символом f"(x) и называется второй производной исходной функции f(x). Например, если s(t) - закон движения, v(t) = s"(t) - ero скорость, a a(t)=v"(t) - ускорение, то a(t) = s"(t) есть вторая производная функции s(t). Вообще можно определить производные любого порядка: n-я производная функции есть производная от ее (n - 1)-й производной.

Для обозначения производных порядка n обычно используют символы f n (x) или d n f(x)/dx

в отличие от символов f"(x), f"(x), f""(x) употребляемых только для производных малых порядков (1, 2, 3).

Зная производные функции x α , sin x, cos x, легко проверить по индукции, что производные n-го порядка от этих функций соответственно равны

α(α - 1) ... (α - n + 1)х α-n ,

sin(x + nπ/2) , cos(x + nπ/2).

Теперь вернемся к формуле (12), в которой функция f(x) приближенно заменяется стоящим в правой части многочленом 1-й степени относительно x - x 0 . Оказывается, соотношение (12) является частным случаем общего равенства

f(x) = f(x 0) + f"(x 0)/1! (x - x 0) + ... + f (n) (x 0)/n! (x - x 0) n + r n+1 (13)

называемого формулой Тейлора, в котором о величине r n+1 , называемой остаточным членом формулы Тейлора, говорится, например, что ее можно представить в виде:

r n+1 = f n+1 (ξ)/(n+1)! (x - x 0) n+1 (14)

похожем на вид предыдущих членов формулы, но только здесь f n+1 (x) вычисляется не в точке x 0 , а в некоторой точке лежащей между x 0 и x.

Но этой информации бывает достаточно для вычислительных целей. Так, если f(x) = sin x, а x 0 = 0, то вспомнив, что

sin n (x) = sin (x + nπ/2), получаем

|r n+1 | = |sin (ξ + (n+1)π/2))/(n+1)! x n+1 | ≤ |x| n+1 /(n+1)!.

Значит, если, например, |x| ≤ 1, а n = 6, то |r 7 | < 10 -3 и потому, подставив в (13) f (k) (0) = sin(/kπ/2), находим формулу:

sinx x ≈ x - x 3 /3! + x 5 /5!, (15)

позволяющую при любом x из отрезка [-1; 1] вычислить значение sin x с точностью, не худшей, чем 10 -3 .

Можно проверить, что в рассматриваемом случае r n+1 → 0 при неограниченном увеличении n, поэтому можно предложить такую запись:

sin x = x - x 3 /3! +x 5 /5 + x 7 /7 +...+ (-1) k x 2k+1 /(2k+1)! + ... . (16)

Справа в этом равенстве стоит бесконечно много слагаемых, т.е., как говорят, имеется ряд. Равенство (16) понимается, как и вообще сумма ряда, в том смысле, что при любом значении х разность между sin x и суммой конечного числа взятых по порядку слагаемых ряда стремится к нулю, если количество слагаемых неограниченно увеличивается.

Ценность формул вида (15), (16) состоит в том, что они позволяют заменить вычисление значений сложной функции вычислением значений приближающего ее многочлена. Вычисление же значений многочлена сводится к одним арифметическим операциям, которые, например, можно выполнить на электронной вычислительной машине.

Ряд (16) является частным случаем ряда

f(x 0) + f"(x 0)/1! (x - x 0) + ... + f (n) (x 0)/n! (x - x 0) n + ... (17)

который можно написать для любой бесконечно дифференцируемой функции f(x). Он называется рядом Тейлора этой функции (Б. Тейлор (1685-1731) - английский математик). Ряд Тейлора (17) не всегда имеет своей суммой породившую его функцию f(x), поэтому вопрос о сумме ряда Тейлора каждый раз требует определенного исследования, например такого, какое мы сделали выше, оценивая величину остатка r n+1 . Такими рассуждениями можно показать, что

cos x = 1 - x 2 /2! + x 4 /4 - ... + (-1) k x 2k /(2k)! + ...

при любом значении x, а равенство

(1 + x) α = 1 + α/1! x + α(α-1)/2! x 2 + ... + (α(α-1)...(α-n+1))/n! x n + ...

имеет место при |x| < 1, если α не целое, и при любом x, если α = n - целое положительное число. Но если α = n, то α(α - 1)...(α - m) = n(n - 1)...(n - m) = 0 при m > n. Значит, при целых положительных n, в частности, получается соотношение:

(1 + x) n = 1 + n/1! x + n(n - 1)/2! x 2 + ... + (n(n - 1)...(n - n + 1))/n! x n известное в математике как бином Ньютона (см. Ньютона бином).

Министерство науки и образования

Кафедра "ИиВТ"

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе

По предмету: Высшая математика

На тему: Дифференциальное исчисление

г. Талдыкорган 2008 год


Введение

1. Предмет математики и основные периоды ее развития. Математика представляет собой один из самых важных фундаментальных наук. Слово "математика" произошло от греческого слова "матема", что означает знания. Возникла математика на первых же этапах человеческого развития в связи с практической деятельностью людей. С самых древних времен люди, производя различные работы, встречались с необходимостью выделения и образования тех или иных совокупностей объектов, участков земли, жилищных потребностей объектов, жилищных помещений.

Во-первых, во всех этих случаях нужно было устанавливать количественные оценки рассматриваемых множеств, измерять их площади и объемы, сравнивать, вычислять, преобразовывать. По определению, данному Ф.Энгельсом:

МАТЕМАТИКА – это наука изучает количественные отношения и пространственные формы реального мира.

2. Основные математические понятия, такие как число, геометрическая фигура, функция, производная, интеграл, случайное событие и его вероятность и т.д. За свою историю математика, которая развивалась в тесной связи с развитием производственной деятельностью людей и общественной культуры, превратилась в стройную дедуктивную науку, представленную как мощный аппарат для изучения окружающего нас мира.

Академик А.Н. Калинов выделил четыре основных развития в истории математики.

Первый – период зарождения математики, начало которого лежит и теряется в глубинах тысячелетий истории человечества и продолжается до VI – V веков до нашей эры. В этом периоде создается арифметика, а также зачатки геометрии. Математические сведения этого периода состоят в основном из свода правил решения различных практических задач.

Второй период – элементарной математики, т.е. математики, постоянных величин (VI – V вв. до н.э. – XVII в. н.э.). Уже в начале этого периода (около 300 лет до н.э.) Евклид создает теорию трех книг ("Начало Евклида" - первый из дошедших до нас больших теоретических исследований по математике), в которых, в частности изучается дедуктивным образом на базе система аксиомы вся элементарная геометрия. Изданной в IX веке сочинения ал-Хорезми "Кибат ал-Джарап ал-Мукабана" содержит общие приемы решения задач, сводящие к управлению первой и второй степени. В XV веке вместо громких выражений стали употреблять знаки + и -, знаки степеней, корней, скобки. В XVI веке Ф.Виет применяет буквы для обозначения данных и не известных величин. К середине XVII века в основном сложилась современная алгебраическая символика, и этим были созданы основы формального математического языка.

Третий период – период создания математики переменных величин (XVII век – середина XIX века). Начиная с XVII века, в связи с изучением количественного отношения в процессе их изменения, на первый план выносили понятия переменной величины и функции. В этом периоде в работах Р.Декарта на базе мирового исследования метода системных координат создается аналитическая геометрия. В ра ботах И.Ньютона и Г.В.Лейбница завершает создание дифференциального интегрального исчисления.

Четвертый период – современные математики. Его начало следует относить к двадцатым годам XIX века – этот период начинается с работ Э.Гаусса, в которых заложены идеи теории алгебраических структур, В.И.Лобачевского, который открыл первую неевклидовую геометрию – геометрию Лобачевского.

В последствии дальнейшего распространения получил аксиоматический метод, в новую фазу вступили работы по обоснованию математики, математической логики и математическому моделированию. Создание в середине прошлого века ЭВМ привело не только более к глубокому и широкому применению математики в других областях знания, в технических науках, в вопросах организации и управления производством, но и зарождению развития новых областей теоретических и прикладных математических функций. Проникновения методов современной математики и ЭВМ в другие наук и практику применяет на столько всеобщий и глубокий характер, что одно из способностей нынешнего этапа развития человеческой культуры считается процесс математизации знаний и компьютеризации всех сфер трудовой деятельности и жизни людей.

3. Понятие о математическом моделировании. При изучении количественных характеристик сложных объектов, процессов явлений, пользуются методом математического моделирования, который состоит в том, что рассматриваемые закономерности формируются на математическом языке и исследуются при помощи соответствующих математических средств. Математический модуль изучаемого объекта записывается при помощи математических символов и состоит из совокупности уравнений, неравенств, формул, алгоритмов программ (для ЭВМ), в состав которых входят переменные и постоянные величины, различные операции, функции, быть может, и их производные, и другие математические понятия. Приемами составления простейших математических моделей служит хорошо известный, из курса математики средней школы, прием решения задач при помощи уравнений и систем уравнений – полученное уравнение или система уравнений является математической моделью данной задачи. Это были примеры задач с единственным решением – детерминированных задач. Однако часто встречаются задачи, имеющие много решений. В таких случаях на практике возникает вопрос о нахождении такого решения, которое является наиболее подходящим для той или иной точки зрения. Такие решения называются оптимальными решениями.

Оптимальное решение определяется как решение, для которого некоторая функция называется целевой функцией, принимает при заданных ограничениях наибольшее и наименьшее значения. Целевую функцию составляют из условия задачи, и она выражает величину, которую нужно оптимизировать (т.е. максимизировать или минимизировать), - например, получаемую прибыль, расходы, ресурсы и т.п.

Оказывается, что широкий класс, в частности задачи управления, составляют задачи в математических моделях которых условия на переменных создают неравенство или равенство. Теория и методы решения таких задач составляет раздел математики, известный под названием "Математическое программирование".

Если ограничения и целевая функция является многочисленным первой степени (линейны), то такие задачи составляют раздел математического программирования.

Математические модели больших производных систем, как правило, имеют сложную структуру. В частности, в них количество переменных и неравенств или уравнений могут насчитывать несколько десятков и даже сотен степеней имеют довольно сложный вид. Такие задачи решаются в вычислительных центрах с использованием больших вычислительных машин.

Следуя А.Н.Тихонову, в процессе решения реальных задач методом математического моделирования вычисляем следующие пять этапов:

1. Построение качественной модели, т.е. рассматривание явлений, выделение основных факторов и установление закономерностей, которые имеют место в следующем явлении.

2. Построение математической модели, т.е. перевод на язык математических состояний, установленных качественных закономерностей явлений. На этом же этапе состояния целевая функция, т.е. такая числовая характеристика переменных, наибольшему или наименьшему значению которой соответствует лучшая ситуация с точки зрения предыдущего решения.

3. Решение получаемой задачи. В связи с тем, что часто математические модели являются довольно громадными, вычисления проводятся с помощью ЭВМ в вычислительных центрах.

4. Сопоставление результатов вычислений являются неудовлетворительными, то переходят ко второму циклу процесса моделирования, т.е. повторяют этапы 1, 2, 3 с должными уточнениями информации пока не будет достигнуто удовлетворительное соглашение с имеющимися данными о модулируемом объекте.

Математические методы необходимо применять при решении крупных задач, таких как: финансовые отношения, планирование народного хозяйства, использование атомной энергией в широких целях, создание больших воздушных и космических кораблей разного назначения, обеспечение длительной работы научных экспедиций в космосе и т.д.

Однако было бы ошибочно думать, что математические методы нужны только для решения крупных задач. При изучении наук в средней школе мы встречаемся с применениями математических методов и вычислений в решении конкретных различных задач. Подобные задачи встречаются в ежедневной работе технических специалистов, экономистов, технологов. Поэтому работникам народного хозяйства, в какой бы области они не трудились, необходимо владеть основными методами исследования и приемами вычисления, устным, письменным, и машинным счетам. Специалисты должны иметь полное представление о возможностях современной ЭВМ.

В средней школе мы ознакомились с основными теориями уравнений, их систем, векторов, дифференциального и интегрального исчислениями и их применениями в решении практических задач.

Цель изучения математики в средних специальных заведениях состоит в том, чтобы углубить знания по изученным разделам и ознакомиться с некоторыми новыми разделами математики (аналитической геометрией, теорией вероятности и др.), которые обогащают общую культуру, развивает логическое мышление, широко используется в математическом моделировании задач, с которыми встречается современный специалист в своей повседневной деятельности.

Типовой учебный план

Типовой учебный план – это документ, предназначенный для реализации государственных требований к минимуму содержания и уровня подготовки выпускных учебных заведений средне специального образования. Он определяет общий перечень дисциплин, и обязательные объемы времени для их реализации, виды и минимальную продолжительность произведенной практики, примерный перечень учебных кабинетов, лабораторий и мастерских. В учебном плане также предусматривается курсовое проектирование не более чем по трем дисциплинам во весь период обучения. Виды производственной практики и их продолжительность определяется в соответствии с типовой учебной практики по заданной специальности. График учебного процесса носит рекомендательный характер и может быть откорректирован учебным заведением при обязательном соблюдении продолжительности теоретического обучения, экзаменационных сессий, а также сроков проведения зимних и завершающих учебный год летних каникул (см. таблицу 1).

в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 в.). Они сформулировали основные положения Дифференциальное исчисление и чётко указали на взаимно обратный характер операций дифференцирования и интегрирования. С этого времени Дифференциальное исчисление развивается в тесной связи с интегральным исчислением , вместе с которым оно составляет основную часть математического анализа (или анализа бесконечно малых). Создание дифференциального и интегрального исчислений открыло новую эпоху в развитии математики. Оно повлекло за собой появление ряда математических дисциплин: теории рядов, теории дифференциальных уравнений, дифференциальной геометрии и вариационного исчисления. Методы математического анализа нашли применение во всех разделах математики. Неизмеримо расширилась область приложений математики к вопросам естествознания и техники. «Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 587).

Дифференциальное исчисление зиждется на следующих важнейших понятиях математики, определение и исследование которых составляют предмет введения в математический анализ: действительные числа (числовая прямая), функция , предел , непрерывность . Все эти понятия выкристаллизовались и получили современное содержание в ходе развития и обоснования дифференциального и интегрального исчислений. Основная идея Дифференциальное исчисление состоит в изучении функций в малом. Точнее: Дифференциальное исчисление даёт аппарат для исследования функций, поведение которых в достаточно малой окрестности каждой точки близко к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия Дифференциальное исчисление : производная и дифференциал. Понятие производной возникло из большого числа задач естествознания и математики, приводящихся к вычислению пределов одного и того же типа. Важнейшие из них - определение скорости прямолинейного движения точки и построение касательной к кривой. Понятие дифференциала является математическим выражением близости функции к линейной в малой окрестности исследуемой точки. В отличие от производной, оно легко переносится на отображения одного евклидова пространства в другое и на отображения произвольных линейных нормированных пространств и является одним из основных понятий современного нелинейного функционального анализа .

Производная. Пусть требуется определить скорость прямолинейно движущейся материальной точки. Если движение равномерно, то пройденный точкой путь пропорционален времени движения; скорость такого движения можно определить как путь, пройденный за единицу времени, или как отношение пути, пройденного за некоторый промежуток времени, к длительности этого промежутка. Если же движение неравномерно, то пути, пройденные точкой в одинаковые по длительности промежутки времени, будут, вообще говоря, различными. Пример неравномерного движения даёт тело, свободно падающее в пустоте. Закон движения такого тела выражается формулой s = gt 2 /2, где s - пройденный путь с начала падения (в метрах), t - время падения (в секундах), g - постоянная величина, ускорение свободного падения, g » 9,81 м/сек 2 . За первую секунду падения тело пройдёт около 4,9 м , за вторую - около 14,7 м , а за десятую - около 93,2 м , т. е. падение происходит неравномерно. Поэтому приведённое выше определение скорости здесь неприемлемо. В этом случае рассматривается средняя скорость движения за некоторый промежуток времени после (или до) фиксированного момента t ; она определяется как отношение длины пути, пройденного за этот промежуток времени, к его длительности. Эта средняя скорость зависит не только от момента t , но и от выбора промежутка времени. В нашем примере средняя скорость падения за промежуток времени от t до t + Dt равна

Это выражение при неограниченном уменьшении промежутка времени Dt приближается к величине gt , которую называют скоростью движения в момент времени t . Таким образом, скорость движения в какой-либо момент времени определяется как предел средней скорости, когда промежуток времени неограниченно уменьшается.

В общем случае эти вычисления надо проводить для любого момента времени t , промежутка времени от t до t + Dt и закона движения, выражаемого формулой s = f (t ). Тогда средняя скорость движения за промежуток времени от t до t + Dt даётся формулой /Dt , где Ds = f (t + Dt ) - f (t ), а скорость движения в момент времени t равна

Основное преимущество скорости в данный момент времени, или мгновенной скорости, перед средней скоростью состоит в том, что она, как и закон движения, является функцией времени t , а не функцией интервала (t , t + Dt ). С другой стороны, мгновенная скорость представляет собой некоторую абстракцию, поскольку непосредственному измерению поддаётся средняя, а не мгновенная скорость.

К выражению типа (*) приводит и задача (см. рис. ) построения касательной к плоской кривой в некоторой её точке М . Пусть кривая Г есть график функции у = f (x ). Положение касательной будет определено, если будет найден её угловой коэффициент, т. е. тангенс угла a, образованного касательной с осью Ox . Обозначим через x 0 абсциссу точки М , а через x 1 = x 0 + Dх - абсциссу точки M 1 . Угловой коэффициент секущей MM 1 равен

Операцию нахождения производной называют дифференцированием. На классе функций, имеющих производную, эта операция линейна.

Таблица формул и правил дифференцирования

Эти предложения позволяют методами Дифференциальное исчисление провести подробное исследование поведения функций, обладающих достаточной гладкостью (т. е. имеющих производные достаточно высокого порядка). Таким путём удаётся исследовать степень гладкости, выпуклость и вогнутость , возрастание и убывание функций , их экстремумы , найти их асимптоты , точки перегиба (см. Перегиба точка), вычислить кривизну кривой, выяснить характер её особых точек и т.д. Например, условие f" (x ) > 0 влечёт за собой (строгое) возрастание функции у = f (x ), а условие f" (x ) > 0 - её (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности её области определения, находятся среди корней уравнения f" (x ) = 0.

Исследование функций при помощи производных составляет основное приложение Дифференциальное исчисление Кроме того, Дифференциальное исчисление позволяет вычислять различного рода пределы функций, в частности пределы вида 0/0 и ¥/¥ (см. Неопределённое выражение , Лопиталя правило ). Дифференциальное исчисление особенно удобно для исследования элементарных функций, т.к. в этом случае их производные выписываются в явной форме.

Дифференциальное исчисление функций многих переменных. Методы Дифференциальное исчисление применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х , у ) частной производной по х называется производная этой функции по х при постоянном у . Эта частная производная обозначается z" x , f" x (x , y ), ¶z/ х или ¶f (x , y )/¶x , так что

Аналогично определяется и обозначается частная производная z по у . Величина

Dz = f (x + Dx , y + Dy ) - f (x , y )

называется полным приращением функции z = f (x , y ). Если его можно представить в виде

Dz = A Dx + В Dу + a,

где a - бесконечно малая более высокого порядка, чем расстояние между точками (х , у ) и (х + Dх , у + Dу ), то говорят, что функция z = f (x , y ) дифференцируема. Слагаемые А Dх + В Dу образуют полный дифференциал dz функции z = f (x , y ), причём А = z" x , = z" y . Вместо Dx и Dy обычно пишут dx и dy , так что

Геометрически дифференцируемость функции двух переменных означает существование у её графика касательной плоскости, а дифференциал представляет собой приращение аппликаты касательной плоскости, когда независимые переменные получают приращения dx и dy . Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функций одного переменного, для функций двух переменных существование обеих частных производных первого порядка ещё не гарантирует дифференцируемости функции. Однако, если частные производные кроме того ещё непрерывны, то функция дифференцируема.

Аналогично определяются частные производные высших порядков. Частные производные ¶ 2 f/ х 2 и ¶ 2 f/ у 2 , в которых дифференцирование ведётся по одному переменному, называют чистыми, а частные производные ¶ 2 f/ x y и ¶ 2 f/ у х - смешанными. Если смешанные частные производные непрерывны, то они между собой равны. Все эти определения и обозначения переносятся на случай большего числа переменных.

Историческая справка. Отдельные задачи об определении касательных к кривым и о нахождении максимальных и минимальных значений переменных величин были решены ещё математиками Древней Греции. Например, были найдены способы построения касательных к коническим сечениям и некоторым другим кривым. Однако разработанные античными математиками методы были применимы лишь в весьма частных случаях и далеки от идей Дифференциальное исчисление

Эпохой создания Дифференциальное исчисление как самостоятельного раздела математики следует считать то время, когда было понято, что указанные специальные задачи вместе с рядом других (в особенности с задачей определения мгновенной скорости) решаются при помощи одного и того же математического аппарата - при помощи производных и дифференциалов. Это понимание было достигнуто И. Ньютоном и Г. Лейбницем.

Около 1666 И. Ньютон разработал метод флюксий (см. Флюксий исчисление ). Основные задачи Ньютон формулировал в терминах механики: 1) определение скорости движения по известной зависимости пути от времени; 2) определение пройденного за данное время пути по известной скорости. Непрерывную переменную Ньютон называл флюентой (текущей), её скорость - флюксией. Т. о., у Ньютона главными понятиями были производная (флюксия) и неопределённый интеграл как первообразная (флюента). Он стремился обосновать метод флюксий с помощью теории пределов, хотя последняя была им лишь намечена.

В середине 70-х гг. 17 в. Г. Лейбниц разработал очень удобный алгоритм Дифференциальное исчисление Основными понятиями у Лейбница явились дифференциал как бесконечно малое приращение переменного и определённый интеграл как сумма бесконечно большого числа дифференциалов. Лейбницу принадлежат обозначения дифференциала dx и интеграла òydx , ряд правил дифференцирования, удобная и гибкая символика и, наконец, сам термин «дифференциальное исчисление». Дальнейшее развитие Дифференциальное исчисление шло сначала по пути, намеченному Лейбницем; большую роль на этом этапе сыграли работы братьев Я. и И. Бернулли , Б. Тейлора и др.

Следующим этапом в развитии Дифференциальное исчисление были работы Л. Эйлера и Ж. Лагранжа (18 в.). Эйлер впервые стал излагать его как аналитическую дисциплину, независимо от геометрии и механики. Он вновь выдвинул к качестве основного понятия Дифференциальное исчисление производную. Лагранж пытался строить Дифференциальное исчисление алгебраически, пользуясь разложением функций в степенные ряды; ему, в частности, принадлежит введение термина «производная» и обозначения у" или f" (x ). В начале 19 в. была удовлетворительно решена задача обоснования Дифференциальное исчисление на основе теории пределов. Это было выполнено главным образом благодаря работам О. Коши , Б. Больцано и К. Гаусса . Более глубокий анализ исходных понятий Дифференциальное исчисление был связан с развитием теории множеств и теории функций действительного переменного в конце 19 - начале 20 вв.

Лит.: История. Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М., Vorlesungen über Geschichte der Mathematik, 2 Aufl., Bd 3-4, Lpz. - В., 1901-24.

Работы основоположников и классиков Дифференциальное исчисление Ньютон И., Математические работы, пер. с латин., М. - Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с латин., «Успехи математических наук», 1948, т. 3, в. 1; Л"Опиталь Г. Ф. де, Анализ бесконечно малых, пер. с франц., М. - Л., 1935; Эйлер Л., Введение в анализ бесконечных, пер. с латин., 2 изд., т. 1, М., 1961; его же, Дифференциальное исчисление, пер. с латин., М. - Л., 1949; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864.

Учебники и учебные пособия по Дифференциальное исчисление Хинчин А. Я., Краткий курс математического анализа, 3 изд., М., 1957; его же, Восемь лекций по математическому анализу, 3 изд., М. - Л., 1948; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Ла Валле-Пуссен Ш. Ж. де, Курс анализа бесконечно малых, пер. с франц., т. 1, Л. - М., 1933; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Банах С., Дифференциальное и интегральное исчисление, пер. с польск., 2 изд., М., 1966; Рудин У., Основы математического анализа, пер. с англ., М., 1966.

Под редакцией С. Б. Стечкина.

Статья про слово "Дифференциальное исчисление " в Большой Советской Энциклопедии была прочитана 24920 раз

Дифференциальное исчисление является разделом математического анализа, который изучает производную, дифференциалы и их использование при исследовании функции.

История появления

Дифференциальное исчисление выделилось в самостоятельную дисциплину во второй половине 17 века, благодаря трудам Ньютона и Лейбница, которые сформулировали основные положения в исчислении дифференциалов и заметили связи между интегрированием и дифференцированием. С того момента дисциплина развивалась вместе с исчислением интегралов, составляя тем самым основу математического анализа. Появление данных исчислений открыло новый современный период в математическом мире и вызвало возникновение новых дисциплин в науке. Также расширило возможность применения математической науки в естествознании и технике.

Основные понятия

Дифференциальное исчисление базируется на фундаментальных понятиях математики. Ими являются: непрерывности, функция и предел. Спустя время они приняли современный вид, благодаря интегральным и дифференциальным исчислениям.

Процесс создания

Формирование дифференциального исчисления в виде прикладного, а затем и научного метода произошло перед возникновением философской теории, которую создал Николай Кузанский. Его работы считаются эволюционным развитием из суждений античной науки. Несмотря на то что сам философ математиком не был, его вклад в развитие математической науки неоспорим. Кузанский один из первых ушел от рассмотрения арифметики как максимально точной области науки, поставив математику того времени под сомнения.

У античных математиков универсальным критерием была единица, в то время как философ предложить в качестве новой меры бесконечность взамен точного числа. В связи с этим инвертируется представление точности в математической науке. Научное знание, по его представлению, делится на рассудочное и интеллектуальное. Второе является более точным, по мнению ученого, поскольку первое дает лишь приблизительный результат.

Идея

Основная идея и понятие в дифференциальном исчислении связаны с функцией в малых окрестностях определенных точек. Для этого необходимо создать математический аппарат для исследований функции, поведение которой в малой окрестности установленных точек близко к поведению многочлена или линейной функции. Основано это на определении производной и дифференциала.

Появление было вызвано большим число задач из естественных наук и математики, которые приводили к нахождению значений пределов одного типа.

Одной из основных задач, которые даются как пример, начиная со старших классов школы, является определение скорости движения точки по прямой линии и построение касательной линии к этой кривой. Дифференциал связан с этим, поскольку есть возможность приблизить функцию в малой окрестности рассматриваемой точки линейной функции.

По сравнению с понятием производной функции действительной переменной, определение дифференциалов просто переходит на функцию общей природы, в частности на изображение одного евклидова пространства на другое.

Производная

Пусть точка движется по направлению оси Оу, за время возьмем х, которое отсчитывается от некоего начала момента. Описать такое перемещение можно по функции у=f(x), которая ставится в соответствие каждому временному моменту х координаты перемещаемой точки. Данную функцию в механике принять звать законом движения. Основной характеристикой движения, в особенности неравномерного, является Когда точка перемещается по оси Оу согласно закону механики, то в случайный временной момент х она приобретает координату f(x). Во временной момент х + Δх, где Δх обозначает приращение времени, ее кордината будет f(х + Δх). Так формируется формула Δy = f(х + Δх) - f(х), которую называют приращением функции. Она представляет собой пройденный точкой путь за время от х до х + Δх.

В связи с возникновением этой скорости в момент времени вводится производная. В произвольной функции производную в фиксированной точке называют пределом (при условии его существования). Обозначаться она может определенными символами:

f’(х), y’, ý, df/dx, dy/dx, Df(x).

Процесс вычисления производной именуют дифференцированием.

Дифференциальное исчисление функции нескольких переменных

Данный метод исчисления применятся при исследовании функции с несколькими переменными. При наличии двух переменных х и у, частная производная по х в точке А зовется производной этой функции по х с фиксированным у.

Может обозначаться следующими символами:

f’(x)(x,y), u’(x), ∂u/∂x или ∂f(x,y)’/∂x.

Необходимые навыки

Чтобы успешно изучить и уметь решать диффуры, требуются навыки в интегрировании и дифференцировании. Чтобы было легче разобраться в дифференциальных уравнениях, следует хорошо понимать тему производной и Также не помешает научиться искать производную от неявно заданной функции. Связано это с тем, что в процессе изучения придется часто использовать интегралы и дифференцирование.

Типы дифференциальных уравнений

Практически во всех контрольных работах, связанных с существует 3 вида уравнений: однородные, с разделяющимися переменными, линейные неоднородные.

Имеются и более редкие разновидности уравнений: с полными дифференциалами, уравнения Бернулли и прочие.

Основы решения

Для начала следует вспомнить алгебраичные уравнения из школьного курса. В них содержатся переменные и числа. Для решения обычного уравнения следует найти множество чисел, удовлетворяющих заданному условию. Как правило, такие уравнения имели одни корень, и для проверки правильности следовало лишь подставить это значение на место неизвестной.

Дифференциальное уравнение схоже с этим. В общем случае такое уравнение первого порядка включает:

  • Независимую переменную.
  • Производную первой функции.
  • Функцию или зависимую переменную.

В отдельных случаях может отсутствовать одна из неизвестных, х или у, однако это не столь важно, так как необходимо наличие первой производной, без производных высших порядков, чтобы решение и дифференциальное исчисление были верны.

Решить дифференциальное уравнение - это значит отыскать множество всех функций, подходящих заданному выражению. Подобное множеств функций часто называется общим решением ДУ.

Интегральное исчисление

Интегральное исчисление является одним из разделов математического анализа, который изучает понятие интеграла, свойства и методы его вычисления.

Зачастую вычисление интеграла встречается при вычислении площади криволинейной фигуры. Под этой площадью подразумевается предел, к которому стремится площадь вписанного в заданную фигуру многоугольника с постепенным возрастанием его стороны, при этом данные стороны могут быть выполнены менее всякого ранее указанного произвольного малого значения.

Главная идея в вычислении площади произвольной геометрической фигуры состоит в подсчёте площади прямоугольника, то есть доказательстве, что его площадь равняется произведению длины на ширину. Когда речь идет о геометрии, то все построения производятся при помощи линейки и циркуля, и тогда отношение длины к ширине является рациональным значением. При подсчете площади прямоугольного треугольника можно определить, что если отложить такой же треугольник рядом, то образуется прямоугольник. В параллелограмме площадь подсчитывается подобным, но чуть более усложненным методом, через прямоугольник и треугольник. В многоугольниках площадь считают через входящие в него треугольники.

При определении пощади произвольной кривой данный метод не подойдет. Если разбить её на единичные квадраты, то останутся незаполненные места. В этом случае пытаются использовать два покрытия, с прямоугольниками сверху и снизу, в результате те включают график функции и не включают. Важным здесь остается способ разбивания на эти прямоугольники. Также если брать разбивания все более уменьшающиеся, то площадь сверху и снизу должна сойтись на определенном значении.

Следует вернуться к способу разделения на прямоугольники. Имеется два популярных метода.

Риманом было формализовано определение интеграла, созданное Лейбницем и Ньютоном, как площади подграфика. В этом случае были рассмотрены фигуры, состоящие из некоторого числа вертикальных прямоугольников и полученные при разделении отрезка. Когда при уменьшении разбивания имеется предел, к которому сводится площадь подобной фигуры, этот предел называют интегралом Римана функции на заданном отрезке.

Вторым методом является построение интеграла Лебега, состоящее в том, что за место разделения определяемой области на части подынтегральной функции и составления затем интегральной суммы из полученных значений в этих частях, на интервалы делится её область значений, а после суммируется с соответствующими мерами прообразов этих интегралов.

Современные пособия

Одно из основных пособий по изучению дифференциального и интегрального исчисления написал Фихтенгольц - "Курс дифференциального и интегрального исчисления". Его учебник является фундаментальным пособием по изучению математического анализа, который выдержал много изданий и переводов на другие языки. Создан для студентов вузов и долгое время применяется во множестве учебных заведений как одно из основных пособий по изучению. Дает теоретические данные и практические умения. Впервые издан в 1948 году.

Алгоритм исследования функции

Чтобы исследовать методами дифференциального исчисления функцию, необходимо следовать уже заданному алгоритму:

  1. Найти область определения функции.
  2. Найти корни заданного уравнения.
  3. Подсчитать экстремумы. Для этого следует вычислить производную и точки, где она равняется нулю.
  4. Подставляем полученное значение в уравнение.

Разновидности дифференциальных уравнений

ДУ первого порядка (иначе, дифференциальное исчисление одной переменной) и их виды:

  • Уравнение с разделяющимися переменными: f(y)dy=g(x)dx.
  • Простейшие уравнения, или дифференциальное исчисление функции одной переменной, имеющие формулу: y"=f(x).
  • Линейное неоднородное ДУ первого порядка: y"+P(x)y=Q(x).
  • Дифференциальное уравнение Бернулли: y"+P(x)y=Q(x)y a .
  • Уравнение с полными дифференциалами: P(x,y)dx+Q(x,y)dy=0.

Дифференциальные уравнения второго порядка и их виды:

  • Линейное однородное дифференциальное уравнение второго порядка с постоянными значениями коэффициента: y n +py"+qy=0 p, q принадлежит R.
  • Линейное неоднородное дифференциальное уравнение второго порядка с постоянным значением коэффициентов: y n +py"+qy=f(x).
  • Линейное однородное дифференциальное уравнение: y n +p(x)y"+q(x)y=0, и неоднородное уравнение второго порядка: y n +p(x)y"+q(x)y=f(x).

Дифференциальные уравнения высших порядков и их виды:

  • Дифференциальное уравнение, допускающие понижение порядка: F(x,y (k) ,y (k+1) ,..,y (n) =0.
  • Линейное уравнение высшего порядка однородное: y (n) +f (n-1) y (n-1) +...+f 1 y"+f 0 y=0 , и неоднородное: y (n) +f (n-1) y (n-1) +...+f 1 y"+f 0 y=f(x) .

Этапы решения задачи с дифференциальным уравнением

С помощью ДУ решаются не только математические или физические вопросы, но и различные проблемы из биологии, экономики, социологии и прочего. Несмотря на большое разнообразие тем, следует придерживаться единой логической последовательности при решении подобных проблем:

  1. Составление ДУ. Один из наиболее сложных этапов, который требует максимальный точности, поскольку любая ошибка приведет к полностью неверным итогам. Следует учитывать все факторы, влияющие на процесс, и определить начальные условия. Также следует основываться на фактах и логических выводах.
  2. Решение составленного уравнения. Этот процесс проще первого пункта, поскольку требует лишь строгого выполнения математических подсчетов.
  3. Анализ и оценка полученных итогов. Выведенное решение следует оценить для установки практической и теоретической ценности результата.

Пример использования дифференциальных уравнений в медицине

Использование ДУ в области медицины встречается при построении эпидемиологической математической модели. При этом не стоит забывать, что данные уравнения также встречаются в биологии и химии, которые близки к медицине, потому что в ней немаловажную роль играет исследование разных биологических популяций и химических процессов в теле человека.

В приведённом примере с эпидемией можно рассматривать распространение инфекции в изолированном обществе. Обитатели подразделяются на три вида:

  • Инфицированные, численность x(t), состоявшие из особей, носителей инфекции, каждый из которых заразен (инкубационный период короткий).
  • Второй вид включает восприимчивых особей y(t), способных заразиться при контактировании с инфицированными.
  • Третий вид включает в себя невосприимчивых особей z(t), которые имеют иммунитет или погибли из-за болезни.

Количество особей постоянно, учет рождения, естественных смертей и миграции не учитывается. В основе будет иметься две гипотезы.

Процент заболеваемости в определённый временной момент равняется x(t)y(t) (основывается предположение на теории, что число заболевших пропорционально количеству пересечений между больными и восприимчивыми представителями, которое в первом приближении будет пропорционально x(t)y(t)), в связи с этим количество заболевших возрастает, а число восприимчивых уменьшается со скоростью, которая вычисляется по формуле ax(t)y(t) (a > 0).

Число невосприимчивых особей, которые приобрели иммунитет или погибли, возрастает со скоростью, которая пропорциональна количеству заболевших, bx(t) (b > 0).

В итоге можно составить систему уравнений с учетом всех трех показателей и на её основе сделать выводы.

Пример использования в экономике

Дифференциальное исчисление часто применяется при экономическом анализе. Основной задачей в экономическом анализе считается изучение величин из экономики, которые записаны в форму функции. Это используется при решении задач вроде изменения дохода сразу после увеличения налогов, ввода пошлин, изменения выручки компании при изменении стоимости продукции, в какой пропорции можно заменить выбывших работников новым оборудованием. Чтобы решить такие вопросы, требуется построить функцию связи из входящих переменных, которые после изучаются с помощью дифференциального исчисления.

В экономической сфере часто необходимо отыскать наиболее оптимальные показатели: максимальную производительность труда, наивысший доход, наименьшие издержки и прочее. Каждый такой показатель является функцией из одного или нескольких аргументов. К примеру, производство можно рассмотреть как функцию из затраты труда и капитала. В связи с этим нахождение подходящего значения можно свести к отысканию максимума или минимума функции из одной или нескольких переменных.

Такого рода задачи создают класс экстремальных задач в экономической области, для решения которых необходимо дифференциальное исчисление. Когда экономический показатель требуется минимизировать или максимизировать как функцию от другого показателя, то в точке максимума отношение приращения функции к аргументам будет стремиться к нулю, если приращение аргумента стремится к нулевому значению. Иначе же, когда подобное отношение стремится к некому положительному или отрицательному значению, указанная точка не является подходящей, потому что при увеличении или уменьшении аргумента можно поменять зависимую величину в необходимом направлении. В терминологии дифференциального исчисления это будет значить, что требуемым условием для максимума функции является нулевое значение её производной.

В экономике нередко встречаются задачи на нахождение экстремума функции с несколькими переменными, потому что экономические показатели складываются из многих факторов. Подобные вопросы хорошо изучены в теории функций нескольких переменных, применяющей методы дифференциального вычисления. Подобные задачи включают в себя не только максимизируемые и минимизируемые функции, но и ограничения. Подобные вопросы относятся к математическому программированию, и решаются они с помощью специально разработанных методов, также опирающихся на этот раздел науки.

Среди методов дифференциального исчисления, используемых в экономике, важным разделом является предельный анализ. В экономической сфере этот термин обозначает совокупность приемов исследования изменяемых показателей и результатов при смене объемов создания, потребления, основываясь на анализе их предельных показателей. Предельным показателем считается производная или частные производные при нескольких переменных.

Дифференциальное исчисление нескольких переменных - немаловажная тема из области математического анализа. Для подробного изучения можно использовать различные учебные пособия для высших учебных заведений. Одно из наиболее известных создал Фихтенгольц - "Курс дифференциального и интегрального исчисления". Как заметно из названия, для решения дифференциальных уравнений немалое значение имеют навыки в работе с интегралами. Когда имеет место дифференциальное исчисление функции одной переменной, решение становится проще. Хотя, надо заметить, оно подчиняется тем же основным правилам. Чтобы на практике исследовать функцию дифференциальным исчислением, достаточно следовать уже имеющемуся алгоритму, который дается в старших классах школы и лишь немногим осложняется при вводе новых переменных.

Дифференциальное исчисление – это раздел анализа математического, связанный главным образом с понятиями производной и дифференциала функции. В дифференциальном исчислении изучаются правила вычисления производных (законы дифференцирования) и применения производных к исследованию свойств функций.

Центральные понятия дифференциального исчисления – производная и дифференциал – возникли при рассмотрении большого числа задач естествознания и математики, приводивших к вычислению пределов одного и того же типа. Важнейшие среди них – физическая задача определения скорости неравномерного движения и геометрическая задача построения касательной к кривой. Рассмотрим подробно каждую из них.

Будем вслед за итальянским ученым Г. Галилеем изучать закон свободного падения тел. Поднимем камешек и затем из состояния покоя отпустим его. Пусть - время, отсчитываемое от начала падения, a - пройденное к моменту расстояние. Галилей экспериментально нашел, что зависимость имеет следующий простой вид:

где - время в секундах, а - физическая постоянная, равная примерно 9,8 м/с2.

Движение свободно падающего тела явно неравномерное. Скорость падения постепенно возрастает. Но как именно выглядит зависимость ? Ясно, что, зная зависимость , т.е. закон движения падающего тела, мы в принципе должны иметь возможность получить отсюда и выражение для скорости как функции времени.

Попробуем найти зависимость от . Будем рассуждать следующим образом: фиксируем момент , в который мы хотим знать значение скорости . Пусть - небольшой промежуток времени, прошедший от момента . За это время падающее тело пройдет путь, равный . Если промежуток времени очень маленький, то скорость тела за время не успевает заметно измениться, поэтому можно считать, что если мало, то приближенно

, (1)

, (2)

причем последнее приближенное равенство тем точнее, чем меньше (чем ближе величина к нулю). Значит, величину скорости в момент можно рассматривать как предел, к которому стремится стоящее в левой части приближенного равенства (2) отношение, выражающее среднюю скорость на интервале времени от момента до момента , когда величина стремится к нулю.

Сказанное записывают в виде

. (3)

Проведем указанные в соотношении (3) вычисления, исходя из найденной Галилеем зависимости

Сделаем сначала элементарные вычисления:

а теперь, разделив на , получаем

.

Когда стремится к нулю, второе слагаемое записанной справа суммы тоже стремится к нулю, а первое остается постоянным, точнее, не зависящим от величины , поэтому в нашем случае

,

и мы нашли закон

изменения скорости свободно падающего тела. Обратите внимание, формула (3) одновременно дает и определение, и правило вычисления значений мгновенной скорости изменения функции .

Поскольку скорость сама есть функция времени, то можно было бы поставить вопрос о скорости ее изменения. В физике скорость изменения скорости называется ускорением. Таким образом, если - скорость как функция времени, то, рассуждая как и при выводе формулы (3), для мгновенного ускорения в момент времени получаем выражение

. (4)

«Открытие исчисления бесконечно малых дало математикам возможность свести законы движения тел к аналитическим уравнениям». Ж. Л. Лагранж

Посмотрим, что дает эта формула для случая свободного падения, в котором, как мы вычислили, :

,

и, поскольку - постоянная, то из (4) получается, что , т. е. ускорение свободно падающего тела постоянно и величина есть та самая физическая постоянная, которая выражает ускорение свободного падения у поверхности Земли.

Нетрудно заметить полное сходство выражений (3), (4) и понять, что мы нашли общее математическое выражение для мгновенной скорости изменения переменной величины. Конечно, результат вычислений по формулам (3), (4), как мы убедились, зависит от конкретного вида функций или но сами операции над этими функциями, которые предписываются правыми частями формул (3), (4), одни и те же.

Обобщая сделанные наблюдения, в математическом анализе уже для любой функции рассматривают важную величину:

, (5)

которую называют производной функции .

Производная, таким образом, играет роль скорости изменения зависимой переменной по отношению к изменению независимой переменной ; последняя теперь уже не обязана иметь физический смысл времени.

Значение производной зависит от значения аргумента , поэтому, как и в случае скорости, производная некоторой функции сама является функцией переменной .

В формуле (5) величину разности называют приращением аргумента функции и часто обозначают символом (читается: дельта икс), а разность обозначают обычно через (или, более полно через ) и называют приращением функции, соответствующим данному приращению аргумента. В этих обозначениях выражение (5) приобретает вид:

,

или .

Таким образом, значение производной функции в точке - это предел отношения приращения функции , соответствующего смещению от точки , к приращению аргумента , когда стремится к нулю.

Операция нахождения производной функции называется дифференцированием. С физической точки зрения, как мы теперь понимаем, дифференцирование – это определение скорости изменения переменной величины.

В дифференциальном исчислении выводятся производные основных элементарных функций. Укажем, например, что производными функций , , являются соответственно функции , и .

В дифференциальном исчислении выводятся также следующие общие правила дифференцирования:

(вынесение постоянного множителя);

(дифференцирование суммы и разности функций);

(дифференцирование произведения функций);

(дифференцирование частного функций).

Наконец, справедливо также следующее важное правило дифференцирования сложной функции: если , а , то производная функции равна , или .

Общие законы дифференцирования существенно облегчают отыскание производных, а для любых комбинаций элементарных функций делают дифференцирование столь же доступной операцией, как и арифметические действия для человека, знающего таблицу умножения.

Например, если - многочлен, то

ИСААК НЬЮТОН
(1643-1727)

В 1665 г. Исаак Ньютон окончил Кембриджский университет и собирался начать работу там же, в его родном Тринити-колледже. Однако чума, бушевавшая в Англии, заставила Ньютона уединиться на своей ферме, в Вулсторпе. «Чумные каникулы» затянулись почти на два года. «Я в то время был в расцвете моих изобретательских сил и думал о математике и философии больше, чем когда-либо позже», - писал Ньютон. Тогда и сделал молодой ученый почти все свои открытия в физике и математике. Он открыл закон всемирного тяготения и приступил с его помощью к исследованию планет. Он обнаружил, что 3-й закон Кеплера о связи между периодами обращения планет и расстоянием до Солнца с необходимостью следует, если предположить, что сила притяжения Солнца обратно пропорциональна квадрату расстояния до планеты.

Но чтобы исследовать и выражать законы физики, Ньютону приходилось заниматься и математикой. В Вулсторпе Ньютон, решая задачи на проведение касательных к кривым, вычисляя площади криволинейных фигур, создает общий метод решения таких задач – метод флюксий (производных) и флюэнт, которые у Г. В. Лейбница назывались дифференциалами. Ньютон вычислил производную и интеграл любой степенной функции. О дифференциальном и интегральном исчислениях ученый подробно пишет в своей самой значительной работе по математике «Метод флюксий» (1670-1671), которая была опубликована уже после его смерти. В ней были заложены основы математического анализа. Ньютон также находит формулу для различных степеней суммы двух чисел (см. Ньютона бином), причем не ограничивается натуральными показателями и приходит к суммам бесконечных рядов чисел (см. Ряды). Ньютон показал, как применять ряды в математических исследованиях.

Когда Ньютон вернулся в Кембридж в 1666 г., он привез бесчисленные и бесценные результаты своих математических занятий в Вулсторпе. У него пока не было времени привести их в форму, пригодную для публикации, и он не торопится с этим. Дел у него прибавляется, в 1669 г. он получает физико-математическую кафедру. В 1672 г. его выбирают членом Лондонского королевского общества (английской Академии наук).

В 1680 г. Ньютон начинает работу над основным своим сочинением «Математические начала натуральной философии», в котором он задумал изложить свою систему мира. Выход книги был крупным событием в истории естествознания. В ней все величественное здание механики строится на основании аксиом движения, которые теперь известны под названием законов Ньютона.

В «Началах» Ньютон чисто математически выводит все основные известные в то время факты механики земных и небесных тел, законы движения точки и твердого тела, кеплеровы законы движения планет.

Многие математические труды Ньютона так и не были своевременно опубликованы. Первые его сравнительно подробные публикации относятся к 1704 г. Это работы «Перечисление кривых третьего порядка», где описаны свойства этих кривых, и «Рассуждения о квадратуре круга», посвященные дифференциальному и интегральному исчислениям.

В 1688 г. И. Ньютона выбирают в парламент, а в 1699 г. он переезжает в Лондон, где получает пожизненное место директора монетного двора.

Работы И. Ньютона надолго определили пути развития физики и математики. Значительная часть классической механики надолго сохранилась в виде, созданном Ньютоном. Закон всемирного тяготения постепенно осознавался как единый принцип, позволяющий строить совершенную теорию движения небесных тел. Созданный им математический анализ открыл новую эпоху в математике.

Или если , то, полагая , , получаем, что и, значит, .

Мы уже отмечали, что к вычислению пределов вида (3), (4), (5), т. е., как теперь можно говорить, к вычислению производной, приводили многие задачи.

Рассмотрим теперь другой классический пример уже чисто геометрического вопроса, который решается в терминах производной, - построение касательной к кривой (см. Касательная).

Требуется построить прямую (рис. 1), касательную в точке к кривой – графику функции .

«Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение». Ф. Энгельс

Как и в случае определения мгновенной скорости, построение касательной будет сопровождаться уточнением самого понятия касательной.

Пусть - координаты точки : как известно, любая не вертикальная прямая, проходящая через точку , задается уравнением ,

так называемый угловой коэффициент прямой, характеризующий ее наклон к горизонтальной оси. В нашем случае , поэтому уравнение прямой, проходящей через точку , имеет вид , и мы хотим выбрать значение коэффициента так, чтобы прямая была как можно лучше «подогнана» к кривой , т. е. лучше всего приближала нашу кривую в окрестности точки . Значит, мы хотим выбрать так, чтобы приближенное равенство , или, что то же самое, приближенное равенство

,

было возможно более точным при значениях , близких к .

Но это знакомая ситуация и, с точностью до переобозначений , , это знакомое нам отношение из формулы (5), следовательно,

Итак, найдено уравнение

той прямой, которая наилучшим образом приближает кривую в окрестности точки . Эту прямую естественно считать искомой касательной к данной кривой в рассматриваемой точке.

Например, если взять параболу , т.е. , то касательная к ней в точке в силу (7) будет задаваться уравнением , которое можно преобразовать к более компактному виду .

Выше мы дали физическую интерпретацию производной как мгновенной скорости, а теперь на основании уравнения касательной (7) можно дать геометрическую трактовку производной. А именно, значение производной функции в фиксированной точке есть угловой коэффициент касательной к графику функции в точке .

Это, в частности, означает, что на участках изменения переменной , на которых , функция возрастает; там, где , функция убывает, а в точках местных максимумов или минимумов функции ее производная должна обращаться в нуль, ибо касательная в этих точках горизонтальна. Ясно также, что если в некоторой точке производная обратилась в нуль, то нельзя спешить с выводом, что это точка максимума или минимума (см. точку ), ибо знак производной может не измениться при переходе через эту точку, и функция будет продолжать возрастать или убывать. Но если производная меняет свой знак при переходе через эту точку (см. точки ), то ясно, что при функция будет иметь или местный максимум, если идет смена знака с «» на «» (как в точках ), или местный минимум, если знаки меняются с «» на «» (как в точке ).

Сделанные наблюдения о связи знака или нулей производной с характером монотонности (возрастанием, убыванием) функции или с ее экстремумами (максимумами, минимумами) имеют многочисленные применения.

Попробуем, например, проволокой данной длины огородить такой прямоугольный участок луга, чтобы получить возможно более просторный загон для скота, т.е. среди прямоугольников с заданным периметром (т.е. среди изопериметрических прямоугольников) надо найти тот, который имеет наибольшую площадь.

Если - длина одной из сторон прямоугольника, то при указанном условии длина другой стороны равна , а площадь прямоугольника равна . Надо найти максимальное значение функции на отрезке . Поскольку при или функция, очевидно, обращается в нуль (прямоугольник вырождается в отрезок), то максимум достигается при каком-то значении , лежащем между 0 и . Как найти это значение?

В соответствии со сделанным выше наблюдением максимум значений функции может быть лишь при том значении , при котором скорость изменения функции равна нулю, т. е. .

Найдем, используя уже проведенные ранее вычисления, производную нашей функции. Поскольку , то и при . По самому смыслу задачи при найденном значении аргумента функция должна иметь именно максимум. Это можно проверить и формально:

При и при .

Таким образом, мы нашли, что искомым прямоугольником с наибольшей площадью является квадрат, длина стороны которого равна .

Решение единым методом различных задач на отыскание максимальных и минимальных значений функций, или, как их принято называть в математике, задач на отыскание экстремумов, является одним из ранних и вместе с тем наиболее популярных и впечатляющих достижений математического анализа (см. Геометрические задачи на экстремум).

До сих пор, следуя И. Ньютону, в качестве главного понятия дифференциального исчисления мы выделяли производную. Г. В. Лейбниц, другой родоначальник математического анализа, в качестве исходного выбрал понятие дифференциала, которое, как мы увидим, логически равноценно понятию производной, но не совпадает с ним. Лейбниц нашел правила вычисления дифференциалов, равноценные правилам отыскания производных, и назвал развитое им исчисление дифференциальным. Это название и сохранилось. Рассмотренные выше примеры помогут нам достаточно быстро разобраться в следующих, на первый взгляд формальных, но очень важных определениях всего дифференциального исчисления.

Функция называется дифференцируемой при некотором значении ее аргумента, если приращение этой функции, отвечающее приращению ее аргумента , можно представить в виде

где - коэффициент, зависящий только от , а - величина, стремящаяся к нулю при , стремящемся к нулю.

Таким образом,

т.е. с точностью до погрешности , малой в сравнении с величиной приращения аргумента, приращение дифференцируемой в точке функции можно заменить величиной , линейной относительно приращения аргумента .

Эта приближающая линейная по функция называется дифференциалом исходной функции в точке и обозначается символом или, более полно, .

В каждой точке приближающая линейная функция , вообще говоря, своя, что отмечено зависимостью коэффициента от .

Поделив обе части равенства (8) на и учитывая, что величина стремится к нулю, когда стремится к нулю, получаем соотношение:

, (10)

позволяющее вычислять дифференциальный коэффициент и показывающее, что он просто-напросто совпадает со значением производной функции в точке .

Таким образом, если функция дифференцируема в точке , то в этой точке существует указанный в (10) предел, т.е. в ней существует производная и .

ГОТФРИД ВИЛЬГЕЛЬМ ЛЕЙБНИЦ
(1646-1716)

Математика не была его единственной страстью. С юных лет ему хотелось познать природу в целом, и математика должна была стать решающим средством в этом познании. Он был философом и лингвистом, историком и биологом, дипломатом и политическим деятелем, математиком и изобретателем. Научные и общественные планы Лейбница были грандиозны. Он мечтал о создании всемирной академии наук, о построении «универсальной науки». Он хотел выделить простейшие понятия, из которых по определенным правилам можно сформировать все сколь угодно сложные понятия. Лейбниц мечтал об универсальном языке, позволяющем записывать любые мысли в виде математических формул, причем логические ошибки должны проявляться в виде математических ошибок. Он думал о машине, которая выводит теоремы из аксиом, о превращении логических утверждений в арифметические (эта идея была воплощена в жизнь в нашем веке).

Но грандиозность замыслов уживалась у Лейбница с пониманием того, что может быть непосредственно осуществлено. Он не может организовать всемирную академию, но в 1700 г. организует академию в Берлине, рекомендует Петру I организовать академию в России. При организации Петербургской Академии наук в 1725 г. пользовались планами Лейбница. Он прекрасно умеет решать конкретные задачи и в математике: создает новый тип арифмометра, который не только складывает и вычитает числа, но и умножает, делит, возводит в степень и извлекает квадратные и кубические корни, решает трудные геометрические задачи. Вводит понятие определителя и закладывает основы теории определителей. И все же Лейбниц всегда стремился рассмотреть любой вопрос под самым общим углом зрения. Скажем, X. Гюйгенс замечает сохранение энергии на примере некоторых механических задач, а Лейбниц пытается преобразовать это утверждение во всеобщий закон природы, он рассматривает Вселенную в целом как вечный двигатель (предварительная формулировка закона сохранения энергии!).

Но особенно ярко проявились эти качества Лейбница, когда он, узнав о разнообразных математических и механических задачах, решенных Гюйгенсом, по совету последнего знакомится с работой Б. Паскаля о циклоиде. Он начинает понимать, что в решении этих разных задач спрятан общий, универсальный метод решения широкого круга задач и что Паскаль остановился перед решающим шагом, «будто на его глазах была пелена». Лейбниц создает дифференциальное и интегральное исчисления, которые в другом варианте были построены, но не опубликованы И. Ньютоном.

Ученый, занимавшийся разработкой универсального языка, понимает, какую роль в новом исчислении должна играть символика (см. Знаки математические). Без символики (которая сохранилась до наших дней в форме, предложенной Лейбницем) метод математического анализа не вышел бы за пределы узкого круга избранных (как это было с алгеброй до символики Виета-Декарта). Кстати, Лейбниц предложил несколько других математических знаков, например (равенство), (умножение). В отличие от Ньютона Лейбниц потратил много сил на передачу своего метода другим математикам, среди которых выделялись братья Якоб и Иоганн Бернулли. По его инициативе создается журнал, в котором группа математиков оттачивает методы нового математического анализа.

Смысл своей жизни Лейбниц видел в познании природы, в создании идей, помогающих раскрыть ее законы.

Обратно, если у функции в точке есть определенная равенством (5) производная, то

,

где поправка стремится к нулю, когда стремится к нулю. Умножая это равенство на , получаем

и значит, функция дифференцируема в точке .

Итак, мы убедились, что функция имеет дифференциал в том, и только в том, случае, когда она имеет производную , причем . Но дифференциал как линейная по функция вполне определяется коэффициентом , поэтому отыскание дифференциала функции вполне равносильно отысканию ее производной. Вот почему обе эти операции часто называют одним термином - «дифференцирование», а исчисление называют дифференциальным.

Если вместо писать , то вместо можно записать . Если взять , то и , поэтому вместо приращения независимой переменной часто пишут дифференциал . В этих обозначениях получается красивая запись дифференциала функции, от которой Лейбниц и пришел к обозначению для производной , рассматривая последнюю как отношение дифференциалов функции и ее аргумента. Заметим, что обозначение для производной было введено лишь в 1770 г. французским математиком Ж. Л. Лагранжем, а исходным было обозначение

Г. Лейбница, которое во многих отношениях настолько удачно, что широко используется и по сей день.

Прежде чем показать, как дифференциал можно использовать в приближенных вычислениях, проследим его геометрическую и физическую интерпретацию.

Если в равенстве (8) вместо написать , то можно считать, что на рис. 1 левой части равенства (8) отвечает отрезок (это приращение функции или приращение ординаты кривой ), дифференциалу отвечает отрезок (это приращение ординаты касательной, приближающей нашу кривую в окрестности точки ), а остатку соответствует отрезок , который тем меньше в сравнении с отрезком , чем меньше приращение аргумента. Именно это обстоятельство отражают соотношение (11) и приближенное равенство (9), означающее, что .., - его скорость, а, . Оказывается, соотношение (12) является частным случаем общего равенства, а с точностью, не худшей, чем .

Можно проверить, что в рассматриваемом случае при неограниченном увеличении , поэтому можно предложить такую запись:

Справа в этом равенстве стоит бесконечно много слагаемых, т.е., как говорят, имеется ряд. Равенство (16) понимается, как и вообще сумма ряда, в том смысле, что при любом значении разность между и суммой конечного числа взятых по порядку слагаемых ряда стремится к нулю, если количество слагаемых неограниченно увеличивается.

Ценность формул вида (15), (16) состоит в том, что они позволяют заменить вычисление значений сложной функции вычислением значений приближающего ее многочлена. Вычисление же значений многочлена сводится к одним арифметическим операциям, которые, например, можно выполнить на электронной вычислительной машине.

А равенство

известное в математике как бином Ньютона (см. Ньютона бином).