График функции y ax2 bx. Урок «Функция y=ax2, ее график и свойства. Задачи для самостоятельного решения

Дата: Урок 1
тема: Числовая окружность на координатной прямой

Цели: ввести понятие модели числовой окружности в декартовой и криволинейной системе координат; формировать умение находить декартовы координаты точек числовой окружности и выполнять обратное действие: зная декартовы координаты точки, определять её числовое значение на числовой окружности.

Ход урока

I. Организационный момент.

II. Объяснение нового материала.

1. Разместив числовую окружность в декартовой системе координат, подробно разбираем свойства точек числовой окружности, находящихся в различных координатных четвертях.

Для точки М числовой окружности используют запись М (t ), если речь идет о криволинейной координате точки М , или запись М (х ; у ), если речь идет о декартовых координатах точки.

2. Отыскание декартовых координат «хороших» точек числовой окружности. Речь идет о переходе от записи М (t ) к М (х ; у ).

3. Отыскание знаков координат «плохих» точек числовой окружности. Если, например, М (2) = М (х ; у ), то х  0; у  0. (школьники учатся определять знаки тригонометрических функций по четвертям числовой окружности.)

1. № 5.1 (а; б), № 5.2 (а; б), № 5.3 (а; б).

Данная группа заданий направлена на формирование умения отыскивать декартовы координаты «хороших» точек на числовой окружности.

Решение:

5.1 (а).

2. № 5.4 (а; б), № 5.5 (а; б).

Эта группа заданий направлена на формирование умений находить криволинейные координаты точки по её декартовым координатам.

Решение:

5.5 (б).

3. № 5.10 (а; б).

Данное упражнение направлено на формирование умения находить декартовы координаты «плохих» точек.

V. Итоги урока.

Вопросы учащимся:

– Что собой представляет модель – числовая окружность на координатной плоскости?

– Как, зная криволинейные координаты точки на числовой окружности, найти её декартовы координаты и наоборот?

Домашнее задание: № 5.1 (в; г) – 5.5 (в; г), № 5.10 (в; г).

Дата: Урок 2
ТЕМА: Решение задач на модели «числовая окружность на координатной плоскости»

Цели: продолжить формирование умения переходить от криволинейных координат точки на числовой окружности к декартовым координатам; формировать умение отыскивать на числовой окружности точки, координаты которых удовлетворяют заданному уравнению или неравенству.

Ход урока

I. Организационный момент.

II. Устная работа.

1. Назовите криволинейные и декартовы координаты точек на числовой окружности.

2. Сопоставьте дугу на окружности и её аналитическую запись.

III. Объяснение нового материала.

2. Отыскание на числовой окружности точек, координаты которых удовлетворяют заданному уравнению.

Рассматриваем примеры 2 и 3 со с. 41–42 учебника.

Важность этой «игры» очевидна: учащиеся готовятся к решению простейших тригонометрических уравнений вида Для понимания сути дела следует прежде всего научить школьников решать эти уравнения с помощью числовой окружности, не переходя к готовым формулам.

При рассмотрении примера на нахождение точки с абсциссой обращаем внимание учащихся на возможность объединения ддвух серий ответов в одну формулу:

3. Отыскание на числовой окружности точек, координаты которых удовлетворяют заданному неравенству.

Рассматриваем примеры 4–7 со с. 43–44 учебника. Решая подобные задачи, мы готовим учащихся к решению тригонометрических неравенств вида

После рассмотрения примеров учащиеся могут самостоятельно сформулировать алгоритм решения неравенств указанного типа:

1) от аналитической модели переходим к геометрической модели – дуга МР числовой окружности;

2) составляем ядро аналитической записи МР ; для дуги получаем

3) составляем общую запись:

IV. Формирование умений и навыков.

1-я группа. Нахождение точки на числовой окружности с координатой, удовлетворяющей заданному уравнению.

№ 5.6 (а; б) – № 5.9 (а; б).

В процессе работы над этими упражнениями отрабатываем пошаговость выполнения: запись ядра точки, аналитической записи.

2-я группа. Нахождение точек на числовой окружности с координатой, удовлетворяющей заданному неравенству.

№ 5.11 (а; б) – 5.14 (а;б).

Главное умение, которое должны приобрести школьники при выполнении данных упражнений, – это составление ядра аналитической записи дуги.

V. Самостоятельная работа.

Вариант 1

1. Обозначьте на числовой окружности точку, которая соответствует заданному числу, и найдите её декартовы координаты:

2. Найдите на числовой окружности точки с данной абсциссой и запишите, каким числам t они соответствуют.

3. Обозначьте на числовой окружности точки с ординатой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.

Вариант 2

1. Обозначьте на числовой окружности точку, которая соответствует данному числу, и найдите её декартовы координаты:

2. Найдите на числовой окружности точки с данной ординатой у = 0,5 и запишите, каким числам t они соответствуют.

3. Обозначьте на числовой окружности точки с абсциссой, удовлетворяющей неравенству и запишите при помощи двойного неравенства, каким числам t они соответствуют.

VI. Итоги урока.

Вопросы учащимся:

– Как найти на окружности точку, абсцисса которой удовлетворяет заданному уравнению?

– Как найти на окружности точку, ордината которой удовлетворяет заданному уравнению?

– Назовите алгоритм решения неравенств с помощью числовой окружности.

Домашнее задание: № 5.6 (в; г) – № 5.9 (в; г),

№ 5.11 (в; г) – № 5.14 (в; г).

Урок и презентация на тему: "Числовая окружность на координатной плоскости"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Алгебраические задачи с параметрами, 9–11 классы
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов

Что будем изучать:
1. Определение.
2. Важные координаты числовой окружности.
3. Как искать координату числовой окружности?
4. Таблица основных координат числовой окружности.
5. Примеры решения задач.

Определение числовой окружности на координатной плоскости

Расположим числовую окружность в координатной плоскости так, чтобы центр окружности совместился с началом координат, а её радиус принимаем за единичный отрезок. Начальная точка числовой окружности A совмещена с точкой (1;0).

Каждая точка числовой окружности имеет в координатной плоскости свои координаты х и у, причем:
1) при $x > 0$, $у > 0$ - в первой четверти;
2) при $х 0$ - во второй четверти;
3) при $х 4) при $х > 0$, $у
Для любой точки $М(х; у)$ числовой окружности выполняются неравенства: $-1
Запомните уравнение числовой окружности: $x^2 + y^2 = 1$.

Нам важно научиться находить координаты точек числовой окружности, представленных на рисунке.

Найдем координату точки $\frac{π}{4}$

Точка $М(\frac{π}{4})$ - середина первой четверти. Опустим из точки М перпендикуляр МР на прямую ОА и рассмотрим треугольник OMP.Так как дуга АМ составляет половину дуги АВ, то $∠MOP=45°$.
Значит, треугольник OMP - равнобедренный прямоугольный треугольник и $OP=MP$, т.е. у точки M абсцисса и ордината равны: $x = y$.
Так как координаты точки $M(х;y)$ удовлетворяют уравнению числовой окружности, то для их нахождения нужно решить систему уравнений:
$\begin {cases} x^2 + y^2 = 1, \\ x = y. \end {cases}$
Решив данную систему, получаем: $y = x =\frac{\sqrt{2}}{2}$.
Значит, координаты точки M, соответствующей числу $\frac{π}{4}$, будут $M(\frac{π}{4})=M(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2})$.
Аналогичным образом рассчитываются координаты точек, представленных на предыдущем рисунке.

Координаты точек числовой окружности



Рассмотрим примеры

Пример 1.
Найти координату точки числовой окружности: $Р(45\frac{π}{4})$.

Решение:
$45\frac{π}{4} = (10 + \frac{5}{4}) * π = 10π +5\frac{π}{4} = 5\frac{π}{4} + 2π*5$.
Значит, числу $45\frac{π}{4}$ соответствует та же точка числовой окружности, что и числу $\frac{5π}{4}$. Посмотрев значение точки $\frac{5π}{4}$ в таблице, получаем: $P(\frac{45π}{4})=P(-\frac{\sqrt{2}}{2};-\frac{\sqrt{2}}{2})$.

Пример 2.
Найти координату точки числовой окружности: $Р(-\frac{37π}{3})$.

Решение:

Т.к. числам $t$ и $t+2π*k$, где k-целое число, соответствует одна и та же точка числовой окружности то:
$-\frac{37π}{3} = -(12 + \frac{1}{3})*π = -12π –\frac{π}{3} = -\frac{π}{3} + 2π*(-6)$.
Значит, числу $-\frac{37π}{3}$ соответствует та же точка числовой окружности, что и числу $–\frac{π}{3}$, а числу –$\frac{π}{3}$ соответствует та же точка, что и $\frac{5π}{3}$. Посмотрев значение точки $\frac{5π}{3}$ в таблице, получаем:
$P(-\frac{37π}{3})=P(\frac{{1}}{2};-\frac{\sqrt{3}}{2})$.

Пример 3.
Найти на числовой окружности точки с ординатой $у =\frac{1}{2}$ и записать, каким числам $t$ они соответствуют?

Решение:
Прямая $у =\frac{1}{2}$ пересекает числовую окружность в точках М и Р. Точка М соответствует числу $\frac{π}{6}$ (из данных таблицы). Значит, и любому числу вида: $\frac{π}{6}+2π*k$. Точка Р соответствует числу $\frac{5π}{6}$, а значит, и любому числу вида $\frac{5π}{6} +2 π*k$.
Получили, как часто говорят в таких случаях, две серии значений:
$\frac{π}{6} +2 π*k$ и $\frac{5π}{6} +2π*k$.
Ответ: $t=\frac{π}{6} +2 π*k$ и $t=\frac{5π}{6} +2π*k$.

Пример 4.
Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{2}}{2}$ и записать, каким числам $t$ они соответствуют.

Решение:

Прямая $x =-\frac{\sqrt{2}}{2}$ пересекает числовую окружность в точках М и Р. Неравенству $x≥-\frac{\sqrt{2}}{2}$ соответствуют точки дуги РМ. Точка М соответствует числу $3\frac{π}{4}$ (из данных таблицы). Значит, и любому числу вида $-\frac{3π}{4} +2π*k$. Точка Р соответствует числу $-\frac{3π}{4}$, а значит, и любому числу вида $-\frac{3π}{4} +2π*k$.

Тогда получим $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Ответ: $-\frac{3π}{4} +2 π*k ≤t≤\frac{3π}{4} +2πk$.

Задачи для самостоятельного решения

1) Найти координату точки числовой окружности: $Р(\frac{61π}{6})$.
2) Найти координату точки числовой окружности: $Р(-\frac{52π}{3})$.
3) Найти на числовой окружности точки с ординатой $у = -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
4) Найти на числовой окружности точки с ординатой $у ≥ -\frac{1}{2}$ и записать, каким числам $t$ они соответствуют.
5) Найти на числовой окружности точки с абсциссой $x≥-\frac{\sqrt{3}}{2}$ и записать, каким числам $t$ они соответствуют.

Если расположить единичную числовую окружность на координатной плоскости, то для ее точек можно найти координаты. Числовую окружность располагают так, чтобы ее центр совпал с точкой начала координат плоскости, т. е. точкой O (0; 0).

Обычно на единичной числовой окружности отмечают точки соответствующие от начала отсчета на окружности

  • четвертям - 0 или 2π, π/2, π, (2π)/3,
  • серединам четвертей - π/4, (3π)/4, (5π)/4, (7π)/4,
  • третям четвертей - π/6, π/3, (2π)/3, (5π)/6, (7π)/6, (4π)/3, (5π)/3, (11π)/6.

На координатной плоскости при указанном выше расположении на ней единичной окружности можно найти координаты, соответствующие этим точкам окружности.

Координаты концов четвертей найти очень легко. У точки 0 окружности координата x равна 1, а y равен 0. Можно обозначить так A (0) = A (1; 0).

Конец первой четверти будет располагаться на положительной полуоси ординат. Следовательно, B (π/2) = B (0; 1).

Конец второй четверти находится на отрицательной полуоси абсцисс: C (π) = C (-1; 0).

Конец третьей четверти: D ((2π)/3) = D (0; -1).

Но как найти координаты середин четвертей? Для этого строят прямоугольный треугольник. Его гипотенузой является отрезок от центра окружности (или начала координат) к точке середины четверти окружности. Это радиус окружности. Поскольку окружность единичная, то гипотенуза равна 1. Далее проводят перпендикуляр из точки окружности к любой оси. Пусть будет к оси x. Получается прямоугольный треугольник, длины катетов которого - это и есть координаты x и y точки окружности.

Четверть окружности составляет 90º. А половина четверти составляет 45º. Поскольку гипотенуза проведена к точке середины четверти, то угол между гипотенузой и катетом, выходящим из начала координат, равен 45º. Но сумма углов любого треугольника равна 180º. Следовательно, на угол между гипотенузой и другим катетом остается также 45º. Получается равнобедренный прямоугольный треугольник.

Из теоремы Пифагора получаем уравнение x 2 + y 2 = 1 2 . Поскольку x = y, а 1 2 = 1, то уравнение упрощается до x 2 + x 2 = 1. Решив его, получаем x = √½ = 1/√2 = √2/2.

Таким образом, координаты точки M 1 (π/4) = M 1 (√2/2; √2/2).

В координатах точек середин других четвертей будут меняться только знаки, а модули значений оставаться такими же, так как прямоугольный треугольник будет только переворачиваться. Получим:
M 2 ((3π)/4) = M 2 (-√2/2; √2/2)
M 3 ((5π)/4) = M 3 (-√2/2; -√2/2)
M 4 ((7π)/4) = M 4 (√2/2; -√2/2)

При определении координат третьих частей четвертей окружности также строят прямоугольный треугольник. Если брать точку π/6 и проводить перпендикуляр к оси x, то угол между гипотенузой и катетом, лежащим на оси x, составит 30º. Известно, что катет, лежащий против угла в 30º, равен половине гипотенузы. Значит, мы нашли координату y, она равна ½.

Зная длины гипотенузы и одного из катетов, по теореме Пифагора находим другой катет:
x 2 + (½) 2 = 1 2
x 2 = 1 - ¼ = ¾
x = √3/2

Таким образом T 1 (π/6) = T 1 (√3/2; ½).

Для точки второй трети первой четверти (π/3) перпендикуляр на ось лучше провести к оси y. Тогда угол при начале координат также будет 30º. Здесь уже координата x будет равна ½, а y соответственно √3/2: T 2 (π/3) = T 2 (½; √3/2).

Для других точек третей четвертей будут меняться знаки и порядок значений координат. Все точки, которые ближе расположены к оси x будут иметь по модулю значение координаты x, равное √3/2. Те точки, которые ближе к оси y, будут иметь по модулю значение y, равное √3/2.
T 3 ((2π)/3) = T 3 (-½; √3/2)
T 4 ((5π)/6) = T 4 (-√3/2; ½)
T 5 ((7π)/6) = T 5 (-√3/2; -½)
T 6 ((4π)/3) = T 6 (-½; -√3/2)
T 7 ((5π)/3) = T 7 (½; -√3/2)
T 8 ((11π)/6) = T 8 (√3/2; -½)

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Числовая окружность в координатной плоскости

Повторим: Единичная окружность – числовая окружность, радиус которой равен 1. R=1 C=2 π + - у х

Если точка М числовой окружности соответст-вует числу t, то она соответствует и числу вида t+2 π k , где k – любое целое число (k ϵ Z) . M(t) = M(t+2 π k), где k ϵ Z

Основные макеты Первый макет 0 π у х Второй макет у х

х у 1 А(1, 0) B (0 , 1) C (- 1, 0) D (0 , -1) 0 x>0 y>0 x 0 x 0 y

Найдем координаты точки М, соответствующей точке. 1) 2) х у М P 45° O A

Координаты основных точек первого макета 0 2 x 1 0 -1 0 1 y 0 1 0 -1 0 0 x 1 0 -1 0 1 y 0 1 0 -1 0 D у х

М P х у O A Найдем координаты точки М, соответствующей точке. 1) 2) 30°

М P Найдем координаты точки М, соответствующей точке. 1) 2) 30° х у O A В

Используя свойство симметрии, найдем координаты точек, кратных у х

Координаты основных точек второго макета x y x y у х

Пример Найти координаты точки числовой окружности. Решение: P у х

Пример Найти на числовой окружности точки с ординатой Решение: у х x y x y

Упражнения: Найти координаты точек числовой окружности: а) , б) . Найти на числовой окружности точки с абсциссой.

Координаты основных точек 0 2 x 1 0 -1 0 1 y 0 1 0 -1 0 0 x 1 0 -1 0 1 y 0 1 0 -1 0 Координаты основных точек первого макета x y x y Координаты основных точек второго макета


По теме: методические разработки, презентации и конспекты

Дидактический материал по алгебре и началам анализа в 10 классе (профильный уровень) "Числовая окружность на координатной плоскости"

Вариант 1.1.Найти на числовой окружности точку:А) -2∏/3Б) 72.Како й четверти числовой окружности принадлежит точка 16.3.Найти ко...

Представляем вашему вниманию видеоурок по теме «Числовая окружность». Дается определение, что такое синус, косинус, тангенс, котангенс и функции y = sin x , y = cos x , y = tg x , y = ctg x для любого числового аргумента. Рассматривается стандартные задачи на соответствие между числами и точками в единичной числовой окружности для нахождения каждому числу единственной точки, и, наоборот, на нахождение для каждой точки множество чисел которые ей соответствуют.

Тема: Элементы теории тригонометрических функций

Урок: Числовая окружность

Наша ближайшая цель - определить тригонометрические функции: синус , косинус , тангенс , котангенс-

Числовой аргумент можно откладывать на координатной прямой или на окружности.

Такая окружность называется числовой или единичной, т.к. для удобства берут окружность с

Например, дана точка Отметим ее на координатной прямой

и на числовой окружности .

При работе с числовой окружностью условились, что движение против часовой стрелки - положительное направление, по часовой стрелке - отрицательное.

Типовые задачи - нужно определить координаты заданной точки либо, наоборот, найти точку по ее координатам.

Координатная прямая устанавливает взаимно-однозначное соответствие между точками и числами. Например, числу соответствует точка А с координатой

Каждая точка В с координатой характеризуется только одним числом - расстоянием от 0 до взятым со знаком плюс или минус.

На числовой окружности взаимно-однозначное соответствие работает только в одну сторону.

Например, есть точка В на координатной окружности (рис.2), длина дуги равна 1, т.е. эта точка соответствует 1.

Дана окружность, длина окружности Если то - длина единичной окружности.

Если мы прибавим , получим ту же точку В, еще - тоже попадем в т. В, отнимем - тоже т. В.

Рассмотрим точку B: длина дуги =1, тогда числа характеризуют т. В на числовой окружности.

Таким образом, числу 1 соответствует единственная точка числовой окружности - точка В, а точке В соответствует бесчисленное множество точек вида .

Для числовой окружности верно следующее:

Если т. М числовой окружности соответствует числу то она соответствует и числу вида

Можно делать сколько угодно полных оборотов вокруг числовой окружности в положительном или отрицательном направлении - точка одна и та же. Поэтому тригонометрические уравнения имеют бесчисленное множество решений.

Например, дана точка D. Каковы числа, которым она соответствует?

Измеряем дугу .

множество всех чисел, соответствующих точке D.

Рассмотрим основные точки на числовой окружности.

Длина всей окружности.

Т.е. запись множества координат может быть различной.

Рассмотрим типовые задачи на числовую окружность.

1. Дано: . Найти: точку на числовой окружности.

Выделяем целую часть:

Необходимо найти т. на числовой окружности. , тогда.

В это множество входит и точка .

2. Дано: . Найти: точку на числовой окружности.

Необходимо найти т.

т.также принадлежит этому множеству.

Решая стандартные задачи на соответствие между числами и точками на числовой окружности, мы выяснили, что можно для каждого числа найти единственную точку, и можно для каждой точки найти множество чисел, которые характеризуются данной точкой.

Разделим дугу на три равные части и отметим точки M и N.

Найдем все координаты этих точек.

Итак, наша цель - определение тригонометрических функций. Для этого нам необходимо научиться задавать аргумент функции. Мы рассмотрели точки единичной окружности и решили две типовые задачи - найти точку на числовой окружности и записать все координаты точки единичной окружности.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб.для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил.

№№ 531; 536; 537; 541; 552.