Химические синапсы. Строение, классификация и функциональные свойства синапсов. Морфо-функциональные особенности электрических и химических синапсов. Синапс: основные виды и функции

Рассмотрим, как осуществляется химическая, синаптическая передача. Схематично это выглядит так: импульс возбуждения, достигает пресинаптической мембраны нервной клетки (дендрита или аксона), в которой содержатся синаптические пузырьки, заполненные особым веществом - медиатором (от латинского «Media» - середина, посредник, передатчик). Пресинаптическая

мембрана содержит много кальциевых каналов. Потенциал действия деполяризует пресинаптическое окончание и, таким образом, изменяет состояние кальциевых каналов, вследствие чего они открываются. Так как концентрация кальция (Са 2 +) во внеклеточной среде больше, чем внутри клетки, то через открытые каналы кальций проникает в клетку. Увеличение внутриклеточного содержания кальция, приводит к слиянию пузырьков с пресинаптической мембраной. Медиатор выходит из синаптических пузырьков в синоптическую щель. Синаптическая щель в химических синапсах довольно широкая и составляет в среднем 10-20 нм. Здесь медиатор связывается с белками - рецепторами, которые встроены в постсинаптическую мембрану. Связывание медиатора с рецептором начинает цепь явлений, приводящих к изменению состояния постсинаптической мембраны, а затем и всей постсинаптической клетки. После взаимодействия с молекулой медиатора рецептор активируется, заслонка открывается, и канал становится проходимым или для одного иона, или для нескольких ионов одновременно.

Следует отметить, что химические синапсы отличаются не только механизмом передачи, но также и многими функциональными свойствами. Некоторые из них мне хотелось бы указать. Например, в синапсах с химическим механизмом передачи продолжительность синоптической задержки, то есть интервал между приходом импульса в пресинаптическое окончание и началом постсинаптического потенциала, у теплокровных животных составляет 0,2 - 0,5мс. Также, химические синапсы отличаются односторонним проведением, то есть медиатор, обеспечивающий передачу сигналов, содержится только в пресинаптическом звене. Учитывая, что в химических возникновениях синапсах возникновение постсинаптического потенциала обусловлено изменением ионной проницаемости постсинаптической мембраны, они эффективно обеспечивают как возбуждение, так и торможение. Указав, на мой взгляд, функциональные основные свойства химической синаптической передачи, рассмотрим, как же осуществляется процесс высвобождения медиатора, а так же опишем наиболее известные из них.

Выделение медиа тора:

Фактор, выполняющий медиаторную функцию, вырабатывается в теле нейрона, и оттуда транспортируется в окончание аксона. Содержащийся в пресинаптческих окончаниях медиатор должен выделиться в синаптическую щель, чтобы воздействовать на рецепторы постсинаптической мембраны, обеспечивая транссинаптическую передачу сигналов. В качестве медиатора могут выступать такие вещества, как ацетилхолин, катехоламиновая группа, серотонин, нейропиптиды и многие другие, их общие свойства будут описаны ниже.

Еще до того, как были выяснены многие существенные особенности процесса высвобождения медиатора, было установлено, что пресинаптические окончания могут изменять состояния спонтанной секреторной активности. Постоянно выделяемые небольшие порции медиатора вызывают в постсинаптической клетке так называемые спонтанные, миниатюрные постсинаптические потенциалы. Это было установлено в 1950 году английскими учеными Феттом и Катцом, которые, изучая работу нервно-мышечного синапса лягушки, обнаружили, что без всякого действия на нерв в мышце в области постсинаптической мембраны сами по себе через случайные промежутки времени возникают небольшие колебания потенциала, амплитудой примерно в 0,5мВ. Открытие, не связанного с приходом нервного импульса, выделения медиатора помогло установить квантовый характер его высвобождения, то есть получилось, что в химическом синапсе медиатор выделяется и в покое, но изредка и небольшими порциями. Дискретность выражается в том, что медиатор выходит из окончания не диффузно, не в виде отдельных молекул, а в форме многомолекулярных порций (или квантов), в каждой из которых содержится несколько тысяч молекул.

Происходит это следующим образом: в аксоплазме окончаний нейрона в непосредственной близости к пресинаптической мембране при рассмотрении под электронным микроскопом было обнаружено множество пузырьков или везикул, каждая из которых содержит один квант медиатора. Токи действия, вызываемые пресинаптическими импульсами, не оказывают заметного влияния на постсинаптическую мембрану, но приводят к разрушению оболочки пузырьков с медиатором. Этот процесс (экзоцитоз) заключается в том, что пузырек, подойдя к внутренней поверхности мембраны пресинаптического окончания при наличии кальция (Са 2 +), сливается с пресинаптической мембраной, в результате чего и происходит опорожнение пузырька в синаптическую щель. После разрушения пузырька окружающая его мембрана включается в мембрану пресинаптического окончания, увеличивая его поверхность. В дальнейшем, в результате процесса эндоцитоза, небольшие участки пресинаптической мембраны впячиваются внутрь, вновь образуя пузырьки, которые впоследствии снова способны включать медиатор и вступать в цикл его высвобождения.

  • Антигенная структура бактерий. Групповые, ввдовые, типовые антигены. Перекрестнореагируюшие антигены. Антигенная формула.
  • Антигенная структура вирусов гриппа и ее изменчивость, роль в эпидемическом и пандемическом распространении гриппа. Механизмы естественного и приобретенного иммунитета.
  • Схема процесса передачи нервного сигнала в химическом синапсе

    Подавляющее большинство синапсов в нервной системецарства животных являются именно химическими. Для них характерно наличие нескольких общих черт, хотя, тем не менее, размеры и форма пре- и постсинаптических компонентов варьируют очень широко. Синапсы в коре головного мозга млекопитающих имеют претерминальныеаксоны около 100 нанометров толщиной и пресинаптические бутоны со средним диаметром около 1 микрометра.

    Химический синапс состоит из двух частей:пресинаптической , образованной булавовидным расширением окончанием аксона передающей клетки ипостсинаптической , представленной контактирующим участком плазматической мембраны воспринимающей клетки. Между обеими частями имеется синаптическая щель - промежуток шириной 10-50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

    Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные рецепторы.

    В синаптическом расширении имеются мелкие везикулы, так называемые пресинаптические или синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуютрецепторы к тому или иному медиатору.

    Одинаковый размер пресинаптических пузырьков во всех исследованных синапсах (40-50 нанометров) сначала считали доказательством того, что каждая везикула является минимальным кластером, чье освобождение требуется для производства синаптического сигнала. Везикулы размещаются напротив пресинаптической мембраны, что обусловлено их функциональным назначением для высвобождения медиатора в синаптическую щель. Также около пресинаптического пузырька имеется большое количество митохондрий (производящихаденозинтрифосфат) и упорядоченные структуры протеиновых волокон.

    Синаптическая щель - это пространство между пресинаптическим пузырьком и постсинаптической мембраной от 20 до 30 нанометров шириной, которое содержит связующие пре- и постсинапс структуры, построенные изпротеогликана. Ширина синаптической щели в каждом отдельном случае обусловлена ​​тем, что извлеченный из пресинапса медиатор должен проходить к постсинапсу за время, являющееся значительно меньше частоты нервных сигналов, характерных для нейронов, образующих синапс (время прохождения медиатора от пре- к постсинаптической мембране - порядка нескольких микросекунд).

    Постсинаптическая мембрана принадлежит клетке, которая принимает нервные импульсы. Механизмом трансляции химического сигнала медиатора в электрический потенциал действия на этой клетке являютсярецепторы - белковые макромолекулы, встроенные в постсинаптическую мембрану.

    С помощью специальных ультрамикроскопичекских методик в последние годы был получен достаточно большой объем информации о детальной структуре синапсов.

    Так, на пресинаптической мембране была открыта упорядоченная струтура кратероподобных углублений диаметром 10 нанометров, вдавленных внутрь. Сначала их именовали синаптопорами, но сейчас эти структуры называют местами присоединения везикул (МПВ). МПВ собраны в упорядоченные группы численностью по шесть отдельных углублений вокруг так называемых уплотненных выступлений. Таким образом, уплотненные выступления формируют правильные треугольные структуры на внутренней стороне пресинаптической мембраны, а МПВ - гексагональные, и являются местами, где везикулы открываются и выбрасывают медиатор в синаптическую щель.

    Структура электрического синапса:

    Структура электрических синапсов изучена с помощью электронной микроскопии и других методов.

    В отличие от химического синапса, синаптическая щель в электрическом синапсе чрезвычайно узка.Через синаптическую щель данного типа синапсов проходят пространственно упорядоченные белковые каналы с гидрофильной порой, каждый примерно 5 нанометров в диаметре, которые перфорируют пре- и постсинаптическую мембрану и называются коннексонами. У первичноротых организмов (нематоды,моллюски, членистоногие) коннексоны сформированы белками паннексинами (англ.) или иннексинами (англ.); увторичноротых (асцидии, позвоночные) коннексоны построены из белков другого типа - коннексинов, которые кодируются другой группой генов. У иглокожих пока не обнаружены ни паннексины, ни коннексины; возможно, у них имеется еще одно семейство белков, формирующих щелевые контакты и электрические синапсы

    У позвоночных есть и паннексины, и коннексины. Но до сих пор у позвоночных не выявлено ни одного электрического синапса, где межклеточные каналы были бы сформированы паннексинами.

    Через коннексины (или паннексины), связывающие пре- и постсинаптический нейроны, проходят ионы и малые молекулы, в том числе искусственно введенные в клетку флуоресцентные красители. Проход указанных красителей через электрический синапс может быть зарегистрирован даже с помощью светового микроскопа.

    Электрические синапсы позволяют осуществлять электрическую проводимость в обоих направлениях (в отличие от химических); тем не менее, в последнее время у некоторых ракообразных были открыты выпрямляющие электрические синапсы, то есть такие, которые позволяют осуществлять прохождение нервного сигнала только в одном направлении.

    Строение и функции нервно-мышечного синапса:

    Основной структурной единицей нервной системы является нейрон, специализированными функциями которого являются прием, первичная обработка и передача информации. Типичные двигательные нейроны имеют 5-7 отростков, или дендритов, и длинный волокнистый отросток - аксон, который покрыт миелином (оболочкой белково-липидного комплекса).

    Моторный аксон, подходя к мышце, теряет миелиновую оболочку и делится на терминальные веточки, каждая из которых подходит к отдельному мышечному веретену. Нервная клетка вместе с сарколеммой мышечного волокна образует структуру, которую называют нервно-мышечным синапсом. Оголенная часть нерва, обращенная к поверхности мышечного волокна, - это пресинаптическая мембрана; оголенная часть мышечного волокна - это пост-синаптическая мембрана; микропространство между этими мембранами - это синаптичес-кая щель. Поверхность мышечного волокна образует множественные контактные складки, на которых расположены N-холинореиепторы.
    В пресинаптических структурах синтезируется основная часть ацетилхолина (АХ). Синтез происходит путем переноса ацетильной группы с коэнзима А на холин при участии фермента холинацетилазы. Ацетилхолин депонируется в виде так называемых синаптических везикул, которые представляют собой заготовленные кванты этого медиатора. С помощью ацетилхолина происходит переход возбуждения с нерва на скелетную мышцу.
    Химический механизм проведения возбуждения содержит элементы элекгро-физиологических явлений. В покое постсинаптическая мембрана находится в состоянии статической поляризации: ее внутренняя поверхность электроотрицательная по отношению к внешней. Электростатическая разница между ними составляет около 90 мВ. При возникновении импульса развивается потенциал действия в нервном окончании: высвобождаются ионы Са++, которые соединяясь с протеинами способствуют высвобождению ацетилхолина из везикул. В каждом терминале аксона имеется до 200 таких везикул, которые содержат около 10 ООО молекул ацетилхолина.
    В синаптической щели ацетилхолин вступает в связь со специализированными участками постсинаптической мембраны - холинергическими рецепторами. Большинство этих рецепторов расположены на внутренней поверхности контактных складок. Постсинаптическая мембрана содержит никотиновые АХ-рецепторы, мембрана которых состоит из протеинов с молекулярным весом 250 000 Дт. Соединение первой а-субъединицы с ацетилхолином увеличивает сродство последнего со второй сс-субъединицей. Этот механизм обеспечивает положительную обратную связь для высвобождения трансмиттера во время высокой активности нервно-мышечного синапса.
    Содержащийся в синаптической зоне фермент ацетилхолинэстераза быстро прекращает действие ацетилхолина. Он гидролизируется на холин и уксусную кислоту.

    Химические синапсы можно классифицировать по их место­положению и принадлежности соответствующим структурам: пе­риферические (нервно-мышечные, нейросекреторные, рецеп-торно-нейрональные); центральные (аксосоматические, аксоден-Дритные, аксоаксональные, соматодендритные, соматосоматиче-ские); по знаку шс действия - возбуждающие и тормозящие; по медиатору, который осуществляет передачу, - холинергичес-кие, адренергические, серотонинергические, глицинергические и т.д.

    Синапс состоит из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели. Особенностью постсинаптической мембраны является на­личие в ней специальных рецепторов, чувствительных к опреде­ленному медиатору, и наличие хемозависимых ионных каналов. Возбуждение передается с помощью медиаторов (посредников). Медиаторы - это химические вещества, которые в зависимости от их природы делятся на следующие группы: моноамины (аце-тилхолин, дофамин, норадреналин, серотонин), аминокислоты (гамма-аминомасляная кислота - ГАМК, глутаминовая кислота, глицин и др.) и нейропептиды (вещество Р, эндорфины, нейро-тензин, ангиотензин, вазопрессин, соматостатин и др.). Медиа­тор находится в пузырьках пресинаптического утолщения, куда он может поступать либо из центральной области нейрона с по­мощью аксонального транспорта, либо за счет обратного захвата медиатора из синаптической щели. Он может также синтезиро­ваться в синаптических терминалях из продуктов его расщепления.

    Когда к окончанию аксона приходит ПД и пресинаптическая мембрана деполяризуется, ионы кальция начинают поступать из внеклеточной жидкости внутрь нервного окончания (рис. 8). Кальций активирует перемещение синаптических пузырьков к пресинаптической мембране, где они разрушаются с выходом медиатора в синаптическую щель. В возбуждающих синапсах медиатор диффундирует в щели и связывается с рецепторами постсинаптической мембраны, что приводит к открытию кана­лов для ионов натрия, а следовательно, к ее деполяризации - возникновению возбуждающего постсинаптического потенциала (ВПСП). Между деполяризованной мембраной и соседними с ней участками возникают местные токи. Если они деполяризуют мембрану до критического уровня, то в ней возникает потенциал действия. В тормозных синапсах медиатор (например, глицин) аналогичным образом взаимодействует с рецепторами постси­наптической мембраны, но открывает в ней калиевые и/или хлорные каналы, что вызывает переход ионов по концентраци­онному градиенту: калия из клетки, а хлора - внутрь клетки. Это приводит к гиперполяризации постсинаптической мембраны - возникновению тормозного постсинаптического потенциала (ТПСП).


    Один и тот же медиатор может связываться не с одним, а с несколькими различными рецепторами. Так, ацетилхолин в нервно-мышечных синапсах скелетных мышц взаимодействует с Н-холинорецепторами, которые открывают каналы для натрия, что вызывает ВПСП, а в вагосердечных синапсах он действует на М-холинорецепторы, открывающие каналы для ионов калия (ге­нерируется ТПСП). Следовательно, возбуждающий или тормоз­ной характер действия медиатора определяется свойствами постсинаптической мембраны (видом рецептора), а не самого ме­диатора.

    Рис. 8. Нервно-мышечный синапс

    К окончанию нервного волокна приходит потенциал действия (ПД); си-наптические пузырьки высвобождают медиатор (ацетилхолин) в синапти-ческую щель; ацетилхолин (АХ) связывается с рецепторами постсинапти-ческой мембраны; потенциал постсинаптической мембраны снижается от минус 85 до минус 10 мВ (возникает ВПСП). Под действием тока, иду­щего от деполяризованного участка к недеполяризованным, возникает потенциал действия на мембране мышечного волокна

    Кроме нейромедиаторов, пресинаптические окончания выде­ляют вещества, которые не участвуют непосредственно в переда­че сигнала и играют роль нейромодуляторов эффектов сигнала. Модуляция осуществляется влиянием либо на выделение медиа­тора, либо на его связывание рецепторами постсинаптического нейрона, а также на реакцию этого нейрона на медиаторы. Функцию классических медиаторов выполняют амины и аминокисло­ты, функцию нейромодуляторов - нейропептиды. Медиаторы синтезируются в основном в терминалях аксона, нейропептиды образуются в теле нейрона путем синтеза белков, от которых они отщепляются под влиянием протеаз.

    Синапсы с химической передачей возбуждения обладают ря­дом общих свойств: возбуждение через синапсы проводится толь­ко в одном направлении, что обусловлено строением синапса (ме­диатор выделяется только из пресинаптической мембраны и вза­имодействует с рецепторами постсинаптической мембраны); пе­редача возбуждения через синапсы осуществляется медленнее, чем по нервному волокну (синаптическая задержка); синапсы об­ладают низкой лабильностью и высокой утомляемостью, а также высокой чувствительностью к химическим (в том числе и к фармакологическим) веществам; в синапсах происходит трансфор­мация ритма возбуждения.

    И клеткой-мишенью. У данного типа синапса роль посредника (медиатора) передачи выполняет химическое вещество.

    Состоит из трёх основных частей: нервного окончания с пресинаптической мембраной , постсинаптической мембраны клетки-мишени и синаптической щели между ними.

    Энциклопедичный YouTube

      1 / 3

      ✪ Межнейронные химические синапсы

      ✪ Нервная ткань. 5. Синапсы

      ✪ Neuronal synapses (chemical) | Human anatomy and physiology | Health & Medicine | Khan Academy

      Субтитры

      Теперь мы знаем, как передается нервный импульс. Пусть все начнется с возбуждения дендритов, например этого выроста тела нейрона. Возбуждение означает открытие ионных каналов мембраны. По каналам ионы входят в клетку или же поступают из клетки наружу. Это может приводить к торможению, но в нашем случае ионы действуют электротонически. Они изменяют электрический потенциал на мембране, и этого изменения в районе аксонного холмика может хватить для открытия натриевых ионных каналов. Ионы натрия поступают внутрь клетки, заряд становится положительным. Из-за этого открываются калиевые каналы, но этот положительный заряд активирует следующий натриевый насос. Ионы натрия вновь поступают в клетку, таким образом сигнал передается дальше. Вопрос в том, что происходит в месте соединения нейронов? Мы условились, что все началось с возбуждения дендритов. Как правило, источник возбуждения – другой нейрон. Этот аксон также передаст возбуждение какой-либо другой клетке. Это может быть клетка мышцы или еще одна нервная клетка. Каким образом? Вот терминаль аксона. А здесь может быть дендрит другого нейрона. Это другой нейрон с собственным аксоном. Его дендрит возбуждается. Как это происходит? Как импульс с аксона одного нейрона переходит на дендрит другого? Возможна передача с аксона на аксон, с дендрита на дендрит или с аксона на тело клетки, но чаще всего импульс передается с аксона на дендриты нейрона. Давайте рассмотрим поближе. Нас интересует, что происходит в той части рисунка, которую я обведу в рамку. В рамку попадают терминаль аксона и дендрит следующего нейрона. Итак, вот терминаль аксона. Она выглядит как-то так под увеличением. Это терминаль аксона. Вот ее внутреннее содержимое, а рядом дендрит соседнего нейрона. Так выглядит под увеличением дендрит соседнего нейрона. Вот что внутри первого нейрона. По мембране движется потенциал действия. Наконец где-нибудь на мембране терминали аксона внутриклеточный потенциал становится достаточно положительным, чтобы открыть натриевый канал. До прихода потенциала действия он закрыт. Вот этот канал. Он впускает ионы натрия в клетку. С этого все и начинается. Ионы калия покидают клетку, но, пока сохраняется положительный заряд, он может открывать другие каналы, причем не только натриевые. На конце аксона есть кальциевые каналы. Нарисую розовым. Вот кальциевый канал. Обычно он закрыт и не пропускает двухвалентные ионы кальция. Это потенциалзависимый канал. Как и натриевые каналы, он открывается, когда внутриклеточный потенциал становится достаточно положительным, при этом он впускает в клетку ионы кальция. Двухвалентные ионы кальция поступают в клетку. И этот момент вызывает удивление. Это катионы. Внутри клетки положительный заряд из-за ионов натрия. Как туда попадет кальций? Концентрация кальция создается с помощью ионного насоса. Я уже рассказывал про натрий-калиевый насос, аналогичный насос есть и для ионов кальция. Это белковые молекулы, встроенные в мембрану. Мембрана фосфолипидная. Она состоит из двух слоев фосфолипидов. Вот так. Так больше похоже на настоящую клеточную мембрану. Здесь мембрана тоже двуслойная. Это и так понятно, но уточню на всякий случай. Здесь тоже есть кальциевые насосы, функционирующие аналогично натрий-калиевым насосам. Насос получает молекулу АТФ и ион кальция, отщепляет фосфатную группу от АТФ и изменяет свою конформацию, выталкивая кальций наружу. Насос устроен так, что выкачивает кальций из клетки наружу. Он потребляет энергию АТФ и обеспечивает высокую концентрацию ионов кальция снаружи клетки. В состоянии покоя концентрация кальция снаружи гораздо выше. При поступлении потенциала действия открываются кальциевые каналы, и ионы кальция снаружи поступают внутрь терминали аксона. Там ионы кальция связываются с белками. И теперь давайте разберемся, что вообще происходит в этом месте. Я уже упоминал слово «синапс». Место контакта аксона с дендритом и есть синапс. И есть синапс. Его можно считать местом подключения нейронов друг к другу. Этот нейрон называется пресинаптическим. Запишу. Надо знать термины. Пресинаптический. А это – постсинаптический. Постсинаптический. А пространство между этими аксоном и дендритом называется синаптической щелью. Синаптической щелью. Это очень-очень узкая щель. Сейчас мы говорим о химических синапсах. Обычно, когда говорят о синапсах, имеют в виду химические. Еще есть электрические, но о них пока не будем. Рассматриваем обычный химический синапс. В химическом синапсе это расстояние составляет всего 20 нанометров. Клетка, в среднем, имеет ширину от 10 до 100 микрон. Микрон – это 10 в минус шестой степени метров. Здесь 20 на 10 в минус девятой степени. Это очень узкая щель, если сравнивать ее размер с размером клетки. Внутри терминали аксона пресинаптического нейрона есть пузырьки. Эти пузырьки связаны с мембраной клетки с внутренней стороны. Вот эти пузырьки. У них своя двуслойная липидная мембрана. Пузырьки представляют собой емкости. Их много в этой части клетки. В них находятся молекулы, называемые нейротрансмиттерами. Покажу их зеленым цветом. Нейротрансмиттеры внутри пузырьков. Думаю, это слово вам знакомо. Множество лекарств против депрессии и других проблем с психикой, действуют именно на нейротрансмиттеры. Нейротрансмиттеры Нейротрансмиттеры внутри пузырьков. Когда открываются потенциалзависимые кальциевые каналы, ионы кальция поступают в клетку и связываются с белками, удерживающими пузырьки. Пузырьки удерживаются на пресинаптической мембране, то есть этой части мембраны. Их удерживают белки группы SNARE, Белки этого семейства отвечают за слияние мембран. Вот что это за белки. Ионы кальция связываются с этими белками и изменяют их конформацию так, что они подтягивают пузырьки настолько близко к мембране клетки, что мембраны пузырьков с ней сливаются. Давайте рассмотрим этот процесс подробнее. После того как кальций связался с белками семейства SNARE на мембране клетки, они подтягивают пузырьки ближе к пресинаптической мембране. Вот пузырек. Вот так идет пресинаптическая мембрана. Между собой их соединяют белки семейства SNARE, которые притянули пузырек к мембране и располагаются здесь. Результатом стало слияние мембран. Это приводит к тому, что нейротрансмиттеры из пузырьков попадают в синаптическую щель. Так происходит выброс нейротрансмиттеров в синаптическую щель. Этот процесс называется экзоцитозом. Нейротрансмиттеры покидают цитоплазму пресинаптического нейрона. Вы, наверняка, слышали их названия: серотонин, дофамин, адреналин, который сразу и гормон, и нейротрансмиттер. Норадреналин тоже и гормон, и нейротрансмиттер. Все они вам, наверняка, знакомы. Они выходят в синаптическую щель и связываются с поверхностными структурами мембраны Постсинаптического нейрона. Постсинаптического нейрона. Допустим, они связываются здесь, здесь и здесь с особыми белками на поверхности мембраны, вследствие чего активируются ионные каналы. В этом дендрите возникает возбуждение. Допустим, связывание нейротрансмиттеров с мембраной приводит к открытию натриевых каналов. Натриевые каналы мембраны открываются. Они являются трансмиттер-зависимыми. Вследствие открытия натриевых каналов в клетку поступают ионы натрия, и всё повторяется вновь. В клетке появляется избыток положительных ионов, этот электротонический потенциал распространяется в область аксонного холмика, затем к следующему нейрону, стимулируя его. Так это и происходит. Можно и иначе. Допустим, вместо открытия натриевых каналов, будут открываться калиевые ионные каналы. В таком случае ионы калия будут по градиенту концентрации выходить наружу. Ионы калия покидают цитоплазму. Я покажу их треугольниками. Из-за потери положительно заряженных ионов внутриклеточный положительный потенциал уменьшается, вследствие чего генерация потенциала действия в клетке затрудняется. Надеюсь, это понятно. Мы начали с возбуждения. Генерируется потенциал действия, поступает кальций, содержимое пузырьков поступает в синаптическую щель, открываются натриевые каналы, и нейрон стимулируется. А если открыть калиевые каналы, нейрон будет затормаживаться. Синапсов очень и очень, и очень много. Их триллионы. Считается, что одна только кора мозга содержит от 100 до 500 триллионов синапсов. И это только кора! Каждый нейрон способен образовывать множество синапсов. На этом рисунке синапсы могут быть здесь, здесь и здесь. Сотни и тысячи синапсов на каждой нервной клетке. С одним нейроном, другим, третьим, четвертым. Огромное количество соединений... огромное. Теперь вы видите, как сложно устроено все, что имеет отношение к разуму человека. Надеюсь, это вам пригодится. Subtitles by the Amara.org community

    Структура химического синапса

    В синаптическом расширении имеются мелкие везикулы , так называемые пресинаптические или синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент , разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

    Одинаковый размер пресинаптических пузырьков во всех исследованных синапсах (40-50 нанометров) сначала считали доказательством того, что каждая везикула является минимальным кластером, чье освобождение требуется для производства синаптического сигнала. Везикулы размещаются напротив пресинаптической мембраны, что обусловлено их функциональным назначением для высвобождения медиатора в синаптическую щель. Также около пресинаптического пузырька имеется большое количество митохондрий (производящих аденозинтрифосфат) и упорядоченные структуры протеиновых волокон.

    Синаптическая щель - это пространство между пресинаптической мембраной и постсинаптической мембраной от 20 до 30 нанометров шириной, которое содержит связующие пре- и постсинапс структуры, построенные из протеогликана . Ширина синаптической щели в каждом отдельном случае обусловлена тем, что извлеченный из пресинапса медиатор должен проходить к постсинапсу за время, являющееся значительно меньше частоты нервных сигналов, характерных для нейронов, образующих синапс (время прохождения медиатора от пре- к постсинаптической мембране - порядка нескольких микросекунд).

    Постсинаптическая мембрана принадлежит клетке, которая принимает нервные импульсы. Механизмом трансляции химического сигнала медиатора в электрический потенциал действия на этой клетке являются рецепторы - белковые макромолекулы, встроенные в постсинаптическую мембрану.

    С помощью специальных ультрамикроскопичекских методик в последние годы был получен достаточно большой объем информации о детальной структуре синапсов.

    Так, на пресинаптической мембране была открыта упорядоченная струтура кратероподобных углублений диаметром 10 нанометров, вдавленных внутрь. Сначала их именовали синаптопорами, но сейчас эти структуры называют местами присоединения везикул (МПВ). МПВ собраны в упорядоченные группы численностью по шесть отдельных углублений вокруг так называемых уплотненных выступлений. Таким образом, уплотненные выступления формируют правильные треугольные структуры на внутренней стороне пресинаптической мембраны, а МПВ - гексагональные , и являются местами, где везикулы открываются и выбрасывают медиатор в синаптическую щель.

    Механизм передачи нервного импульса

    Поступление электрического импульса к пресинаптической мембране включает процесс синаптической передачи, первым этапом которой является вхождение ионов Са 2+ в пресинапс сквозь мембрану через специализированные кальциевые каналы, локализованные у синаптической щели. Ионы Са 2+ , с помощью неизвестного пока полностью механизма, активируют везикулы, скученные у своих мест присоединения, и те высвобождают медиатор в синаптическую щель. Вошедшие в нейрон ионы Са 2+ , после активации ими везикул с медиатором, деактивируются за время порядка нескольких микросекунд, благодаря депонированию в митохондриях и везикулах пресинапса.

    Молекулы медиатора, высвобождаемые из пресинапса, связываются с рецепторами на постсинаптической мембране, в результате чего в рецепторных макромолекулах открываются ионные каналы (в случае канальных рецепторов, что является наиболее распространенным их типом; при работе рецепторов других типов механизм передачи сигнала отличается). Ионы, которые начинают поступать внутрь постсинаптической клетки через открытые каналы, изменяют заряд её мембраны, что является частичной поляризацией (в случае тормозного синапса) или деполяризацией (в случае возбуждающего синапса) этой мембраны и, как следствие, приводит к торможению или провоцированию генерации постсинаптической клеткой потенциала действия.

    Квантово-везикулярная гипотеза

    Распространенная до последнего времени в качестве объяснения механизма высвобождения медиатора из пресинапса, гипотеза квантово-везикулярного экзоцитоза (КВЭ) подразумевает, что «пакет», или квант, медиатора содержится в одной везикуле и высвобождается при экзоцитозе (при этом мембрана везикулы сливается с клеточной пресинаптической мембраной). Эта теория была долгое время превалирующей гипотезой - несмотря на то, что корреляция между уровнем высвобождения медиатора (или постсинаптическими потенциалами) и количеством везикул в пресинапсе отсутствует . Кроме того, гипотеза КВЭ имеет и другие существенные недостатки.

    Физиологической основой именно квантованного высвобождения медиатора должно быть одинаковое количество этого медиатора в каждой везикуле. Гипотеза КВЭ в классическом виде не приспособлена к описанию эффектов квантов разного размера (или разного количества медиатора) которые могут быть высвобождены при одном акте экзоцитоза. При этом надо принять во внимание, что в одном и том же пресинаптическом бутоне могут наблюдаться везикулы разного размера; кроме того, не найдено корреляции между размером везикулы и количеством медиатора в ней (то есть его концентрация в везикулах тоже может быть разной). Более того, в денервированном нервно-мышечном синапсе шванновские клетки генерируют большее количество миниатюрных постсинаптических потенциалов, чем наблюдается в синапсе до денервации, несмотря на полное отсутствие в этих клетках пресинаптических везикул, локализованных в районе пресинаптического бутона .

    Гипотеза пороцитоза

    Существуют существенные экспериментальные подтверждения того, что медиатор секретируется в синаптическую щель благодаря синхронной активации гексагональных групп МПВ (см. выше) и присоединенных к ним везикул , что стало основой для формулирования гипотезы пороцитоза (англ. porocytosis ). Эта гипотеза базируется на наблюдении, что присоединенные к МПВ везикулы, при получении потенциала действия , синхронно сокращаются и при этом секретируют в синаптическую щель каждый раз одинаковое количество медиатора, высвобождая только часть содержимого каждой из шести везикул. Сам по себе термин «пороцитоз» происходит от греческих слов poro (что означает поры) и cytosis (описывает перенос химических субстанций через плазматическую мембрану клетки).

    Большинство экспериментальных данных о функционировании моносинаптических межклеточных соединений получены благодаря исследованиям изолированных нервно-мышечных контактов. Как и в межнейронных, в нервно-мышечных синапсах МПВ формируют упорядоченные гексагональные структуры . Каждая из таких гексагональных структур может быть определена как «синаптомер» - то есть структура, которая является элементарной единицей в процессе секреции медиатора. Синаптомер содержит, кроме собственно поровых углублений, протеиновые нитчатые структуры, содержащие линейно упорядоченные везикулы; существование аналогичных структур доказано и для синапсов в центральной нервной системе (ЦНС).

    Как было сказано выше, пороцитозный механизм генерирует квант нейромедиатора , но без того, чтобы мембрана индивидуальной везикулы полностью сливалась с пресинаптической мембраной. Малый коэффициент вариации (менее 3 %) у величин постсинаптических потенциалов является индикатором того, что в единичном синапсе имеются не более 200 синаптомеров , каждый из которых секретирует один квант медиатора в ответ на один потенциал действия . 200 участков высвобождения (то есть синаптомеров, которые высвобождают медиатор), найденные на небольшом мышечном волокне, позволяют рассчитать максимальный квантовый лимит, равный одной области высвобождения на микрометр длины синаптического контакта , это наблюдение исключает возможность существования квантов медиатора, обеспечивающих передачу нервного сигнала, в объеме одной везикулы.

    Сравнение гипотез пороцитоза и квантово-везикулярной

    Сравнение недавно общепринятой гипотезы КВЭ с гипотезой пороцитоза может быть осуществлено посредством сравнения теоретического коэффициента вариации с опытным, рассчитанным для амплитуд постсинаптических электрических потенциалов, генерируемых в ответ на каждый отдельный выброс медиатора из пресинапса. Если принять, что процесс экзоцитоза проходит в небольшом синапсе, где содержится около 5 000 везикул (50 на каждый микрон длины синапса), постсинаптические потенциалы должны быть сгенерированы 50-ю случайно выбранными везикулами, что даёт теоретический коэффициент вариации 14 %. Эта величина примерно в 5 раз больше, чем коэффициент вариации постсинаптических потенциалов, получаемых в опытах, таким образом, можно утверждать, что процесс экзоцитоза в синапсе не является случайным (не совпадает с распределением Пуассона) - что невозможно, если объяснять его в рамках гипотезы КВЭ, но вполне соответствует гипотезе пороцитоза. Дело в том, что гипотеза пороцитоза предполагает, что все связанные с пресинаптической мембраной везикулы выбрасывают медиатор одновременно; при этом постоянное количество медиатора, выбрасываемого в синаптическую щель в ответ на каждый потенциал действия (об устойчивости свидетельствует малый коэффициент вариации постсинаптических ответов) вполне может быть объяснено высвобождением малого объема медиатора большим количеством везикул - при этом, чем больше везикул, участвующих в процессе, тем меньше становится коэффициент корреляции , хотя это и выглядит с точки зрения математической статистики несколько парадоксально.

    Классификация

    По медиатору

    • аминергические, содержащие биогенные амины (например, серотонин, дофамин);
      • в том числе адренергические, содержащие адреналин или норадреналин;
    • холинергические, содержащие ацетилхолин;
    • пуринергические, содержащие пурины;
    • пептидергические, содержащие пептиды.

    При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

    По знаку действия

    • возбуждающие
    • тормозные.

    Если первые способствуют возникновению возбуждения в постсинаптической клетке, то вторые, наопротив, прекращают или предотвращают его появление. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

    По их местоположению и принадлежности структурам

    • периферические
      • нервно-мышечные
      • нейросекреторные (аксо-вазальные)
      • рецепторно-нейрональные
    • центральные
      • аксо-дендритические - с дендритами, в том числе аксо-шипиковые - с дендритными шипиками, выростами на дендритах;
      • аксо-соматические - с телами нейронов;
      • аксо-аксональные - между аксонами;
      • дендро-дендритические - между дендритами;

    В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

    В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

    К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

    1

    Московский Государственный Областной университет




    Подготовила Руденко Ксения

    Студентка 1 курса П (5,5)


    14 Мая 2011


    1. Две разновидности синапсов 3

    2. Строение химического синапса 4

    3. Механизм синаптической передачи. 5

    4. Передача возбуждения в нервно-мышечном синапсе 6

    5. Передача возбуждения в центральных синапсах 8

    7. Функциональное значение и разновидности торможения в ЦНС 9

    9. Функциональное значение химических синапсов в переносе информации 10

    10. Электрические синапсы 10

    Заключение 11

    Список литературы 12


    Синапс как функциональный контакт нервной ткани. Понятие, строение. Физиология, функции, типы синапсов.

    1. Две разновидности синапсов

    Синапсом (от греч. синапсис - соединение) называют область функционального соединения одного нейрона с другим или нейрона с эффектором , которым может быть либо мышца, либо внешнесекреторная железа. Это понятие ввёл в обращение на рубеже XIX - XX веков британский физиолог Чарльз С. Шеррингтон (Sherrington Ch.) для обозначения специализированных контактных зон, обеспечивающих связь между нейронами.

    В 1921 году Отто Лёви (Loewi O.), сотрудник института фармакологии в Граце (Австрия), с помощью простых по исполнению и остроумных по замыслу экспериментов показал, что влияние блуждающих нервов на сердце обусловлено химическим веществом - ацетилхолином. Английский фармаколог Генри Дейл (Dale H.) сумел доказать, что ацетилхолин образуется в синапсах различных структур нервной системы. В 1936 году Лёви и Дейл получили Нобелевскую премию за открытие химической природы передачи нервной энергии.

    Среднестатистический нейрон образует более тысячи синапсов с другими клетками мозга, всего же в мозгу человека приблизительно 10 14 синапсов. Если считать их со скоростью 1000 штук в секунду, то лишь через несколько тысяч лет можно будет подвести итог. В подавляющем большинстве синапсов для передачи информации от одной клетки к другой используются химические посредники - медиаторы или нейротрансмиттеры. Но, наряду с химическими синапсами существуют электрические, в которых сигналы передаются без использования медиаторов.

    В химических синапсах взаимодействующие клетки разделены заполненной внеклеточной жидкостью синаптической щелью шириной 20-40 нм. Для того, чтобы передать сигнал, пресинаптический нейрон выделяет в эту щель медиатор, который диффундирует к постсинаптической клетке и присоединяется к специфическим рецепторам её мембраны. Соединение медиатора с рецептором приводит к открытию (но в некоторых случаях - к закрытию) хемозависимых ионных каналов. Через открывшиеся каналы проходят ионы и этот ионный ток изменяет значение мембранного потенциала покоя постсинаптической клетки. Последовательность событий позволяет разделить синаптический перенос на два этапа: медиаторный и рецепторный. Передача информации через химические синапсы происходит гораздо медленней, чем проведение возбуждения по аксонам, и занимает от 0,3 до нескольких мс - в связи с этим получил распространение термин синаптическая задержка.

    В электрических синапсах расстояние между взаимодействующими нейронами очень мало - приблизительно 3-4 нм. В них пресинаптический нейрон соединяется с постсинаптической клеткой особым видом ионных каналов, пересекающих синаптическую щель. По этим каналам локальный электрический ток может распространяться от одной клетки к другой.

    Синапсы классифицируются:


    1. По местоположению выделяют:

      1. нервно-мышечные синапсы;

      2. нейронейрональные, которые в свою очередь делятся на:

        1. аксосоматические,

        2. аксоаксональные,

        3. аксодендритические,

        4. дендросоматические.

    2. По характеру действия на воспринимающую структуру синапсы могут быть:

      1. возбуждающими и

      2. тормозящими.

    3. По способу передачи сигнала синапсы делятся на:

      1. химические,

      2. электрические,

      3. смешанные - пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом , в этих синапсах химическая передача служит необходимым усиливающим механизмом.
    В синапсе различают:

    1) пресинаптическая мембрана

    2) синаптическая щель

    3) постсинаптическая мембрана.

    2. Строение химического синапса

    В структуре химического синапса выделяют пресинаптическую мембрану, постсинаптическую мембрану и синаптическую щель (10-50 нм). В синаптическом окончании содержится много митохондрий, а также субмикроскопических структур - синаптических пузырьков с медиатором. Диаметр каждого составляет около 50 нм. В нем содержится от 4000 до 20000 молекул медиатора (например , ацетилхолина). Синаптические пузырьки имеют отрицательный заряд и отталкиваются от клеточной мембраны.

    Рисунок 1: Фракции медиатора в синапсе
    Выделение медиатора происходит при их слиянии с мембраной. В результате он выделяется порционно - квантами . Медиатор образуется в теле нервной клетки, путем аксонного транспорта переносится к нервному окончанию. Частично он может образовываться и в нервном окончании (ресинтез медиатора). В нейроне содержится несколько фракций медиатора: стационарная, депонированная и немедленно доступная (составляет лишь 15-20% от общего количества медиатора), рис. 1.

    Субсинаптическая (постсинаптическая) мембрана толще, чем мембрана эфферентной клетки. Она имеет складки , которые делают ее поверхность больше, чем пресинаптической. На мембране практически нет потенциалзависимых ионных каналов, но высокая плотность рецепторуправляемых. Если при взаимодействии медиатора с рецепторами происходит активация каналов и увеличивается проницаемость мембраны для калия и натрия - возникает деполяризация или возбуждающий постсинаптический потенциал (ВПСП) . Если увеличивается проницаемость для калия и хлора - возникает гиперполяризация или тормозной постсинаптический потенциал (ТПСП) . После взаимодействия с рецептором медиатор разрушается специальным ферментом, а продукты разрушения поступают обратно в аксон для ресинтеза медиатора (рис. 2).

    Рисунок: Последовательность событий синаптической передачи

    Рецепторуправляемые каналы образуются клеточным структурами, затем встраиваются в мембрану. Плотность каналов на постсинаптической мембране относительно постоянна. Однако при денервации, когда выделение медиатора резко снижается или прекращается совсем, плотность рецепторов на мембране увеличивается, они могут появляться на собственной мембране клетки. Обратная ситуация возникает или при длительном выделении большого количества медиатора, или при нарушении его разрушения. В этой ситуации рецепторы временно инактивируются, происходит их десинситизация (снижение чувствительности). Таким образом , синапс не является статичной структурой, он достаточно пластичен.

    3. Механизм синаптической передачи.

    Первым этапом является высвобождение медиатора. Согласно квантовой теории, при возбуждении нервного волокна (возникновении потенциала действия) происходит активация потенциалзависимых кальциевых каналов, кальций входит внутрь клетки. После его взаимодействия с синаптическим пузырьком он связывается с мембраной клетки и высвобождает медиатор в синаптическую щель (4 катиона кальция необходимы для освобождения 1кванта ацетилхолина).

    Выброшенный медиатор диффундирует через синаптическую щель и взаимодействует с рецепторами постсинаптической мембраны. 1). Если синапс возбуждающий , то в результьате активации рецепторуправляемых каналов увеличивается проницаемость мембраны для натрия и калия. Возникает ВПСП. Он существует локально только на постсинаптической мембране. Величина ВПСП определяется величиной порции медиатора, поэтому он не подчиняется правилу – Все или ничего. ВПСП электротонически распространяется на мембрану эфферентной клетки, деполяризует еѐ. Если величина деполяризации достигает критического уровня, то происходит активация потенциалзависимых каналов, возникает потенциал действия или импульсное возбуждение, которое распространяется на всю мембрану клетки (рис. 3).


    Рисунок 3: Функциональное изменение синапса После взаимодействия с рецептором медиатор разрушается специальным ферментом (ацетилхолин - холинэстераза, норадреналин моноаминоксидаза и т.д.) Выделение медиатора происходит непрерывно. Вне возбуждения на постсинаптической мембране регистрируют так называемые миниатюрные потенциалы концевой пластинки, представляющие собой волны деполяризации (1 квант в секунду). Интенсивность этого процесса резко увеличивается на фоне возбуждения (1 потенциал действия способствует выделению 200 квантов медиатора).

    Таким образом , возможны два основных состояния синапса: на фоне возбуждения и вне возбуждения.

    Вне возбуждения на постсинаптической мембране регистрируется МПКП (миниатюрный потенциал концевой пластинки).

    На фоне возбуждения вероятность высвобождения медиатора резко возрастает, на постсинаптической мембране регистрируется ВПСП. Последовательность процессов проведения возбуждения через синапс следующая:

    Если синапс тормозной , то выделяющийся медиатор активирует калиевые каналы и каналы для хлора. Развивающаяся гиперполяризация (ТПСП) электротонически распространяется на мембрану эфферентной клетки, увеличивает порог возбуждения и снижает возбудимость.

    Физиологические особенности химических синапсов:

    Односторонняя проводимость

    Синаптическая задержка

    Быстрая утомляемость

    Синаптическое облегчение

    4 . Передача возбуждения в нервно-мышечном синапсе

    Из всех существующих в организме человека синапсов наиболее простым является нервно-мышечный. который был хорошо изучен ещё в 50-х годах ХХ века Бернардом Катцем и его коллегами (Katz B. - лауреат Нобелевской премии 1970 года). В образовании нервно-мышечного синапса участвуют тонкие, свободные от миелина разветвления аксона мотонейрона и иннервируемые этими окончаниями волокна скелетной мышцы (Рис 5.1). Каждая веточка аксона на конце утолщается: это утолщение называют концевой пуговкой или синаптической бляшкой. В ней содержатся синаптические пузырьки , заполненные медиатором: в нервно-мышечном синапсе им является ацетилхолин. Большая часть синаптических пузырьков расположена в активных зонах: так называются специализированные части пресинаптической мембраны, где медиатор может выделяться в синаптическую щель. В пресинаптической мембране есть каналы для ионов кальция, которые в покое закрыты и открываются лишь тогда, когда к окончанию аксона проводятся потенциалы действия.

    Концентрация ионов кальция в синаптической щели намного выше, чем в цитоплазме пресинаптического окончания нейрона, и поэтому открытие кальциевых каналов приводит к вхождению кальция в окончание. Когда концентрация кальция в окончании нейрона повысится, синаптические пузырьки сливаются с активной зоной. Содержимое слившегося с мембраной пузырька опорожняется в синаптическую щель: такой механизм выделения называется экзоцитозом. В одном синаптическом пузырьке содержится около 10 000 молекул ацетилхолина, а при передаче информации через нервно-мышечный синапс он одновременно освобождается из многих пузырьков и диффундирует к концевой пластинке.

    Концевой пластинкой называется часть мышечной мембраны, контактирующая с нервными окончаниями. У неё складчатая поверхность, причём складки находятся точно напротив активных зон пресинаптического окончания. На каждой складке, расположившись в форме решётки, сосредоточены холинорецепторы, их плотность около 10 000/ мкм 2 . В глубине складок холинорецепторов нет - там только потенциалзависимые каналы для натрия, причём их плотность тоже высока.

    Встречающаяся в нервно-мышечном синапсе разновидность постсинаптических рецепторов относится к типу никотинчувствительных или Н-холинорецепторов (в главе 6 будет описана другая разновидность - мускаринчувствительные или М-холинорецепторы). Это трансмембранные белки, являющиеся одновременно и рецепторами, и каналами (Рис. 5.2). Они состоят из пяти субъединиц, сгруппированных вокруг центральной поры. Две субъединицы из пяти одинаковы, они имеют выступающие наружу концы аминокислотных цепей - это рецепторы, к которым присоединяется ацетилхолин. Когда рецепторы свяжут две молекулы ацетилхолина, конформация белковой молекулы изменяется и во всех субъединицах сдвигаются заряды гидрофобных участков канала: в результате появляется пора диаметром около 0,65 нм.

    Через неё могут пройти ионы натрия, калия и даже двухвалентные катионы кальция, в то же время прохождению анионов мешают отрицательные заряды стенки канала. Канал бывает открыт в течение приблизительно 1 мс, но за это время через него в мышечное волокно входит около 17 000 ионов натрия, а несколько меньшее количество ионов калия - выходит. В нервно-мышечном синапсе почти синхронно открывается несколько сотен тысяч управляемых ацетилхолином каналов, поскольку выделившийся только из одного синаптического пузырька медиатор открывает около 2000 одиночных каналов.

    Суммарный результат ионного тока натрия и калия через хемозависимые каналы определяется преобладанием тока натрия , что приводит к деполяризации концевой пластинки мышечной мембраны, на которой возникает потенциал концевой пластинки (ПКП). Его величина составляет как минимум 30 мВ, т.е. всегда превышает пороговое значение. Возникший в концевой пластинке деполяризующий ток направляется к соседним, внесинаптическим участкам мембраны мышечного волокна. Поскольку его величина всегда выше пороговой,. он активирует потенциалзависимые натриевые каналы, расположенные поблизости от концевой пластинки и в глубине её складок Вследствие этого возникают потенциалы действия, которые распространяется вдоль мышечной мембраны.

    Выполнившие свою задачу молекулы ацетилхолина быстро расщепляются находящимся на поверхности постсинаптической мембраны ферментом - ацетилхолинэстеразой. Её активность достаточно высока и за 20 мс она в состоянии все связанные с рецепторами молекулы ацетилхолина превратить в холин и ацетат. Благодаря этому холинорецепторы освобождаются для взаимодействия с новыми порциями медиатора, если он продолжает выделяться из пресинаптического окончания. Одновременно с этим ацетат и холин с помощью специальных механизмов транспорта поступают в пресинаптическое окончание и используются для синтеза новых молекул медиатора.

    Таким образом , основными этапами передачи возбуждения в нервно-мышечном синапсе являются:

    1) возбуждение мотонейрона, распространение потенциала действия на пресинаптическую мембрану;

    2) повышение проницаемости пресинаптической мембраны для ионов кальция, ток кальция в клетку, повышение концентрации кальция в пресинаптическом окончаниии;

    3) слияние синаптических пузырьков с пресинаптической мембраной в активной зоне, экзоцитоз, поступление медиатора в синаптическую щель;

    4) диффузия ацетилхолина к постсинаптической мембране, присоединение его к Н-холинорецепторам, открытие хемозависимых ионных каналов;

    5) преобладающий ионный ток натрия через хемозависимые каналы, образование надпорогового потенциала концевой пластинки;

    6) возникновение потенциалов действия на мышечной мембране;

    7) ферментативное расщепление ацетилхолина, возвращение продуктов расщепления в окончание нейрона, синтез новых порций медиатора.

    5 . Передача возбуждения в центральных синапсах

    Центральные синапсы, в отличие от нервно-мышечного, образованы тысячами соединений между многими нейронами , в которых могут использоваться десятки нейромедиаторов различной химической природы. При этом следует учитывать, что для каждого нейротрансмиттера существуют специфические рецепторы, которые разными способами управляют хемозависимыми каналами. Кроме того, если в нервно-мышечных синапсах всегда передаётся лишь возбуждение, то центральные синапсы могут быть как возбуждающими, так и тормозными.

    В нервно-мышечном синапсе одиночный потенциал действия, достигший пресинаптического окончания, способен привести к выделению достаточного для передачи сигнала количества медиатора и поэтому потенциал концевой пластинки всегда превышает пороговое значение. Одиночные постсинаптические потенциалы центральных синапсов как правило не превышают даже 1 мВ - их среднее значение составляет всего лишь 0,2- 0,3 мВ, что совершенно недостаточно для достижения критической деполяризации. Чтобы её получить, требуется суммарная активность от 50 до 100 потенциалов действия, достигших пресинаптического окончания один за другим - тогда общее количество выделившегося медиатора может оказаться достаточным для того, чтобы сделать деполяризацию постсинаптической мембраны критической.
    В возбуждающих синапсах центральной нервной системы используются, так же, как и в нервно-мышечном синапсе, хемозависимые каналы, которые одновременно пропускают ионы натрия и калия. Когда такие каналы открываются при обычном для центральных нейронов значении потенциала покоя (приблизительно -65 мВ), преобладает направленный внутрь клетки деполяризующий ток натрия.

    Потенциал действия обычно возникает в триггерной зоне - аксонном холмике, где самая высокая плотность потенциалзависимых каналов и самый низкий порог деполяризации. Здесь оказывается достаточным сдвиг значения мембранного потенциала с -65 Мв до -55 мВ, чтобы возник потенциал действия. В принципе потенциал действия может образоваться и на теле нейрона, но для этого понадобится изменить мембранный потенциал с -65 мВ до приблизительно -35 мВ, т.е. в этом случае постсинаптический потенциал должен быть гораздо больше - около 30 мВ.

    Большинство возбуждающих синапсов образуется на ветвях дендритов. У типичного нейрона обычно существует от двадцати до сорока главных дендритов, разделяющихся на множество мелких ветвей. На каждой такой веточке есть две области синаптических контактов: главный стержень и шипики. Возникшие там возбуждающие постсинаптические потенциалы (ВПСП) пассивно распространяются к аксонному холмику, при этом амплитуда этих локальных потенциалов уменьшается пропорционально расстоянию. И, если даже максимальная величина ВПСП в контактной зоне не превышает 1 мВ, то в триггерной зоне обнаруживается и вовсе ничтожный деполяризующий сдвиг.

    При таких обстоятельствах критическая деполяризация триггерной зоны возможна лишь в результате пространственной или последовательной суммации одиночных ВПСП (Рис. 5.3). Пространственная суммация происходит при одновременной возбуждающей активности группы нейронов, аксоны которых конвергируют к одной общей постсинаптической клетке. В каждой из контактных зон образуется небольшой ВПСП, который пассивно распространяется к аксонному холмику. Когда слабые деполяризующие сдвиги достигают его одновременно, суммарный итог деполяризации может составить величину более 10 мВ: только в таком случае мембранный потенциал уменьшается с -65 мВ до критического уровня -55 мВ и возникает потенциал действия.

    Последовательная суммация, её ещё называют временной, наблюдается при достаточно частом ритмическом возбуждении пресинаптических нейронов, когда к пресинаптическому окончанию один за другим через короткий промежуток времени проводятся потенциалы действия. В течение всего этого времени выделяется медиатор, что и приводит к увеличению амплитуды ВПСП. В центральных синапсах оба механизма суммации обычно действуют одновременно и это даёт возможность передать возбуждение постсинаптическому нейрону.

    7 . Функциональное значение и разновидности торможения в ЦНС

    Передаваясь от одного нейрона к другому , возбуждение, если рассуждать теоретически, могло бы распространиться на большинство клеток мозга, в то время как для нормальной деятельности необходимо строго упорядоченное чередование активности определённых групп нейронов, соединённых друг с другом топографически точными связями. Необходимостью упорядочить передачу сигналов, предупредить ненужное распространение возбуждения и определяется функциональная роль тормозных нейронов.

    Следует обратить внимание на очень важное обстоятельство: торможение всегда является местным процессом, оно не может, подобно возбуждению, распространяться от одной клетки к другой. Торможение лишь угнетает процесс возбуждения или препятствует самому возникновению возбуждения.

    Убедиться в исключительно важной роли торможения помогает простой, но поучительный эксперимент. Если экспериментальному животному ввести некоторое количество стрихнина (это алкалоид семени чилибухи или рвотного ореха), блокирующего только одну разновидность тормозных синапсов в центральной нервной системе, то начнётся неограниченное распространение возбуждения в ответ на любой раздражитель, что приведёт к неупорядоченной активности нейронов, затем возникнут мышечные судороги, конвульсии и, наконец, смерть.

    Тормозные нейроны есть во всех областях мозга, например , в спинном мозгу распространены тормозные клетки Реншоу, в коре мозжечка нейроны Пуркинье, звёздчатые клетки и т.д. В качестве тормозных медиаторов чаще других используются гамма-аминомасляная кислота (ГАМК) и глицин, хотя тормозная специфичность синапса зависит не от медиатора, а исключительно от типа хемозависимых каналов: в тормозных синапсах это каналы для хлора или для калия.
    Существует несколько весьма характерных, типовых вариантов торможения: возвратное (или антидромное), реципрокное, нисходящее, центральное и т.д. Возвратное торможение позволяет регулировать выходную активность нейрона по принципу отрицательной обратной связи (Рис. 5.5). Здесь возбуждающий какую-либо клетку нейрон одной из коллатералей своего аксона действует ещё и на вставочный тормозной нейрон, который начинает тормозить активность самой возбуждающей клетки. Так, например , мотонейрон спинного мозга возбуждает мышечные волокна, а другая коллатераль его аксона возбуждает клетку Реншоу, которая тормозит активность самого мотонейрона

    Реципрокное торможение (от лат. reciprocus - взаимный) наблюдается, например , в тех случаях, когда коллатерали входящего в спинной мозг аксона афферентного нейрона образуют две ветви: одна из них возбуждает мотонейроны мышцы-сгибателя, а другая - тормозной интернейрон, который действует на мотонейрон для мышцы-разгибателя. Благодаря реципрокному торможению мышцы-антагонисты не могут сокращаться одновременно и, если для совершения движения сокращаются сгибатели, то разгибатели должны расслабляться.

    Нисходящее торможение впервые описал И. М. Сеченов: он обнаружил, что рефлексы спинного мозга у лягушки замедляются, если её промежуточный мозг раздражать кристалликом поваренной соли. Сеченов назвал такое торможение центральным. Нисходящее торможение может, например , управлять передачей афферентных сигналов: длинные аксоны некоторых нейронов ствола мозга способны тормозить активность интернейронов спинного мозга, получающих информацию о болевом раздражении. Некоторые двигательные ядра ствола мозга могут активировать деятельность тормозных интернейронов спинного мозга, которые, в свою очередь, способны уменьшить активность мотонейронов - такой механизм важен для регуляции тонуса мышц.
    Блокирование передачи возбуждения с нервного окончания на мышцу достигается применением миорелаксантов. По механизму действия они делятся на несколько групп:

    1. Блокада проведения возбуждения по нервному окончанию (примером являются местные анэстетики - новокаин, декаин и т.д.)

    2. Блокада высвобождения медиатора (ботулин токсин).

    3. Нарушение синтеза медиатора (гемихолиний угнетает поглощение холина нервным окончанием).

    4. Блокирование связывания медиатора с рецепторами постсинаптической мембраны (а-бунгаротоксин, курареподобные вещества и другие истиные миорелаксанты).

    5. Угнетение активности холинэстеразы (физостигмин, неостигмин).

    9 . Функциональное значение химических синапсов в переносе информации

    Можно с уверенностью сказать, что синапсам принадлежит решающая роль во всей деятельности мозга. Этот вывод обоснован по меньшей мере тремя важными доказательствами:

    1. Все химические синапсы функционируют по принципу клапана, поскольку информация в нём может передаваться только от пресинаптической клетки к постсинаптической и никогда - наоборот. Именно этим определяется упорядоченное направление передачи информации в ЦНС.

    2. Химические синапсы способны усиливать или ослаблять передаваемые сигналы, причём любая модификация может осуществляться несколькими способами. Эффективность синаптической передачи изменяется в связи с увеличением или уменьшением тока кальция в пресинаптическое окончание, что сопровождается соответствующим увеличением или уменьшением количества выделяющегося медиатора. Деятельность синапса может изменяться в связи с меняющейся чувствительностью постсинаптической мембраны , которая способна уменьшать или увеличивать количество и эффективность функционирования своих рецепторов. Благодаря этим возможностям проявляется пластичность межклеточных соединений, на основе которой синапсы участвуют в процессе научения и формировании следов памяти.

    3. Химический синапс представляет собой область действия многих биологически активных веществ, лекарств или иных химических соединений, по той или иной причине поступивших в организм (токсины, яды, наркотики). Одни вещества, имея сходную с медиатором молекулу, конкурируют за право связываться с рецепторами, другие - не позволяют медиаторам своевременно разрушаться, третьи - стимулируют или угнетают выделение медиаторов из пресинаптических окончаний, четвёртые - усиливают или ослабляют действие тормозных медиаторов и т. д. Результатом изменений синаптической передачи в тех или иных химических синапсах может стать появление новых форм поведения.

    10 . Электрические синапсы

    Большинство известных электрических синапсов образованы большими пресинаптическими аксонами, контактирующими со сравнительно мелкими волокнами постсинаптических клеток. Передача информации в них происходит без химического посредника, а между взаимодействующими клетками очень небольшое расстояние: ширина синаптической щели около 3,5 нм, тогда как в химических синапсах она варьирует от 20 до 40 нм. Кроме того, синаптическую щель пересекают соединительные мостики - специализированные белковые структуры, образующие т.н. коннексоны (от англ. connexion - соединение) (Рис. 5.6).

    Коннексоны представляют собой трансмембранные белки цилиндрической формы, которые образованы шестью субъединицами и в центре имеют довольно широкий, около 1,5 нм в диаметре, канал с гидрофильными стенками. Коннексоны соседних клеток располагаются друг против друга так, что каждая из шести субъединиц одного коннексона как бы продолжается субъединицами другого. Фактически коннексоны являются полуканалами, но совмещение коннексонов двух клеток образует полноценный канал, который эти две клетки соединяет. Механизм открывания и закрывания таких каналов состоит во вращательных перемещениях его субъединиц.

    Эти каналы обладают малым сопротивлением и потому хорошо проводят электрический ток от одной клетки к другой. Поток положительных зарядов от пресинаптической мембраны возбуждённой клетки вызывает деполяризацию постсинаптической мембраны. Когда такая деполяризация достигает критического значения, открываются потенциалзависимые каналы для натрия и возникает потенциал действия.

    Всё происходит очень быстро, без характерной для химических синапсов задержки, связанной с относительно медленной диффузией медиатора от одной клетки к другой. Соединённые электрическими синапсами клетки реагируют как единое целое на поступивший к одной из них сигнал, латентное время между пресинаптическим и постсинаптическим потенциалами практически не определяется.

    Направление передачи сигнала в электрических синапсах обусловлено различиями входного сопротивления контактирующих клеток. Обычно большое пресинаптическое волокно одновременно передаёт возбуждение нескольким соединённым с ним клеткам, создавая в них значительное изменение напряжения. Так, например , в хорошо изученном гигантском аксо-аксональном синапсе речного рака толстое пресинаптическое волокно возбуждает несколько значительно уступающих ему в толщине аксонов других клеток.

    Электрическая синаптическая передача сигнала оказывается биологически полезной при осуществлении реакций бегства или защиты в случае внезапной опасности. Таким способом, например, синхронно активируются мотонейроны и следом происходит молниеносное движение хвостового плавника у золотой рыбки при реакции бегства. Такая же синхронная активация нейронов обеспечивает залповый выброс маскирующей краски морским моллюском при возникновении опасной ситуации.

    Через каналы коннексонов осуществляется ещё и метаболическое взаимодействие клеток. Достаточно большой диаметр пор каналов позволяет проходить не только ионам, но и органическим молекулам средних размеров, в том числе и важным вторичным посредникам, таким, как циклический АМФ, инозитолтрифосфат, а также небольшим пептидам. Этот транспорт, видимо, имеет большое значение в процессе развития мозга.

    Электрический синапс отличается от химического:

    Отсутствием синаптической задержки

    Двусторонним проведением возбуждения

    Проводит только возбуждение

    Менее чувствителен к снижению температуры

    Заключение

    Между нервными клетками, а также между нервными мышцами, или между нервными и секреторными имеются специализированные контакты, которые называются синапсы.

    История открытия была следующая:
    А. В. Кибяков установил роль адреналина в синаптической передаче.


  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие роли норадреналина в синаптической передаче.
  • Синапсы служат для передачи сигналов от одной клетки к другой и их можно классифицировать по:

    • типу контактирующих клеток: нейро-нейрональные (межнейронные), нервно-мышечные и нервно-железистые (нейро-секреторные);

    • действию – возбуждающие и тормозящие;

    • характеру передачи сигнала – электрические, химические и смешанные.
    Обязательным компонентом любого синапса являются: пресинаптическая мембрана, синаптическая щель, постсинаптическая мембрана.

    Пресинаптическая часть образована окончанием аксона (терминалью) мотонейрона и содержит скопление синаптических пузырьков вблизи пресинаптической мембраны, а также митохондрии. Постсинаптические складки увеличивают площадь поверхности постсинаптической мембраны. В синаптической щели находится синаптическая базальная мембрана (продолжение базальной мембраны мышечного волокна), она заходит в постсинаптические складки).

    В электрических синапсах синаптическая щель значительно уже, чем в химических. Они обладают низким сопротивлением пре- и постсинаптических мембран, что обеспечивает лучшее проведение сигнала. Схема проведения возбуждения в электрическом синапсе подобна схеме проведения ПД в нервном проводнике, т.е. ПД в пресинаптической мембране раздражает мембрану постсинаптическую.

    В химических синапсах передача сигнала происходит при выделении в синаптическую щель специальных веществ, вызывающих возникновение ПД на постсинаптической мембране. Вещества эти называются медиаторами.

    Для проведения возбуждения через нервно-мышечные синапсы характерно:


    • одностороннее проведение возбуждения: от пре- к постинаптической мембране;

    • задержка проведения возбуждения , связанная с синтезом, секрецией медиатора, его взаимодействием с рецепторами постсинаптической мембраны и инактивацией медиатора;

    • низкая лабильность и высокая утомляемость;

    • высокая избирательная чувствительность к химическим веществам;

    • трансформация (изменение) ритма и силы возбуждения;

    • суммация и инерционность возбуждения.
    Синапсам принадлежит ключевая роль в организации информационных потоков. Химические синапсы не просто передают сигнал, но они трансформируют его, усиливают, меняют характер кода. Химические синапсы функционируют как клапан: они передают информацию только в одном направлении. Взаимодействие возбуждающих и тормозных синапсов сохраняет наиболее значимую информацию и устраняет несущественную. Эффективность синаптической передачи может увеличиваться или уменьшаться как за счёт меняющейся концентрации кальция в пресинаптическом окончании, так и за счёт изменения количества рецепторов постсинаптической мембраны. Подобная пластичнность синапсов служит предпосылкой для их участия в процессе научения и формировании памяти. Синапс представляет собой мишень для действия многих веществ, способных блокировать или, наоборот, стимулировать синаптическую передачу. Передача информации в электрических синапсах происходит с помощью коннексонов, имеющих малое сопротивление и проводящих электрический ток от аксона одной клетки к аксонам другой.

    Список литературы


    1. Васильев В.Н. Физиология: учебное пособие / В.Н.Васильев, Л.В.Капилевич – Томск: Томск: Изд-во Томского политехнического университета, 2010. – 290 с.

    2. Глебов Р. Н., Крыжановский Г. Н. Функциональная биохимия синапсов. М., 1978.

    3. Катц Б., Нерв, мышца и синапс, пер. с англ., М., 1998

    4. Назарова Е. Н., Жилов Ю. Д., Беляева А. В. Физиология человека: Учебное пособие по разделам дисциплины физиология человека: физиология центральной нервной системы; физиология высшей нервной деятельности и сенсорных систем; психофизиология; физиология систем, формирующих гомеостаз. – М.: САНВИТА, 2009. – 282 с.

    5. Шепперд Г. Нейробиология. М., 1987. Т. 1.

    6. Экклз Д.К. Физиология синапсов. М.: Мир, 1966, – 397 с.