Интенсивность излучения света. для квартир и других жилых помещений. Интенсивность освещения внутри и вне помещения

Таким образом, в геометрической оптике световую волну можно рассматривать как пучок лучей. Лучи, однако, сами по себе определяют лишь направление распространения света в каждой точке; остается вопрос о распределении интенсивности света в пространстве.

Выделим на какой-либо из волновых поверхностей рассматриваемого пучка бесконечно малый элемент. Из дифференциальной геометрии известно, что всякая поверхность имеет в каждой своей точке два, вообще говоря, различных главных радиуса кривизны.

Пусть (рис. 7) - элементы главных кругов кривизны, проведенные на данном элементе волновой поверхности. Тогда лучи, проходящие через точки а и с, пересекутся друг с другом в соответствующем центре кривизны а лучи, проходящие через b и d, пересекутся в другом центре кривизны .

При данных углах раствора лучей, исходящих из длины отрезков пропорциональны соответствующим радиусам кривизны (т. е. длинам и ); площадь элемента поверхности пропорциональна произведению длин , т. е. пропорциональна Другими словами, если рассматривать элемент волновой поверхности, ограниченный определенным рядом лучей, то при движении вдоль них площадь этого элемента будет меняться пропорционально .

С другой стороны, интенсивность, т. е. плотность потока энергии, обратно пропорциональна площади поверхности, через которую проходит данное количество световой энергии. Таким образом, мы приходим к выводу, что интенсивность

Эту формулу надо понимать следующим образом. На каждом данном луче (АВ на рис. 7) существуют определенные точки и , являющиеся центрами кривизны всех волновых поверхностей, пересекающих данный луч. Расстояния и от точки О пересечения волновой поверхности с лучом до точек являются радиусами кривизны волновой поверхности в точке О. Таким образом, формула (54,1) определяет интенсивность света в точке О на данном луче как функцию от расстояний до определенных точек на этом дуче. Подчеркнем, что эта формула непригодна для сравнения интенсивностей в разных точках одной и той же волновой поверхности.

Поскольку интенсивность определяется квадратом модуля поля, то для изменения самого поля вдоль луча мы можем написать:

где в фазовом множителе под R может поразумеваться как так и величины отличаются друг от друга только постоянным (для данного луча) множителем, поскольку разность , расстояние между обоими центрами кривизны, постоянна.

Если оба радиуса кривизны волновой поверхности совпадают, то (54,1) и (54,2) имеют вид

Это имеет место, в частности, всегда в тех случаях, когда свет испускается точечным источником (волновые поверхности являются тогда концентрическими сферами, a R - расстоянием до источника света).

Из (54,1) мы видим, что интенсивность обращается в бесконечность в точках т. е. в центрах кривизны волновых поверхностей. Применяя это ко всем лучам в пучке, находим, что интенсивность света в данном пучке обращается в бесконечность, вообще говоря, на двух поверхностях - геометрическом месте всех центров кривизны волновых поверхностей. Эти поверхности носят название каустик. В частном случае пучка лучей со сферическими волновыми поверхностями обе каустики сливаются в одну точку {фокус).

Отметим, что, согласно известным из дифференциальной геометрии свойствам геометрического места центров кривизны семейства поверхностей, лучи касаются каустик.

Надо иметь в виду, что (при выпуклых волновых поверхностях) центры кривизны волновых поверхностей могут оказаться лежащими не на самих лучах, а на их продолжениях за оптическую систему, от которой они исходят. В таких случаях говорят о мнимых каустиках (или мнимых фокусах). Интенсивность света при этом нигде не обращается в бесконечность.

Что касается обращения интенсивности в бесконечность, то в действительности, разумеется, интенсивность в точках каустики делается большой, но остается конечной (см. задачу к § 59). Формальное обращение в бесконечность означает, что приближение геометрической оптики становится во всяком случае неприменимым вблизи каустик. С этим же обстоятельством связано и то, что изменение фазы вдоль луча может определяться формулой (54,2) только на участках луча, не включающих в себя точек его касания с каустиками. Ниже (в § 59) будет показано, что в действительности при прохождении мимо каустики фаза поля уменьшается на . Это значит, что если на участке луча до его касания первой каустики поле пропорционально множителю - координата вдоль луча), то после прохождения мимо каустики поле будет пропорционально То же самое произойдет вблизи точки касания второй каустики, и за этой точкой поле будет пропорционально

I(t) = \frac{1}{T}\int\limits_t^{t+T}\left|\vec S(t)\right|dt,

где вектор Пойнтинга \vec S(t)=\frac{c}{4\pi}\left[\vec E(t)\times\vec B(t)\right], (в системе СГС), E - напряжённость электрического поля, а B - магнитная индукция.

Для монохроматической линейно поляризованной волны с амплитудой напряжённости электрического поля E_0 интенсивность равна:

I = \frac{\epsilon_0cE_0^2}{8\pi}.

Для монохроматической циркулярно поляризованной волны это значение в два раза больше:

I = \frac{\epsilon_0cE_0^2}{4\pi}.

Интенсивность звука

Звук представляет собой волну механических колебаний среды. Интенсивность звука может быть выражена через амплитудные значения звукового давления p и колебательной скорости среды v :

I = \frac{pv}{2}.

Напишите отзыв о статье "Интенсивность (физика)"

Примечания

Отрывок, характеризующий Интенсивность (физика)

– Ежели все русские хотя немного похожи на вас, – говорил он Пьеру, – c"est un sacrilege que de faire la guerre a un peuple comme le votre. [Это кощунство – воевать с таким народом, как вы.] Вы, пострадавшие столько от французов, вы даже злобы не имеете против них.
И страстную любовь итальянца Пьер теперь заслужил только тем, что он вызывал в нем лучшие стороны его души и любовался ими.
Последнее время пребывания Пьера в Орле к нему приехал его старый знакомый масон – граф Вилларский, – тот самый, который вводил его в ложу в 1807 году. Вилларский был женат на богатой русской, имевшей большие имения в Орловской губернии, и занимал в городе временное место по продовольственной части.
Узнав, что Безухов в Орле, Вилларский, хотя и никогда не был коротко знаком с ним, приехал к нему с теми заявлениями дружбы и близости, которые выражают обыкновенно друг другу люди, встречаясь в пустыне. Вилларский скучал в Орле и был счастлив, встретив человека одного с собой круга и с одинаковыми, как он полагал, интересами.
Но, к удивлению своему, Вилларский заметил скоро, что Пьер очень отстал от настоящей жизни и впал, как он сам с собою определял Пьера, в апатию и эгоизм.
– Vous vous encroutez, mon cher, [Вы запускаетесь, мой милый.] – говорил он ему. Несмотря на то, Вилларскому было теперь приятнее с Пьером, чем прежде, и он каждый день бывал у него. Пьеру же, глядя на Вилларского и слушая его теперь, странно и невероятно было думать, что он сам очень недавно был такой же.
Вилларский был женат, семейный человек, занятый и делами имения жены, и службой, и семьей. Он считал, что все эти занятия суть помеха в жизни и что все они презренны, потому что имеют целью личное благо его и семьи. Военные, административные, политические, масонские соображения постоянно поглощали его внимание. И Пьер, не стараясь изменить его взгляд, не осуждая его, с своей теперь постоянно тихой, радостной насмешкой, любовался на это странное, столь знакомое ему явление.
В отношениях своих с Вилларским, с княжною, с доктором, со всеми людьми, с которыми он встречался теперь, в Пьере была новая черта, заслуживавшая ему расположение всех людей: это признание возможности каждого человека думать, чувствовать и смотреть на вещи по своему; признание невозможности словами разубедить человека. Эта законная особенность каждого человека, которая прежде волновала и раздражала Пьера, теперь составляла основу участия и интереса, которые он принимал в людях. Различие, иногда совершенное противоречие взглядов людей с своею жизнью и между собою, радовало Пьера и вызывало в нем насмешливую и кроткую улыбку.

Рассмотрим элементарную площадку с площадью , расположенную в пространстве, заполненном излучением от разных источников. Будем характеризовать ориентацию площадки в пространстве вектором нормали к ее поверхности.

Важное свойство интенсивности: эта величина характеризует излучательные свойства источника и не зависит от того, на каком расстоянии от него поместить элементарную площадку. Отодвинем площадку на некоторое расстояние. Действительно с ростом расстояния r до источника мощность излучения, проходящего через площадку, падает как r 2 , но по такому же закону падает и телесный угол, под которым виден источник. Элементарную площадку можно совместить с наблюдателем, а можно представить находящейся на поверхности источника. Интенсивность будет той же самой.

Определение. Интенсивность излучения – это мощность световой энергии (поток излучения за единицу времени), проходящей через площадку единичного сечения, расположенную перпендикулярно выбранному направлению в единичном телесном угле.

Кандела – (СВЕЧА МЕЖДУНАРОДНАЯ до 1970) единица измерения интенсивности (силы света), равная силе света такого точечного источника, который испускает световой поток в один люмен внутри единичного телесного угла (стерадиана), то есть 1кд =1лм/ср

Интенсивность лучистой энергии имеет размерность – вт/ср, эрг/сек*ср

Надо еще учесть ориентацию площадки в пространстве. В общем случае, если угол между нормалью и выбранным направлением равен q, то

где = - элемент телесного угла.

Телесный угол, под которым виден источник, выражается равенством:

где S –площадь вырезаемая конусом на сфере радиусом r . При телесный угол равен 1.

Эта величина называется стерадианом . Все пространство имеет телесный угол, равный 4p.

Таким образом, интенсивность источника это поток излучения в пределах телесного угла равного стерадиану.

Определение. Источник называют изотропно излучающим, если его интенсивность не зависит от направления в пространстве.

Из (2.1) можно получить мощность излучения, проходящего через единичную площадку. Для этого проинтегрируем интенсивность по телесному углу.

Для изотропного поля излучения получаем полный поток через площадку по формуле = 0. Для изотропно излучающей бесконечной площади интегрирование по полусфере дает поток

Освещенность.

Рассмотрим поток от источника в месте наблюдения. При отсутствии поглощения поток падает с расстоянием как из-за уменьшения телесного угла, под которым виден источник. Поэтому поток можно рассматривать как освещенность в месте наблюдения, создаваемая источником.

Определение. Освещенность E – это световой поток на единицу площади.

С учетом (2.2) получаем:

Если площадка, ограничивающая конус, расположена под углом q к нормали, то в общем виде можно записать выражение для освещенности площадки в виде:

За единицу освещенности принимается люкс – когда через площадку 1м 2 проходит поток равный 1 люмену. 1лк = 1лм/м 2

Освещенность в энергетических единицах - вт/см 2 , эрг/сек*см 2

От точечного источника телескоп может регистрировать только поток излучения, а не интенсивность. Рассмотрим излучение от звезды радиуса R , которую можно представить в виде сферически-симметричного изотропного источника, находящегося на расстоянии r. Непосредственно измеряемый поток от звезды будет:

где - интенсивность в точке приемника (телескопа), а = - телесный угол под которым видна звезда. Поток с единицы поверхности от звезды для изотропной интенсивности есть просто = . В отсутствии поглощения = . Поэтому для измеряемой величины находим:

= (2.7)

Так как , то переход от непосредственно измеряемой величины к интенсивности возможен, если только известен угловой диаметр R/r источника, то есть если он не воспринимается как точечный.

Заменить растению солнце очень трудно. Попробуйте в солнечный день включить в комнате лампу, и вы поймете, насколько мало света она способна дать растениям.

Для человеческого глаза свет - это энергетические волны длиной от 380 нанометров (нм) (фиолетовый) до 780 нм (красный). Важные для фотосинтеза волны лежат между 700 нм (красный) и 450 нм (синий). Это особенно важно знать при использовании искусственного освещения, ведь в этом случае не происходит равномерного распределения волн разной длины, как при солнечном свете. Более того, из-за конструкции лампы отдельные части спектра могут оказаться более интенсивными, другие менее. К тому же, человеческий глаз лучше воспринимает как раз волны такой длины, которые не слишком пригодны для растений. В результате может получиться, что какое-то освещение покажется нам приятным и ярким, а для растений оно будет неподходящим и слабым.

Интенсивность освещения внутри и вне помещения

Интенсивность света, падающего на определенную плоскость, измеряется в единице «люкс». Летом в солнечный полдень интенсивность света в наших широтах достигает 100 000 люкс. Во второй половине дня яркость света снижается до 25000 люкс. В это же время в тени, в зависимости от ее густоты, она составит только десятую часть этого значения или даже меньше.

В домах интенсивность освещения еще меньше, так как свет падает туда не прямо, а ослабляется другими домами или деревьями. Летом на южном окне, прямо за стеклами (то есть на подоконнике), интенсивность света достигает в лучшем случае от 3000 до 5000 люкс, а к середине комнаты быстро снижается. На расстоянии 2-3 метров от окна она составит около 500 люкс.

Минимальное количество света, которое требуется для выживания каждому растению, составляет приблизительно 500 люкс. При более слабом освещении оно неизбежно погибнет. Для нормальной жизни и роста даже неприхотливым растениям с небольшой потребностью в свете необходимо как минимум 800 люкс.

Как измерить освещенность?

Человеческий глаз не в состоянии определить абсолютную интенсивность света, поскольку он наделен способностью приспосабливаться к освещению. К тому же, глаз человека лучше воспринимает как раз волны такой длины, которые не слишком пригодны для растений.

Что же делать? Помочь может специальный прибор - люксметр. При его покупке очень важно обращать внимание на то, какой диапазон светового спектра (длину волны) он в состоянии измерить. Иначе может случиться так, что при измерении вы попадете на непригодную для растений длину волны. Помните - люксметр, хоть и точнее человеческого глаза, но тоже воспринимает ограниченный диапазон световых волн.

Для оценки интенсивности освещения подойдет фотоаппарат или фотоэкспонометр. Но поскольку при фотографировании освещенность измеряется не в «люксах», придется провести соответствующий пересчет.

Измерение проводят так:

1.Установите светочувствительность на 100, а диафрагму на 4.

2. Положите белый лист бумаги в том месте, где хотите измерить интенсивность освещения, и наведите на него фотоаппарат.

3. Определите выдержку.

4. Знаменатель выдержки, умноженный на 10, даст примерное значение люкс.

Пример: если время выдержки составило 1/60 секунды, это соответствует 600 люкс.

По материалам:

Палеева Т. В. «Ваши цветы. Уход и лечение», М.: Эксмо, 2003 г.;

Анита Паулисен «Цветы в доме», М.: Эксмо, 2004 г.;

Воронцов В. В. «Уход за комнатными растениями. Практические советы любителям цветов», М.: ЗАО «Фитон+», 2004 г.;

Беспальченко Е. А. «Тропические декоративные растения для дома, квартиры и офиса», ООО ПКФ «БАО», Донецк, 2005 г.;

Д. Госсе, «Даже солнцу надо помогать», журнал «Вестник цветовода», №3, 2005 г.

Может очень сильно различаться, причем визуально мы не в состоянии определить степень освещенности, т. к. человеческий глаз наделен способностью приспосабливаться к разному освещению. Между тем, интенсивность освещения имеет чрезвычайно важное значение в самых разнообразных сферах деятельности. Для примера можно взять процесс кино- или видеосъемки, а также, допустим, выращивание комнатных растений.

Человеческий глаз воспринимает световые от 380 нм (фиолетового цвета) до 780 нм (красного). Лучше всего мы воспринимаем волны с длиной, как раз не самой пригодной для растений. Яркое и приятное нашему глазу освещение может быть неподходящим для растений в теплице, которые могут недополучать важных для фотосинтеза волн.

Интенсивность света измеряется в люксах. Ярким солнечным полднем в нашей средней полосе она достигает примерно 100 000 люкс, к вечеру снижается до 25 000 люкс. В густой тени ее значение составляет десятые доли этих величин. В помещениях интенсивность солнечного освещения значительно меньше, т. к. свет ослаблен деревьями и оконными стеклами. Самое яркое освещение (на южном окне летом сразу за стеклами) в лучшем случае 3-5 тысяч люкс, на середине комнаты (в 2-3 метрах от окна) - всего 500 люкс. Это минимально необходимое для выживания растений освещение. Для нормального роста даже неприхотливым требуется не менее 800 люкс.

Интенсивность света на глаз мы определить не можем. Для этого существует прибор, название которого - люксметр. При его покупке необходимо уточнить измеряемый им диапазон волн, т.к. возможности прибора хоть и шире возможностей человеческого глаза, но все же ограничены.

Интенсивность света также можно измерить с помощью фотоаппарата или фотоэкспонометра. Правда, придется сделать перерасчет полученных единиц в люксы. Для проведения измерения нужно в месте замера положить белый лист бумаги и навести на него фотоаппарат, светочувствительность которого установлена на 100, а диафрагма на 4. Определив выдержку, следует ее знаменатель умножить на 10, полученное значение будет приблизительно соответствовать освещению в люксах. Например, при полученной выдержке 1/60 сек. освещение около 600 люкс.

Если вы увлекаетесь разведением цветов и уходом за ними, то, конечно же, знаете, что энергия света жизненно необходима растениям для нормального фотосинтеза. Свет оказывает влияние на скорость роста, направление, развитие цветка, размер и форму его листьев. С уменьшением световой интенсивности пропорционально замедляются все процессы в растениях. Количество его зависит от того, насколько удален источник света, от стороны горизонта, на которую обращено окно, от степени затененности уличными деревьями, от наличия штор или жалюзи. Чем светлее помещение, тем активнее происходит рост растений и тем больше им требуется воды, тепла и удобрений. Если растения растут в тени, то и ухода они требуют в меньшем количестве.

При съемке фильма или телевизионной передачи освещенность имеет очень важное значение. Высококачественная съемка возможна при освещенности порядка 1000 люкс, достигаемой в телевизионной студии при помощи специальных ламп. Но приемлемое качество изображения можно получить и при меньшем освещении.

Интенсивность освещения в студии до начала и в процессе съемки измеряют с помощью экспонометров или высококачественных цветных мониторов, которые подключаются к видеокамере. До начала съемки лучше всего пройтись с экспонометром по всей съемочной площадке с целью определения затемненных или чрезмерно освещенных ее участков во избежание негативных явлений при просмотре отснятого материала. Кроме того, правильной регулировкой освещения можно добиться дополнительной выразительности снимаемой сцены и нужных режиссерских эффектов.