Как написать уравнение в ионном виде. Ионные уравнения реакций. Как превратить молекулярное уравнение в полное ионное уравнение


1. Записывают формулы веществ, вступивших в реакцию, ставят знак «равно» и записывают формулы образовавшихся веществ. Расставляют коэффициенты.

2. Пользуясь таблицей растворимости, записывают в ионном виде формулы веществ (солей, кислот, оснований), обозначенных в таблице растворимости буквой «Р» (хорошо растворимые в воде), исключение – гидроксид кальция, который, хотя и обозначен буквой «М», все же в водном растворе хорошо диссоциирует на ионы.

3. Нужно помнить, что на ионы не разлагаются металлы, оксиды металлов и неметаллов, вода, газообразные вещества, нерастворимые в воде соединения, обозначенные в таблице растворимости буквой «Н». Формулы этих веществ записывают в молекулярном виде. Получают полное ионное уравнение.

4. Сокращают одинаковые ионы до знака «равно» и после него в уравнении. Получают сокращенное ионное уравнение.

5. Помните!

Р - растворимое вещество;

М - малорастворимое вещество;

ТР - таблица растворимости.

Алгоритм составления реакций ионного обмена (РИО)

в молекулярном, полном и кратком ионном виде


Примеры составления реакций ионного обмена

1. Если в результате реакции выделяется малодиссоциирующее (мд) вещество – вода.

В данном случае полное ионное уравнение совпадает с сокращенным ионным уравнением.

2. Если в результате реакции выделяется нерастворимое в воде вещество.


В данном случае полное ионное уравнение реакции совпадает с сокращенным. Эта реакция протекает до конца, о чем свидетельствуют сразу два факта: образование вещества, нерастворимого в воде, и выделение воды.

3. Если в результате реакции выделяется газообразное вещество.




ВЫПОЛНИТЕ ЗАДАНИЯ ПО ТЕМЕ "РЕАКЦИИ ИОННОГО ОБМЕНА"

Задание №1.
Определите, может ли осуществляться взаимодействие между растворами следующих веществ, записать реакциив молекулярном,полном, кратком ионном виде:
гидроксид калия и хлорид аммония.

Решение

Составляем химические формулы веществ по их названиям, используя валентности и записываем РИО в молекулярном виде (проверяем растворимость веществ по ТР):

KOH + NH4 Cl = KCl + NH4 OH

так как NH4 OH неустойчивое вещество и разлагается на воду и газ NH3 уравнение РИО примет окончательный вид

KOH (p) + NH4 Cl (p) = KCl (p) + NH3 + H2 O

Cоставляем полное ионное уравнение РИО, используя ТР (не забывайте в правом верхнем углу записывать заряд иона):

K+ + OH- + NH4 + + Cl- = K+ + Cl- + NH3 + H2 O

Cоставляем краткое ионное уравнение РИО, вычёркивая одинаковые ионы до и после реакции:

OH - + NH4 + = NH3 + H2 O

Делаем вывод:
Взаимодействие между растворами следующих веществ может осуществляться, так как продуктами данной РИО являются газ (NH3 ) и малодиссоциирующее вещество вода (H2 O).

Задание №2

Дана схема:

2H + + CO3 2- = H 2 O + CO 2

Подберите вещества, взаимодействие между которыми в водных растворах выражается следующими сокращёнными уравнениями. Составьте соответствующие молекулярное и полное ионное уравнения.

Используя ТР подбираем реагенты - растворимые в воде вещества, содержащие ионы 2H + и CO 3 2- .

Например, кислота - H 3 PO 4 (p) и соль -K 2 CO 3 (p).

Составляем молекулярное уравнение РИО:

2H 3 PO 4 (p) +3 K 2 CO 3 (p) -> 2K 3 PO 4 (p) + 3H 2 CO 3 (p)

так как угольная кислота – неустойчивое вещества, она разлагается на углекислый газ CO 2 и воду H 2 O, уравнение примет окончательный вид:

2H 3 PO 4 (p) +3 K 2 CO 3 (p) -> 2K 3 PO 4 (p) + 3CO 2 + 3H 2 O

Составляем полное ионное уравнение РИО:

6H + +2PO 4 3- + 6K + + 3CO 3 2- -> 6K + + 2PO 4 3- + 3CO 2 + 3H 2 O

Составляем краткое ионное уравнение РИО:

6H + +3CO 3 2- = 3CO 2 + 3H 2 O

2H + +CO 3 2- = CO 2 + H 2 O

Делаем вывод:

В конечном итоге мы получили искомое сокращённое ионное уравнение, следовательно, задание выполнено верно.

Задание №3

Запишите реакцию обмена между оксидом натрия и фосфорной кислотой в молекулярном, полном и кратком ионном виде.

1. Составляем молекулярное уравнение, при составлении формул учитываем валентности (см. ТР)

3Na 2 O (нэ) + 2H 3 PO 4 (р) -> 2Na 3 PO 4 (р) + 3H 2 O (мд)

где нэ - неэлектролит, на ионы не диссоциирует,
мд - малодиссоциирующее вещество, на ионы не раскладываем, вода - признак необратимости реакции

2. Составляем полное ионное уравнение:

3Na 2 O + 6H + + 2PO 4 3- -> 6Na + + 2PO4 3- + 3H 2 O

3. Сокращаем одинаковые ионы и получаем краткое ионное уравнение:

3Na 2 O + 6H + -> 6Na + + 3H 2 O
Сокращаем коэффициенты на три и получаем:
Na
2 O + 2H + -> 2Na + + H 2 O

Данная реакция необратима, т.е. идёт до конца, так как в продуктах образуется малодиссоциирующее вещество вода.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Задание №1

Взаимодействие карбоната натрия и серной кислоты

Составьте уравнение реакции ионного обмена карбоната натрия с серной кислотой в молекулярном, полном и кратком ионном виде.

Задание №2

ZnF 2 + Ca(OH) 2 ->
K
2 S + H 3 PO 4 ->

Задание №3

Посмотрите следующий эксперимент

Осаждение сульфата бария

Составьте уравнение реакции ионного обмена хлорида бария с сульфатом магния в молекулярном, полном и кратком ионном виде.

Задание №4

Закончите уравнения реакций в молекулярном, полном и кратком ионном виде:

Hg(NO 3 ) 2 + Na 2 S ->
K
2 SO 3 + HCl ->

При выполнении задания используйте таблицу растворимости веществ в воде. Помните об исключениях!

При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около теплоты:

Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые - в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода - очень слабый электролит, см. § 90):

Рассматривая получившееся уравнение, видим, что в ходе реакции ионы и не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением

Однако, как мы увидим ниже, вода - очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:

Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:

Как видно, ионы и не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:

Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами и в растворе, так что процесс, выраженный последним уравнением, обратим:

Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования из ионов практически доходит до конца.

Образование осадка будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы и . Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов и, наоборот, с помощью хлорид-ионов - присутствие ионов серебра; ион может служить реактивом на ион , а ион - реактивом на ион .

В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл. 15.

Таблица 15. Растворимость важнейших солей в воде

Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качеству примера несколько реакций, протекающих с участием слабых кислот и оснований.

Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу - образованию молекул воды из ионов водорода и гидроксид-иона.

Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.

Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):

Здесь сильные электролиты - гидроксид натрия и образующаяся соль, а слабые - кислота и вода:

Как видно, не претерпевают изменении в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:

Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):

Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул - гидроксид аммония и воду:

Не претерпевают изменений ионы . Опуская их, получаем ионно-молекулярное уравнение:

Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):

В этой реакции все вещества, кроме образующейся слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:

Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.

Как уже указывалось, реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ - слабый электролит и при которых молекулы малоднссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца.

Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции.

>> Химия: Ионные уравнения

Ионные уравнения

Как вам уже известно из предыдущих уроков химии, большая часть химических реакций происходит в растворах. А так как все растворы электролитов включают ионы, то можно говорить о том, что реакции в растворах электролитов сводятся к реакциям между ионами.

Вот такие реакции, которые происходят между ионами, носят название ионных реакций. А ионные уравнения – это, как раз и есть уравнения этих реакций.

Как правило, ионные уравнения реакций получают из молекулярных уравнений, но это происходит при соблюдении таких правил:

Во-первых, формулы слабых электролитов, а также нерастворимых и малорастворимых веществ, газов, оксидов и т.д. в виде ионов не записывают, исключением из этого правила является ион HSO−4, и то в разбавленном виде.

Во-вторых, в виде ионов, как правило, представляют формулы сильных кислот, щелочей, а также растворимых в воде солей. Так же следует отметить, что такая формула, как Са(ОН)2 представлена в виде ионов, в том случае, если используется известковая вода. Если же используется известковое молоко, которое содержит нерастворимые частицы Ca(OH)2, то формула в виде ионов, также не записывается.

При составлении ионных уравнений, как правило, используют полное ионное и сокращенное, то есть краткое ионное уравнения реакции. Если рассматривать ионное уравнение, которое имеет сокращенный вид, то в нем мы не наблюдаем ионов, то есть они отсутствуют обеих частях полного ионного уравнения.

Давайте рассмотрим на примерах, как записываются молекулярные, полные и сокращенные ионные уравнения:

Поэтому следует помнить, что формулы веществ, которые не распадаются, а также нерастворимые и газообразные, при составлении ионных уравнений принято записывать в молекулярном виде.

Также, следует помнить, что в том случае, если вещество выпадает в осадок, то рядом с такой формулой изображают направленную вниз стрелку (↓). Ну, а в том случае, когда в ходе реакции выделяется газообразное вещество, то рядом с формулой должен стоять такой значок, как стрелка направленная вверх ().

Давайте более подробно рассмотрим на примере. Если у нас есть раствор сульфата натрия Na2SO4, и мы к нему добавим раствор хлорида бария ВаСl2 (рис. 132), то увидим, что у нас образовался белый осадок сульфата бария BaSO4.

Посмотрите внимательно на изображение, на котором показано взаимодействие сульфата натрия и хлорида бария:



Теперь давайте запишем молекулярное уравнение реакции:

Ну, а сейчас давайте перепишем это уравнение, где будут изображены сильные электролиты в виде ионов, а реакции, которые уходят из сферы, представлены в виде молекул:

Перед нами записано полное ионное уравнение реакции.

Теперь попробуем убрать из одной м другой части равенства одинаковые ионы, то есть, те ионы, которые не принимают участия в реакции 2Na+ и 2Сl, то у нас получится сокращённое ионное уравнение реакции, которое будет иметь такой вид:


Из этого уравнения мы видим что вся сущность данной реакции сводится к взаимодействию ионов бария Ва2+ и сульфат-ионов

и что в результате образуется осадок BaSO4, даже не зависимо от того, в состав каких электролитов входили эти ионы до реакции.

Как решать ионные уравнения

И напоследок, давайте подведем итоги нашего урока и определим, как же нужно решать ионные уравнения. Мы с вами уже знаем, что все реакции, которые происходят в растворах электролитов между ионами, являются ионными реакциями. Эти реакции принято решать или описывать с помощью ионных уравнений.

Также, следует помнить, что все те соединения, которые относятся к летучим, трудно растворимым или малодиссоциированным, находят решение в молекулярной форме. Также, следует не забывать, что в том случае, когда при взаимодействии растворов электролитов не образуется ни одного из вышеперечисленных видов соединения, то это означает, что реакции практически не протекают.

Правила решения ионных уравнений

Для наглядного примера возьмем такое образование труднорастворимого соединения, как:

Nа2SО4 + ВаСl2 = ВаSО4 + 2NаСl

В ионном виде это выражение будет иметь вид:

2Nа+ +SО42- + Ва2+ + 2Сl- = BаSО4 + 2Nа+ + 2Сl-

Так как мы с вами наблюдаем, что в реакцию вступили лишь ионы бария и сульфат-ионы, а остальные ионы не прореагировали и их состояние осталось прежним. Из этого следует, что мы можем это уравнение упростить и записать в сокращенном виде:

Ва2+ + SО42- = ВаSО4

Теперь вспомним, что нам следует предпринять при решении ионных уравнений:

Во-первых, необходимо исключить из обеих частей уравнения одинаковые ионы;

Во-вторых, не следует забывать о том, что сумма электрических зарядов уравнения должна быть одинаковой, и в его правой части, и также в левой.

Реакции ионного обмена — реакции в водных растворах между электролитами, протекающие без изменений степеней окисления образующих их элементов

Необходимым условием протекания реакции между электролитами (солями, кислотами и основаниями) является образование малодиссоциирующего вещества (вода, слабая кислота, гидроксид аммония), осадка или газа.

Расcмотрим реакцию, в результате которой образуется вода. К таким реакциям относятся все реакции между любой кислотой и любым основанием. Например, взаимодействие азотной кислоты с гидроксидом калия:

HNO 3 + KOH = KNO 3 + H 2 O (1)

Исходные вещества, т.е. азотная кислота и гидроксид калия, а также один из продуктов, а именно нитрат калия, являются сильными электролитами, т.е. в водном растворе они существуют практически только в виде ионов. Образовавшаяся вода относится к слабым электролитам, т.е. практически не распадается на ионы. Таким образом, более точно переписать уравнение выше можно, указав реальное состояние веществ в водном растворе, т.е. в виде ионов:

H + + NO 3 − + K + + OH ‑ = K + + NO 3 − + H 2 O (2)

Как можно заметить из уравнения (2), что до реакции, что после в растворе находятся ионы NO 3 − и K + . Другими словами, по сути, нитрат-ионы и ионы калия никак не участвовали в реакции. Реакция произошла только благодаря объединению частиц H + и OH − в молекулы воды. Таким образом, произведя алгебраически сокращение одинаковых ионов в уравнении (2):

H + + NO 3 − + K + + OH ‑ = K + + NO 3 − + H 2 O

мы получим:

H + + OH ‑ = H 2 O (3)

Уравнения вида (3) называют сокращенными ионными уравнениями , вида (2) — полными ионными уравнениями , а вида (1) — молекулярными уравнениями реакций .

Фактически ионное уравнение реакции максимально отражает ее суть, именно то, благодаря чему становится возможным ее протекание. Следует отметить, что одному сокращенному ионному уравнению могут соответствовать множество различных реакций. Действительно, если взять, к примеру, не азотную кислоту, а соляную, а вместо гидроксида калия использовать, скажем, гидроксид бария, мы имеем следующее молекулярное уравнение реакции:

2HCl+ Ba(OH) 2 = BaCl 2 + 2H 2 O

Соляная кислота, гидроксид бария и хлорид бария являются сильными электролитами, то есть существуют в растворе преимущественно в виде ионов. Вода, как уже обсуждалось выше, – слабый электролит, то есть существует в растворе практически только в виде молекул. Таким образом, полное ионное уравнение данной реакции будет выглядеть следующим образом:

2H + + 2Cl − + Ba 2+ + 2OH − = Ba 2+ + 2Cl − + 2H 2 O

Сократим одинаковые ионы слева и справа и получим:

2H + + 2OH − = 2H 2 O

Разделив и левую и правую часть на 2, получим:

H + + OH − = H 2 O,

Полученное сокращенное ионное уравнение полностью совпадает с сокращенными ионным уравнением взаимодействия азотной кислоты и гидроксида калия.

При составлении ионных уравнений в виде ионов записывают только формулы:

1) сильных кислот (HCl, HBr, HI, H 2 SO 4 , HNO 3 , HClO 4) (список сильных кислот надо выучить!)

2) сильных оснований (гидроксиды щелочных (ЩМ) и щелочно-земельных металлов(ЩЗМ))

3) растворимых солей

В молекулярном виде записывают формулы:

1) Воды H 2 O

2) Слабых кислот (H 2 S, H 2 CO 3 , HF, HCN, CH 3 COOH (и др. практически все органические))

3) Слабых оcнований (NH 4 OH и практически все гидроксиды металлов кроме ЩМ и ЩЗМ

4) Малорастворимых солей (↓) («М» или «Н» в таблице растворимости).

5) Оксидов (и др. веществ, не являющихся электролитами)

Попробуем записать уравнение между гидроксидом железа (III) и серной кислотой. В молекулярном виде уравнение их взаимодействия записывается следующим образом:

2Fe(OH) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O

Гидроксиду железа (III) соответствует в таблице растворимости обозначение «Н», что говорит нам о его нерастворимости, т.е. в ионном уравнении его надо записывать целиком, т.е. как Fe(OH) 3 . Серная кислота растворима и относится к сильным электролитам, то есть существует в растворе преимущественно в продиссоциированном состоянии. Сульфат железа (III), как и практически все другие соли, относится к сильным электролитам, и, поскольку он растворим в воде, в ионном уравнении его нужно писать в виде ионов. Учитывая все вышесказанное, получаем полное ионное уравнение следующего вида:

2Fe(OH) 3 + 6H + + 3SO 4 2- = 2Fe 3+ + 3SO 4 2- + 6H 2 O

Сократив сульфат-ионы слева и справа, получаем:

2Fe(OH) 3 + 6H + = 2Fe 3+ + 6H 2 O

разделив обе части уравнения на 2 получаем сокращенное ионное уравнение:

Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

Теперь давайте рассмотрим реакцию ионного обмена, в результате которой образуется осадок. Например, взаимодействие двух растворимых солей:

Все три соли – карбонат натрия, хлорид кальция, хлорид натрия и карбонат кальция (да-да, и он тоже) – относятся к сильным электролитам и все, кроме карбоната кальция, растворимы в воде, т.е. есть участвуют в данной реакции в виде ионов:

2Na + + CO 3 2- + Ca 2+ + 2Cl − = CaCO 3 ↓+ 2Na + + 2Cl −

Сократив одинаковые ионы слева и справа в данном уравнении, получим сокращенное ионное:

CO 3 2- + Ca 2+ = CaCO 3 ↓

Последнее уравнение отображает причину взаимодействия растворов карбоната натрия и хлорида кальция. Ионы кальция и карбонат-ионы объединяются в нейтральные молекулы карбоната кальция, которые, соединяясь друг с другом, порождают мелкие кристаллы осадка CaCO 3 ионного строения.

Примечание важное для сдачи ЕГЭ по химии

Чтобы реакция соли1 с солью2 протекала, помимо базовых требований к протеканиям ионных реакций (газ, осадок или вода в продуктах реакции), на такие реакции накладывается еще одно требование – исходные соли должны быть растворимы. То есть, например,

CuS + Fe(NO 3) 2 ≠ FeS + Cu(NO 3) 2

реакция не идет, хотя FeS – потенциально мог бы дать осадок, т.к. нерастворим. Причина того что реакция не идет – нерастворимость одной из исходных солей (CuS).

А вот, например,

Na 2 CO 3 + CaCl 2 = CaCO 3 ↓+ 2NaCl

протекает, так как карбонат кальция нерастворим и исходные соли растворимы.

То же самое касается взаимодействия солей с основаниями. Помимо базовых требований к протеканию реакций ионного обмена, для того чтобы соль с основанием реагировали необходима растворимость их обоих. Таким образом:

Cu(OH) 2 + Na 2 S – не протекает,

т.к. Cu(OH) 2 нерастворим, хотя потенциальный продукт CuS был бы осадком.

А вот реакция между NaOH и Cu(NO 3) 2 протекает, так оба исходных вещества растворимы и дают осадок Cu(OH) 2:

2NaOH + Cu(NO 3) 2 = Cu(OH) 2 ↓+ 2NaNO 3

Внимание! Ни в коем случае не распространяйте требование растворимости исходных веществ дальше реакций соль1+ соль2 и соль + основание.

Например, с кислотами выполнение этого требования не обязательно. В частности, все растворимые кислоты прекрасно реагируют со всеми карбонатами, в том числе нерастворимыми.

Другими словами:

1)Соль1+ соль2 — реакция идет если исходные соли растворимы, а в продуктах есть осадок

2) Соль + гидроксид металла – реакция идет, если в исходные вещества растворимы и в продуктах есть садок или гидроксид аммония.

Рассмотрим третье условие протекания реакций ионного обмена – образование газа. Строго говоря, только в результате ионного обмена образование газа возможно лишь в редких случаях, например, при образовании газообразного сероводорода:

K 2 S + 2HBr = 2KBr + H 2 S

В большинстве же остальных случаев газ образуется в результате разложения одного из продуктов реакции ионного обмена. Например, нужно точно знать в рамках ЕГЭ, что с образованием газа в виду неустойчивости разлагаются такие продукты, как H 2 CO 3 , NH 4 OH и H 2 SO 3:

H 2 CO 3 = H 2 O + CO 2

NH 4 OH = H 2 O + NH 3

H 2 SO 3 = H 2 O + SO 2

Другими словами, если в результате ионного обмена образуются угольная кислота, гидроксид аммония или сернистая кислота, реакция ионного обмена протекает благодаря образованию газообразного продукта:

Запишем ионные уравнения для всех указанных выше реакций, приводящих к образованию газов. 1) Для реакции:

K 2 S + 2HBr = 2KBr + H 2 S

В ионном виде будут записываться сульфид калия и бромид калия, т.к. являются растворимыми солями, а также бромоводородная кислота, т.к. относится к сильным кислотам. Сероводород же, являясь малорастворимым и плохо диссоциирцющим на ионы газом, запишется в молекулярном виде:

2K + + S 2- + 2H + + 2Br — = 2K + + 2Br — + H 2 S

Сократив одинаковые ионы получаем:

S 2- + 2H + = H 2 S

2) Для уравнения:

Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + CO 2

В ионном виде запишутся Na 2 CO 3 , Na 2 SO 4 как хорошо растворимые соли и H 2 SO 4 как сильная кислота. Вода является малодиссоциирующим веществом, а CO 2 и вовсе неэлектролит, поэтому их формулы будут записываться в молекулярном виде:

2Na + + CO 3 2- + 2H + + SO 4 2- = 2Na + + SO 4 2 + H 2 O + CO 2

CO 3 2- + 2H + = H 2 O + CO 2

3) для уравнения:

NH 4 NO 3 + KOH = KNO 3 + H 2 O + NH 3

Молекулы воды и аммиака запишутся целиком, а NH 4 NO 3 , KNO 3 и KOH запишутся в ионном виде, т.к. все нитраты являются хорошо растворимыми солями, а KOH является гидроксидом щелочного металла, т.е. сильным основанием:

NH 4 + + NO 3 − + K + + OH − = K + + NO 3 − + H 2 O + NH 3

NH 4 + + OH − = H 2 O + NH 3

Для уравнения:

Na 2 SO 3 + 2HCl = 2NaCl + H 2 O + SO 2

Полное и сокращенное уравнение будут иметь вид:

2Na + + SO 3 2- + 2H + + 2Cl − = 2Na + + 2Cl − + H 2 O + SO 2


Так как электролиты в растворе находятся в виде ионов, то реакции между растворами солей, оснований и кислот – это реакции между ионами, т.е. ионные реакции. Некоторые из ионов, участвуя в реакции, приводят к образованию новых веществ (малодиссоциирующих веществ, осадков, газов, воды), а другие ионы, присутствуя в растворе, не дают новых веществ, но остаются в растворе. Для того, чтобы показать, взаимодействие каких ионов приводит к образованию новых веществ, составляют молекулярные, полные и краткие ионные уравнения.

В молекулярных уравнениях все вещества представлены в виде молекул. Полные ионные уравнения показывают весь перечень ионов имеющихся в растворе при данной реакции. Краткие ионные уравнения составлены лишь теми ионами, взаимодействие между которыми приводит к образованию новых веществ (малодиссоциирующих веществ, осадков, газов, воды).

При составлении ионных реакций следует помнить, что вещества малодиссоциированные (слабые электролиты), мало – и труднорастворимые (выпадающие в осадок – “Н ”, “М ”, см. приложение‚ таблица 4) и газообразные записываются в виде молекул. Сильные электролиты, диссоциированные практически полностью, – в виде ионов. Знак “↓”, стоящий после формулы вещества, указывает на то, что это вещество удаляется из сферы реакции в виде осадка, а знак “”, указывает на удаление вещества в виде газа.

Порядок составления ионных уравнений по известным молекулярным уравнениям рассмотрим на примере реакции между растворами Na 2 CO 3 и HCl.

1. Уравнение реакции записывается в молекулярной форме:

Na 2 CO 3 + 2HCl → 2NaCl + H 2 CO 3

2. Уравнение переписывается в ионной форме, при этом хорошо диссоциирующие вещества записываются в виде ионов, а вещества малодиссоциирующие (в том числе и вода), газы или труднорастворимые – в виде молекул. Коэффициент, стоящий перед формулой вещества в молекулярном уравнении одинаково относится к каждому из ионов, составляющих вещество, и поэтому он выносится в ионном уравнении перед ионом:

2 Na + + CO 3 2- + 2H + + 2Cl - <=> 2Na + + 2Cl - + CO 2 + H 2 O

3. Из обеих частей равенства исключаются (сокращаются) ионы, встречающиеся в левой и правой частях (подчеркнуты соответствующими черточками):

2 Na + + CO 3 2- + 2H + + 2Cl - <=> 2Na + + 2Cl - + CO 2 + H 2 O

4. Ионное уравнение записывается в его окончательном виде (краткое ионоое уравнение):

2H + + CO 3 2- <=> CO 2 + H 2 O

Если в ходе реакции образуются и/или малодиссоциированные, и/или труднорастворимые, и/или газообразные вещества, и/или вода, а в исходных веществах такие соединения отсутствуют‚ то реакция будет практически необратимой (→), и для неё можно составить молекулярное, полное и краткое ионное уравнение. Если такие вещества есть и в реагентах‚ и в продуктах, то реакция будет обратимой (<=>):

Молекулярное уравнение : СаСО 3 + 2HCl <=> CaCl 2 + H 2 O + CO 2

Полное ионное уравнение : СаСО 3 + 2H + + 2Cl – <=> Ca 2+ + 2Cl – + H 2 O + CO 2